This file is indexed.

/usr/include/rheolef/field_expr_v2_linear.h is in librheolef-dev 6.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
#ifndef _RHEOLEF_FIELD_EXPR_V2_LINEAR_H
#define _RHEOLEF_FIELD_EXPR_V2_LINEAR_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================
//
// field-valued affine expressions:
//
//	field wh = 2*uh - vh + 1:
//
// author: Pierre.Saramito@imag.fr
//
// date: 13 september 2015
//
// Notes; use template expressions and SFINAE techniques
//
// SUMMARY:
// 1. concept
// 2. unary operations
//    2.1. unary wrapper
//    2.2. unary calls
// 3. binary operations
//    3.1. binary wrapper
//    3.2. binary calls
// 4. field assignments
//    4.1. field assignment members
//    4.2. computed assignment
// 5. misc
//    5.1. duality product
//    5.2. form d = diag (expr)
//    5.3. output a linear expession

#include "rheolef/operators.h"
#include "rheolef/field.h"
#include "rheolef/field_component.h"
#include "rheolef/form.h"

namespace rheolef {

// -------------------------------------------------------------------
// 1. concept
// -------------------------------------------------------------------
// field_expr_v2_linear, a type concept for expression types

namespace details {

// Define a trait type for detecting field expression valid arguments
template<class T>          struct is_field_expr_v2_linear_arg                                : std::false_type {};
template<class T, class M> struct is_field_expr_v2_linear_arg <field_basic<T, M> >           : std::true_type {};
template<class T, class M> struct is_field_expr_v2_linear_arg <field_indirect       <T, M> > : std::true_type {}; 
template<class T, class M> struct is_field_expr_v2_linear_arg <field_indirect_const <T, M> > : std::true_type {};
template<class T, class M> struct is_field_expr_v2_linear_arg <field_component      <T, M> > : std::true_type {};
template<class T, class M> struct is_field_expr_v2_linear_arg <field_component_const<T, M> > : std::true_type {};

// predicate for filtering the field_basic class
template <class T>          struct is_field                     : std::false_type {};
template <class T, class M> struct is_field <field_basic<T,M> > : std::true_type {};

} // namespace details
// -------------------------------------------
// 2. unary operations
// -------------------------------------------
// 2.1. unary wrapper
// -------------------------------------------
namespace details {

template <class Op, class Expr>
struct field_expr_v2_unary {

// typedefs:

  typedef typename Expr::size_type      size_type;
  typedef typename Expr::value_type     value_type;
  typedef typename Expr::memory_type    memory_type;
  typedef typename Expr::const_iterator expr_const_iterator;
  typedef typename scalar_traits<value_type>::type    scalar_type;
  typedef typename float_traits <scalar_type>::type   float_type;

// allocatos:

  field_expr_v2_unary (const Op& op, const Expr& expr)
   : _op(op), _expr_iter(expr.begin_dof()), _space(expr.get_space()) {}

  template <class BinaryOp, class Constant>
  field_expr_v2_unary (const BinaryOp& binop, const Constant& c, const Expr& expr)
   : _op(binop,c), _expr_iter(expr.begin_dof()), _space(expr.get_space()) {}

  template <class BinaryOp, class Constant>
  field_expr_v2_unary (const BinaryOp& binop, const Expr& expr, const Constant& c)
   : _op(binop,c), _expr_iter(expr.begin_dof()), _space(expr.get_space()) {}

// accessors:

  const space_basic<scalar_type,memory_type>& get_space() const { return _space; }
  std::string stamp() const { return _space.stamp(); }

// minimal forward iterator interface:

  struct const_iterator {
    typedef std::forward_iterator_tag         iterator_category;
    typedef typename Expr::value_type         value_type;
    typedef value_type&                       reference;
    typedef value_type*                       pointer;
    typedef std::ptrdiff_t                    difference_type;
    const_iterator (Op op, expr_const_iterator expr_iter)
     : _op(op), _expr_iter (expr_iter) {}
    const_iterator& operator++ () { ++_expr_iter; return *this; }
    value_type operator* () const {  return _op (*_expr_iter); }
  protected:
    const Op                                   _op;
    expr_const_iterator                        _expr_iter;
  };
  const_iterator begin_dof() const { return const_iterator (_op, _expr_iter); }
protected:
  const Op                                   _op;
  const expr_const_iterator                  _expr_iter;
  const space_basic<scalar_type,memory_type> _space;
};
template<class Op, class Expr> struct is_field_expr_v2_linear_arg     <field_expr_v2_unary<Op,Expr> > : std::true_type {};

