This file is indexed.

/usr/include/rheolef/field_expr_v2_nonlinear.h is in librheolef-dev 6.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
#ifndef _RHEOLEF_FIELD_EXPR_V2_NONLINEAR_H
#define _RHEOLEF_FIELD_EXPR_V2_NONLINEAR_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================
//
// field-valued nonlinear expressions, as:
//
//	field wh = interpolate  (Xh, 1/uh - uh*(1-vh)):
//	Float Ih = integrate (omega, 1/uh - uh*(1-vh), qopt):
//
// author: Pierre.Saramito@imag.fr
//
// date: 15 september 2015
//
// Notes; use template expressions and SFINAE techiques
//   The interpolation operator is required, as in
//   1/uh and uh*vh that do not belong to Xh when uh, vh in Xh
//
// SUMMARY:
// 1. unary operations
//    1.1. unary node
//    1.2. unary calls
//    1.3. unary compose
// 2. binary operations
//    2.1. binary node
//    2.2. binary calls
//         2.2.1. plus and minus
//         2.2.2. times
//         2.2.3. divides
//         2.2.4. std::math and extensions
//    2.3. binary compose
// 
#include "rheolef/field_expr_v2_nonlinear_terminal.h"

namespace rheolef {

// -------------------------------------------
// 1. unary operations
// -------------------------------------------
// 1.1. unary node
// -------------------------------------------
namespace details {

template<class UnaryFunction, class Expr>
class field_expr_v2_nonlinear_node_unary {
public:
// typedefs:

  typedef geo_element::size_type                      size_type;
  typedef typename Expr::memory_type                  memory_type;
  typedef typename details::generic_unary_traits<UnaryFunction>::template result_hint<typename Expr::result_type>::type
						      result_type;
  typedef result_type                                 value_type;
  typedef typename scalar_traits<value_type>::type    scalar_type;
  typedef typename  float_traits<value_type>::type    float_type;
  typedef field_expr_v2_nonlinear_node_unary<UnaryFunction,Expr> self_type;

// alocators:

  field_expr_v2_nonlinear_node_unary (const UnaryFunction& f, const Expr& expr) 
    : _f(f), _expr(expr) {}

// accessors:

  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<result_type>::value;

  space_constant::valued_type valued_tag() const {
    return details::generic_unary_traits<UnaryFunction>::valued_tag (_expr.valued_tag());
  }

// initializators:

  bool initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const {
    return _expr.initialize (omega, hat_x);
  }
  bool initialize (const space_basic<float_type,memory_type>& Xh) const {
    return _expr.initialize (Xh);
  }
// evaluator:

  template<class Result, class Arg, class Status>
  struct evaluate_call_check {
    void operator() (const self_type& obj, const geo_element& K, std::vector<Result>& value) const {
      fatal_macro ("invalid type resolution: Result="<<typename_macro(Result)
          << ", Arg="<<typename_macro(Arg)
          << ", UnaryFunction="<<typename_macro(UnaryFunction)
      );
    }
  };
  template<class Result, class Arg>
  struct evaluate_call_check<Result,Arg,std::true_type> {
    void operator() (const self_type& obj, const geo_element& K, std::vector<Result>& value) const {
      std::vector<Arg> tmp_value;
      obj._expr.evaluate (K, tmp_value);
      value.resize(tmp_value.size());
      typename std::vector<Arg>::const_iterator tmp = tmp_value.begin();
      for (typename std::vector<Result>::iterator
	iter = value.begin(),
	last = value.end(); iter != last; ++iter, ++tmp) {
          *iter = obj._f(*tmp);
      }
    }
  };
  template<class Result, class Arg>
  void evaluate_call (const geo_element& K, std::vector<Result>& value) const {
    typedef typename details::generic_unary_traits<UnaryFunction>::template hint<Arg,Result>::result_type result_type;
    typedef typename details::and_type<
		typename details::is_equal<Result,result_type>::type
	       ,typename details::not_type<typename details::is_error<Arg>::type>::type
	      >::type
      status_t;
    evaluate_call_check<Result,Arg,status_t> eval;
    eval (*this, K, value);
  }
  template<class This, class Result, class Arg, space_constant::valued_type ArgTag = space_constant::valued_tag_traits<Arg>::value>
  struct evaluate_switch {};