} // namespace details

// -------------------------------------------
// 2.2. unary calls
// -------------------------------------------
#define _RHEOLEF_field_expr_v2_unary_operator(OP, FUNCTOR) 			\
template <class Expr>								\
inline										\
typename 									\
std::enable_if<									\
  details::is_field_expr_v2_linear_arg<Expr>::value,				\
  details::field_expr_v2_unary<							\
    FUNCTOR,									\
    Expr									\
  >										\
>::type										\
operator OP (const Expr& expr)							\
{										\
  typedef details::field_expr_v2_unary <FUNCTOR, Expr>   expr_t;		\
  return expr_t (FUNCTOR(), expr); 						\
}

_RHEOLEF_field_expr_v2_unary_operator (+, details::unary_plus)
_RHEOLEF_field_expr_v2_unary_operator (-, details::negate)
#undef _RHEOLEF_field_expr_v2_unary_operator

// -------------------------------------------
// 3. binary operations
// -------------------------------------------
// 3.1. binary wrapper
// -------------------------------------------
namespace details {

template <class Op, class Expr1, class Expr2>
struct field_expr_v2_binary {

  typedef typename Expr1::size_type      size_type;
  typedef typename promote<
    typename Expr1::value_type,
    typename Expr2::value_type>::type   value_type;
  typedef typename Expr1::memory_type   memory_type; // TODO: check Expr2::memory_type
  typedef typename Expr1::const_iterator expr1_const_iterator;
  typedef typename Expr2::const_iterator expr2_const_iterator;
  typedef typename scalar_traits<value_type>::type    scalar_type;
  typedef typename float_traits <scalar_type>::type   float_type;

// allocators:

  field_expr_v2_binary (const Op& op, const Expr1& expr1, const Expr2& expr2)
   : _op (op),
     _iter1 (expr1.begin_dof()),
     _iter2 (expr2.begin_dof()),
     _space (expr1.get_space())
  {
    check_macro (expr1.stamp() == expr2.stamp(), "linear binary field expression: incompatible spaces "
                << expr1.stamp() << " and " << expr2.stamp());
  }

// accessors:

  const space_basic<scalar_type,memory_type>& get_space() const { return _space; }
  std::string stamp() const { return _space.stamp(); }

// minimal forward iterator interface:

  struct const_iterator {
    typedef std::forward_iterator_tag         iterator_category;
    typedef typename promote<
      typename Expr1::value_type,
      typename Expr2::value_type>::type       value_type;
    typedef value_type&                       reference;
    typedef value_type*                       pointer;
    typedef std::ptrdiff_t                    difference_type;
    const_iterator (Op op, expr1_const_iterator iter1, expr2_const_iterator iter2)
     : _op(op), _iter1 (iter1), _iter2 (iter2) {}
    const_iterator& operator++ () { ++_iter1; ++_iter2; return *this; }
    value_type operator* () const {  return _op (*_iter1, *_iter2); }
  protected:
    const Op                                  _op;
    expr1_const_iterator                      _iter1;
    expr2_const_iterator                      _iter2;
  };
  const_iterator begin_dof() const { return const_iterator (_op, _iter1, _iter2); }
protected:
  const Op                                    _op;
  expr1_const_iterator                        _iter1;
  expr2_const_iterator                        _iter2;
  const space_basic<scalar_type,memory_type>  _space;
};
template<class Op, class Expr1, class Expr2> struct is_field_expr_v2_linear_arg     <field_expr_v2_binary<Op,Expr1,Expr2> > : std::true_type {};

template <class Op, class Expr1, class Expr2, class Sfinae = void>
struct field_expr_v2_binary_traits { /* catch-all case */ };

// field_expr +- field_expr
template <class Op, class Expr1, class Expr2>
struct field_expr_v2_binary_traits <Op, Expr1, Expr2,
  typename std::enable_if<
    details::is_field_expr_v2_linear_arg<Expr1>::value &&
    details::is_field_expr_v2_linear_arg<Expr2>::value>::type>
{
  typedef field_expr_v2_binary <Op,Expr1,Expr2> type;
};
// constant +-* field_expr
template <class Op, class Expr1, class Expr2>
struct field_expr_v2_binary_traits <Op, Expr1, Expr2,
  typename std::enable_if<
       is_field_expr_v2_constant<Expr1>::value 
    && details::is_field_expr_v2_linear_arg<Expr2>::value
  >::type>
{
  typedef field_expr_v2_unary <details::binder_first<Op,Expr1>,Expr2> type;
};
// field_expr +-* constant
template <class Op, class Expr1, class Expr2>
struct field_expr_v2_binary_traits <Op, Expr1, Expr2,
  typename std::enable_if<
       details::is_field_expr_v2_linear_arg<Expr1>::value
    && is_field_expr_v2_constant<Expr2>::value>
  ::type>
{
  typedef field_expr_v2_unary <details::binder_second<Op,Expr2>,Expr1> type;
};

} // namespace details

// -------------------------------------------
// 3.2. binary calls
// -------------------------------------------
// uh+vh; uh+c ; c+uh
#define _RHEOLEF_field_expr_v2_binary_operator(OP, FUNCTOR) 			\
template <class Expr1, class Expr2>						\
inline										\
typename 									\
std::enable_if<									\
    (details::is_field_expr_v2_linear_arg<Expr1>::value &&			\
     details::is_field_expr_v2_linear_arg<Expr2>::value) ||			\
    (details::is_field_expr_v2_constant  <Expr1>::value &&			\
     details::is_field_expr_v2_linear_arg<Expr2>::value) ||			\
    (details::is_field_expr_v2_linear_arg<Expr1>::value &&			\
     details::is_field_expr_v2_constant  <Expr2>::value)			\
 ,typename 									\
  details::field_expr_v2_binary_traits<						\
    FUNCTOR,									\
    Expr1, Expr2								\
  >::type									\
>::type										\
operator OP (const Expr1& expr1, const Expr2& expr2)				\
{										\
  typedef typename details::field_expr_v2_binary_traits <FUNCTOR, Expr1, Expr2>::type  expr_t; \
  return expr_t (FUNCTOR(), expr1, expr2);					\
}
_RHEOLEF_field_expr_v2_binary_operator (+, details::plus)
_RHEOLEF_field_expr_v2_binary_operator (-, details::minus)
#undef _RHEOLEF_field_expr_v2_binary_operator

// c*uh ; uh*c
template <class Expr1, class Expr2>
inline
typename
std::enable_if<
    (details::is_field_expr_v2_constant  <Expr1>::value &&
     details::is_field_expr_v2_linear_arg<Expr2>::value) ||
    (details::is_field_expr_v2_linear_arg<Expr1>::value &&
     details::is_field_expr_v2_constant  <Expr2>::value)
 ,typename
  details::field_expr_v2_binary_traits<
    details::multiplies,
    Expr1, Expr2
  >::type
>::type
operator* (const Expr1& expr1, const Expr2& expr2)
{
  typedef typename details::field_expr_v2_binary_traits <details::multiplies, Expr1, Expr2>::type  expr_t;
  return expr_t (details::multiplies(), expr1, expr2);
}

// uh/c
template <class Expr1, class Expr2>
inline
typename
std::enable_if<
    (details::is_field_expr_v2_linear_arg<Expr1>::value &&
     details::is_field_expr_v2_constant  <Expr2>::value)
 ,typename
  details::field_expr_v2_binary_traits<
    details::divides,
    Expr1, Expr2
  >::type
>::type
operator/ (const Expr1& expr1, const Expr2& expr2)
{
  typedef typename details::field_expr_v2_binary_traits <details::divides, Expr1, Expr2>::type  expr_t;
  return expr_t (details::divides(), expr1, expr2);
}