  // when arg is unknown at run-time:
  template<class This, class Result, class Arg>
  struct evaluate_switch<This, Result, Arg, space_constant::last_valued> {
    void evaluate (const This& obj, const geo_element& K, std::vector<Result>& value) const {
      typedef typename scalar_traits<Arg>::type T;
      space_constant::valued_type arg_valued_tag = obj._expr.valued_tag();
      switch (arg_valued_tag) {
        case space_constant::scalar:
	  obj.template evaluate_call<Result,T> (K, value); break;
        case space_constant::vector:
	  obj.template evaluate_call<Result, point_basic<T> > (K, value); break;
        case space_constant::tensor:
        case space_constant::unsymmetric_tensor:
	  obj.template evaluate_call<Result, tensor_basic<T> > (K, value); break;
        default: { error_macro ("unexpected valued tag="<<arg_valued_tag); }
      }
    }
  };
  // when arg is known at compile-time:
  template<class This, class Result, class Arg>
  struct evaluate_switch <This, Result, Arg, space_constant::scalar> {
    typedef typename scalar_traits<Arg>::type T;
    void evaluate (const This& obj, const geo_element& K, std::vector<Result>& value) const {
      obj.template evaluate_call<Result,T> (K, value);
    }
  };
  template<class This, class Result, class Arg>
  struct evaluate_switch <This, Result, Arg, space_constant::vector> {
    typedef typename scalar_traits<Arg>::type T;
    void evaluate (const This& obj, const geo_element& K, std::vector<Result>& value) const {
      obj.template evaluate_call<Result, point_basic<T> > (K, value);
    }
  };
  template<class This, class Result, class Arg>
  struct evaluate_switch <This, Result, Arg, space_constant::tensor> {
    typedef typename scalar_traits<Arg>::type T;
    void evaluate (const This& obj, const geo_element& K, std::vector<Result>& value) const {
      obj.template evaluate_call<Result, tensor_basic<T> > (K, value);
    }
  };
  template<class This, class Result, class Arg>
  struct evaluate_switch <This, Result, Arg, space_constant::tensor3> {
    typedef typename scalar_traits<Arg>::type T;
    void evaluate (const This& obj, const geo_element& K, std::vector<Result>& value) const {
      obj.template evaluate_call<Result, tensor3_basic<T> > (K, value);
    }
  };
  template<class This, class Result, class Arg>
  struct evaluate_switch <This, Result, Arg, space_constant::tensor4> {
    typedef typename scalar_traits<Arg>::type T;
    void evaluate (const This& obj, const geo_element& K, std::vector<Result>& value) const {
      obj.template evaluate_call<Result, tensor4_basic<T> > (K, value);
    }
  };
  template<class Result>
  bool evaluate (const geo_element& K, std::vector<Result>& value) const
  {
    typedef field_expr_v2_nonlinear_node_unary<UnaryFunction, Expr> This;
    typedef typename details::generic_unary_traits<UnaryFunction>::template hint<typename Expr::value_type,Result>::argument_type
            A1;
#ifdef TO_CLEAN
    static const space_constant::valued_type argument_tag = space_constant::valued_tag_traits<A1>::value;
    evaluate_switch <This, Result, A1, argument_tag> helper;
#endif // TO_CLEAN
    evaluate_switch <This, Result, A1> helper;
    helper.evaluate (*this, K, value);
    return true;
  }
  template<class Result>
  void evaluate_on_side (const geo_element& K, const side_information_type& sid, std::vector<Result>& value) const { 
    // TODO: group with evaluate
    fatal_macro ("uf::evaluate_on_side: not yet");
  }

  template<class Result>
  bool valued_check() const {
    typedef typename details::generic_unary_traits<UnaryFunction>::template hint<typename Expr::value_type,Result>::argument_type
                     A1;
    if (! is_undeterminated<A1>::value) return _expr.template valued_check<A1>();
    return true;
  }

protected:
// data:
  UnaryFunction   _f;
  Expr            _expr;
};
template<class F, class Expr> struct is_field_expr_v2_nonlinear_arg     <field_expr_v2_nonlinear_node_unary<F,Expr> > : std::true_type {};

} // namespace details
// -------------------------------------------
// 1.2. unary calls
// -------------------------------------------
// unary operators +- and std::math

namespace details {

// avoid -(lin_expr) that is a linear expression
template <class Expr>
struct is_field_expr_v2_nonlinear_unary_operator_plus_minus
: and_type<
    is_field_expr_v2_nonlinear_arg<Expr>
   ,not_type <
      is_field_expr_v2_linear_arg<Expr>
    >
  >
{};