// -------------------------------------------
// 4. field assignments
// -------------------------------------------
// 4.1. field assignment members
// -------------------------------------------
// 4.1.1 field
// -------------------------------------------
// uh = expr;
template<class T, class M>
template<class Expr, class Sfinae>
inline
field_basic<T,M>& 
field_basic<T,M>::operator= (const Expr& expr) {
  if (stamp() == "") {
    resize (expr.get_space());
  } else {
    check_macro (stamp() == expr.stamp(), "field = field_expression : incompatible spaces "
                << stamp() << " and " << expr.stamp());
  }
  details::assign_with_operator (begin_dof(), end_dof(), expr.begin_dof(), details::assign_op());
  return *this;
}
// field uh = expr;
template<class T, class M>
template<class Expr, class Sfinae>
inline
field_basic<T,M>::field_basic (const Expr& expr)
 : _V (),
   _u (),
   _b (),
   _dis_dof_indexes_requires_update(true),
   _dis_dof_assembly_requires_update(false)
{
    operator= (expr);
}

#ifdef TO_CLEAN
template<class T, class M>
inline
field_basic<T,M>&
field_basic<T,M>::operator=  (const field_indirect<T,M>& expr)
{
  if (stamp() == "") {
    resize (expr.get_space());
  } else {
    check_macro (stamp() == expr.stamp(), "incompatible spaces "
	<< stamp() << " and " << expr.stamp()
	<< " in field = field[domain]");
  }
  dis_dof_indexes_requires_update();
  algo::copy_n (expr.begin_dof(), expr.ndof(), begin_dof());
  return *this;
}
template<class T, class M>
inline
field_basic<T,M>&
field_basic<T,M>::operator=  (const field_indirect_const<T,M>& expr)
{
  if (stamp() == "") {
    resize (expr.get_space());
  } else {
    check_macro (stamp() == expr.stamp(), "incompatible spaces "
	<< stamp() << " and " << expr.stamp()
	<< " in field = field[domain]");
  }
  dis_dof_indexes_requires_update();
  algo::copy_n (expr.begin_dof(), expr.ndof(), begin_dof());
  return *this;
}
template<class T, class M>
inline
field_basic<T,M>&
field_basic<T,M>::operator=  (const field_component_const<T,M>& uh_comp)
{
  if (stamp() == "") {
    resize (uh_comp.get_space());
  } else {
    check_macro (stamp() == uh_comp.stamp(), "incompatible spaces "
        << stamp() << " and " << uh_comp.stamp()
        << " in field = field[i_comp]");
  }
  dis_dof_indexes_requires_update();
  std::copy (uh_comp.begin_dof(), uh_comp.end_dof(), begin_dof());
  return *this;
}
template<class T, class M>
inline
field_basic<T,M>::field_basic (const field_indirect<T,M>& expr)
 : _V(),
   _u(),
   _b(),
   _dis_dof_indexes_requires_update(true),
   _dis_dof_assembly_requires_update(false)
{
    operator= (expr);
}
template<class T, class M>
inline
field_basic<T,M>::field_basic (const field_indirect_const<T,M>& expr)
 : _V(),
   _u(),
   _b(),
   _dis_dof_indexes_requires_update(true),
   _dis_dof_assembly_requires_update(false)
{
    operator= (expr);
}
template<class T, class M>
inline
field_basic<T,M>&
field_basic<T,M>::operator=  (const field_component<T,M>& uh_comp)
{
  return operator= (field_component_const<T,M>(uh_comp));
}
template<class T, class M>
inline
field_basic<T,M>::field_basic (const field_component<T,M>& uh_comp)
 : _V(),
   _u(),
   _b(),
   _dis_dof_indexes_requires_update(true),
   _dis_dof_assembly_requires_update(false)
{
  operator= (uh_comp);
}
template<class T, class M>
inline
field_basic<T,M>::field_basic (const field_component_const<T,M>& uh_comp)
 : _V(),
   _u(),
   _b(),
   _dis_dof_indexes_requires_update(true),
   _dis_dof_assembly_requires_update(false)
{
  operator= (uh_comp);
}
#endif // TO_CLEAN
// -------------------------------------------
// 4.1.2. field_component
// -------------------------------------------
// uh [i_comp] = expr;
template<class T, class M>
template<class Expr, class Sfinae>
inline
field_component<T,M>& 
field_component<T,M>::operator= (const Expr& expr) {
  check_macro (stamp() == expr.stamp(), "field [i_comp] = field_expression : incompatible spaces "
                << stamp() << " and " << expr.stamp());
  details::assign_with_operator (begin_dof(), end_dof(), expr.begin_dof(), details::assign_op());
  return *this;
}
#ifdef TO_CLEAN
template<class T, class M>
inline
field_component<T,M>&
field_component<T,M>::operator= (const field_component<T,M>& uh_comp)
{
  check_macro (stamp() == uh_comp.stamp(), "incompatible spaces "
        << stamp() << " and " << uh_comp.stamp()
        << " in field[i_comp] = field[j_comp]");
  std::copy (uh_comp.begin_dof(), uh_comp.end_dof(), begin_dof());
  return *this;
}
template<class T, class M>
inline
field_component<T,M>&
field_component<T,M>::operator= (const field_basic<T,M>& uh)
{
  check_macro (stamp() == uh.stamp(), "incompatible spaces "
        << stamp() << " and " << uh.stamp()
        << " in field[i_comp] = field");
  std::copy (uh.begin_dof(), uh.end_dof(), begin_dof());
  return *this;
}
#endif // TO_CLEAN
// -------------------------------------------
// 4.1.2. field_indirect
// -------------------------------------------
// uh [domain] = expr;
template<class T, class M>
template<class Expr, class Sfinae>
inline
field_indirect<T,M>& 
field_indirect<T,M>::operator= (const Expr& expr) {
#ifdef TO_CLEAN
  // is it still a restriction ? check it...
  check_macro (_V.valued_tag() == space_constant::scalar, 
               "field[domain] = expression: non-scalar valued field not yet supported -- sorry");
#endif // TO_CLEAN
  check_macro (stamp() == expr.stamp(), "field [domain] = field_expression : incompatible spaces "
                << stamp() << " and " << expr.stamp());
#ifdef TO_CLEAN
  algo::copy_n (expr.begin_dof(), expr.ndof(), begin_dof());
#endif // TO_CLEAN
  details::assign_with_operator (begin_dof(), end_dof(), expr.begin_dof(), details::assign_op());
  return *this;
}
#ifdef TO_CLEAN
template<class T, class M>
inline
field_indirect<T,M>&
field_indirect<T,M>::operator=  (const field_basic<T,M>& expr)
{
  check_macro (_V.valued_tag() == space_constant::scalar, "field[domain]: unsupported non-scalar field");
  check_macro (stamp() == expr.stamp(), "field[domain] = field : incompatible spaces "
		<< stamp() << " and " << expr.stamp());
  algo::copy_n (expr.begin_dof(), expr.ndof(), begin_dof());
  return *this;
}
template<class T, class M>
inline
field_indirect<T,M>&
field_indirect<T,M>::operator=  (const field_indirect<T,M>& expr)
{
  check_macro (_V.valued_tag() == space_constant::scalar, "field[domain]: unsupported non-scalar field");
  check_macro (stamp() == expr.stamp(), "field[domain] = field[domain]: incompatible spaces "
		<< stamp() << " and " << expr.stamp());
  algo::copy_n (expr.begin_dof(), expr.ndof(), begin_dof());
  return *this;
}
template<class T, class M>
inline
field_indirect<T,M>&
field_indirect<T,M>::operator=  (const field_indirect_const<T,M>& expr)
{
  check_macro (_V.valued_tag() == space_constant::scalar, "field[domain]: unsupported non-scalar field");
  check_macro (stamp() == expr.stamp(), "field[domain] = field[domain]: incompatible spaces "
		<< stamp() << " and " << expr.stamp());
  algo::copy_n (expr.begin_dof(), expr.ndof(), begin_dof());
  return *this;
}
#endif // TO_CLEAN
// ---------------------------------------------------------------------------
// 4.2. computed assignment
// ---------------------------------------------------------------------------

// uh -+= expr
// uh [i_comp] -+= expr; // note: requires a move &&
// uh [domain] -+= expr;
#define _RHEOLEF_field_expr_v2_op_assign_field(OP, FUNCTOR)			\
template<class T, class M, class Expr>						\
inline										\
typename std::enable_if<							\
  details::is_field_expr_v2_linear_arg<Expr>::value,				\
  field_basic<T,M>&								\
>::type										\
operator OP (field_basic<T,M>& uh, const Expr& expr)				\
{										\
  check_macro (uh.stamp() == expr.stamp(), "field " << #OP << " field_expression : incompatible spaces " \
            << uh.stamp() << " and " << expr.stamp());				\
  details::assign_with_operator (uh.begin_dof(), uh.end_dof(), expr.begin_dof(), FUNCTOR()); \
  return uh;									\
}

#define _RHEOLEF_field_expr_v2_op_assign_auxil(OP, FUNCTOR, NAME, IDX)		\
template<class T, class M, class Expr>						\
inline										\
typename std::enable_if<							\
  details::is_field_expr_v2_linear_arg<Expr>::value,				\
  NAME<T,M>&									\
>::type										\
operator OP (NAME<T,M>&& uh, const Expr& expr)					\
{										\
  check_macro (uh.stamp() == expr.stamp(), "field [" << #IDX << "] " << #OP << " field_expression : incompatible spaces " \
            << uh.stamp() << " and " << expr.stamp());				\
  details::assign_with_operator (uh.begin_dof(), uh.end_dof(), expr.begin_dof(), FUNCTOR()); \
  return uh;									\
}

#define _RHEOLEF_field_expr_v2_op_assign(OP, FUNCTOR) 				\
        _RHEOLEF_field_expr_v2_op_assign_field(OP, FUNCTOR) 			\
        _RHEOLEF_field_expr_v2_op_assign_auxil(OP, FUNCTOR, field_component, "i_comp")	\
        _RHEOLEF_field_expr_v2_op_assign_auxil(OP, FUNCTOR, field_indirect,  "domain")

_RHEOLEF_field_expr_v2_op_assign (+=, details::plus_assign)
_RHEOLEF_field_expr_v2_op_assign (-=, details::minus_assign)
#undef _RHEOLEF_field_expr_v2_op_assign_field
#undef _RHEOLEF_field_expr_v2_op_assign_auxil
#undef _RHEOLEF_field_expr_v2_op_assign

// uh -+*/= c
// uh [i_comp] -+*/= c; // requires a move &&
// uh [domain] -+*/= c; // TODO
#define _RHEOLEF_field_expr_v2_op_assign_constant_field(OP, FUNCTOR)		\
template<class T, class M, class Expr>						\
inline										\
typename std::enable_if<							\
  details::is_field_expr_v2_constant<Expr>::value				\
 ,field_basic<T,M>&								\
>::type										\
operator OP (field_basic<T,M>& uh, const Expr& expr)				\
{										\
  details::assign_with_operator (uh.begin_dof(), uh.end_dof(), details::iterator_on_constant<Expr>(expr), FUNCTOR()); \
  return uh;									\
}

#define _RHEOLEF_field_expr_v2_op_assign_constant_auxil(OP, FUNCTOR, NAME, IDX)	\
template<class T, class M, class Expr>						\
inline										\
typename std::enable_if<							\
  details::is_field_expr_v2_constant<Expr>::value				\
 ,NAME<T,M>&									\
>::type										\
operator OP (NAME<T,M>&& uh, const Expr& expr)					\
{										\
  details::assign_with_operator (uh.begin_dof(), uh.end_dof(), details::iterator_on_constant<Expr>(expr), FUNCTOR()); \
  return uh;									\
}

#define _RHEOLEF_field_expr_v2_op_assign_constant(OP, FUNCTOR) 				\
        _RHEOLEF_field_expr_v2_op_assign_constant_field(OP, FUNCTOR) 			\
        _RHEOLEF_field_expr_v2_op_assign_constant_auxil(OP, FUNCTOR, field_component, "i_comp")	\
        _RHEOLEF_field_expr_v2_op_assign_constant_auxil(OP, FUNCTOR, field_indirect,  "domain")

_RHEOLEF_field_expr_v2_op_assign_constant (+=, details::plus_assign)
_RHEOLEF_field_expr_v2_op_assign_constant (-=, details::minus_assign)
_RHEOLEF_field_expr_v2_op_assign_constant (*=, details::multiplies_assign)
_RHEOLEF_field_expr_v2_op_assign_constant (/=, details::divides_assign)
#undef _RHEOLEF_field_expr_v2_op_assign_constant_field
#undef _RHEOLEF_field_expr_v2_op_assign_constant_auxil
#undef _RHEOLEF_field_expr_v2_op_assign_constant

// ---------------------------------------------------------------------------
// 5. misc
// ---------------------------------------------------------------------------
// 5.1. duality product
// ---------------------------------------------------------------------------
// dual (uh,vh)
template <class Expr1, class Expr2>
inline
typename
std::enable_if<
  details::is_field_expr_v2_linear_arg<Expr1>::value &&
  details::is_field_expr_v2_linear_arg<Expr2>::value,
  typename promote<
    typename Expr1::float_type,
    typename Expr2::float_type>::type
>::type
dual (const Expr1& expr1, const Expr2& expr2)
{
  typedef typename Expr1::memory_type M;
  return dis_inner_product (expr1.begin_dof(), expr2.begin_dof(), expr1.get_space().ndof(), expr1.get_space().ownership().comm(), M());
}
// dual (c,uh)
template <class Expr1, class Expr2>
inline
typename
std::enable_if<
  details::is_field_expr_v2_constant  <Expr1>::value &&
  details::is_field_expr_v2_linear_arg<Expr2>::value
 ,typename Expr2::float_type
>::type
dual (const Expr1& expr1, const Expr2& expr2)
{
  typedef typename Expr2::memory_type M;
  return expr1*dis_accumulate (expr2.begin_dof(), expr2.get_space().ndof(), expr2.get_space().ownership().comm(), M());
}
// dual (uh,c) 
template <class Expr1, class Expr2>
inline
typename
std::enable_if<
  details::is_field_expr_v2_linear_arg<Expr1>::value &&
  details::is_field_expr_v2_constant  <Expr2>::value
 ,typename Expr1::float_type
>::type
dual (const Expr1& expr1, const Expr2& expr2)
{
  typedef typename Expr1::memory_type M;
  return dis_accumulate (expr1.begin_dof(), expr1.get_space().ndof(), expr1.get_space().ownership().comm(), M())*expr2;
}
// ---------------------------------------------------------------------------
// 5.2. form d = diag (expr)
// ---------------------------------------------------------------------------
template<class Expr>
inline
typename
std::enable_if<
       details::is_field_expr_v2_linear_arg<Expr>::value
  && ! details::is_field<Expr>::value
 ,form_basic <typename Expr::value_type, typename Expr::memory_type>
>::type
diag (const Expr& expr)
{
  typedef typename Expr::value_type  T;
  typedef typename Expr::memory_type M;
  return diag (field_basic<T,M>(expr));
}
// -------------------------------------------
// 5.3. output a linear expession
// -------------------------------------------
template <class Expr>
inline
typename
std::enable_if<
       details::is_field_expr_v2_linear_arg<Expr>::value
  && ! details::is_field<Expr>::value
 ,odiststream&
>::type
operator<< (odiststream& ops, const Expr& expr) {
  // distributed case: communications requires to store in memory
  // and create a temporary
  typedef typename Expr::value_type  T;
  typedef typename Expr::memory_type M;
  field_basic<T,M> tmp = expr;
  return tmp.put (ops);
}

} // namespace rheolef
#endif // _RHEOLEF_FIELD_EXPR_V2_LINEAR_H