} // namespace details

#define _RHEOLEF_make_field_expr_v2_nonlinear_unary_general(FUNCTION,FUNCTOR,IS_EXPR)	\
template<class Expr>								\
inline										\
typename									\
std::enable_if<									\
  IS_EXPR<Expr>::value								\
 ,details::field_expr_v2_nonlinear_node_unary<					\
    FUNCTOR									\
   ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type \
  >										\
>::type										\
FUNCTION (const Expr& expr)							\
{										\
  typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type wrap_t;  \
  return details::field_expr_v2_nonlinear_node_unary <FUNCTOR,wrap_t> (FUNCTOR(), wrap_t(expr)); \
}

#define _RHEOLEF_make_field_expr_v2_nonlinear_unary_operator(FUNCTION,FUNCTOR)		\
        _RHEOLEF_make_field_expr_v2_nonlinear_unary_general (FUNCTION, FUNCTOR, details::is_field_expr_v2_nonlinear_unary_operator_plus_minus)

#define _RHEOLEF_make_field_expr_v2_nonlinear_unary_function(FUNCTION)		\
        _RHEOLEF_make_field_expr_v2_nonlinear_unary_general (FUNCTION, details::FUNCTION##_, details::is_field_expr_v2_nonlinear_arg)

// standard unary operators
_RHEOLEF_make_field_expr_v2_nonlinear_unary_operator (operator+, details::unary_plus)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_operator (operator-, details::negate)
// std::cmath
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (cos)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (sin)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (tan)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (acos)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (asin)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (atan)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (cosh)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (sinh)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (tanh)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (exp)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (log)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (log10)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (sqrt)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (abs)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (fabs)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (floor)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (ceil)
// rheolef extensions
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (sqr)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (norm)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (norm2)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (tr)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (trans)

#undef _RHEOLEF_make_field_expr_v2_nonlinear_unary_function
#undef _RHEOLEF_make_field_expr_v2_nonlinear_unary_operator
#undef _RHEOLEF_make_field_expr_v2_nonlinear_unary_general

// -------------------------------------------
// 1.3. unary compose
// -------------------------------------------

template<class Function, class Expr>
inline
typename
std::enable_if<
  details::is_field_expr_v2_nonlinear_arg<Expr>::value
 ,details::field_expr_v2_nonlinear_node_unary<
    typename details::function_traits<Function>::functor_type
   ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type
  >
>::type
compose (const Function& f, const Expr& expr)
{
  typedef typename details::function_traits<Function>::functor_type                     fun_wrap_t;
  typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type expr_wrap_t;
  return details::field_expr_v2_nonlinear_node_unary <fun_wrap_t, expr_wrap_t> (fun_wrap_t(f), expr_wrap_t(expr));
}
// ---------------------------------------------------------------------------
// 2. binary operations
// ---------------------------------------------------------------------------
// 2.1. binary node
// -------------------------------------------
namespace details {

template<class BinaryFunction, class Expr1, class Expr2>
class field_expr_v2_nonlinear_node_binary {
public:
// typedefs:

  typedef geo_element::size_type                   size_type;
  typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<typename Expr1::result_type,typename Expr2::result_type>::type result_type;
  typedef result_type                              value_type;
  typedef typename scalar_traits<value_type>::type scalar_type;
  typedef typename  float_traits<value_type>::type float_type;
  typedef typename Expr1::memory_type              memory_type;

// alocators:

  field_expr_v2_nonlinear_node_binary (const BinaryFunction&             f, 
		    const Expr1& expr1,
                    const Expr2& expr2)
    : _f(f), _expr1(expr1), _expr2(expr2)
  {
  }

// accessors:
 
  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<result_type>::value;

  space_constant::valued_type valued_tag() const {
    return details::generic_binary_traits<BinaryFunction>::valued_tag(_expr1.valued_tag(), _expr2.valued_tag());
  }

// initializers:

  bool initialize (const geo_basic<float_type,memory_type>& omega, const quadrature<float_type>& hat_x) const
  {
    return _expr1.initialize (omega, hat_x) &&
           _expr2.initialize (omega, hat_x);
  }
  bool initialize (const space_basic<float_type,memory_type>& Xh) const {
    return _expr1.initialize (Xh) &&
           _expr2.initialize (Xh);
  }

// evaluators:

  template<class Result, class Arg1, class Arg2>
  void evaluate_internal2 (const geo_element& K, std::vector<Result>& value) const {
#ifdef TO_CLEAN
    _check<Result,Arg1,Arg2> ();
#endif // TO_CLEAN
    std::vector<Arg1> tmp1_value;
    std::vector<Arg2> tmp2_value;
    _expr1.evaluate (K, tmp1_value);
    _expr2.evaluate (K, tmp2_value);
    value.resize(tmp1_value.size());
    typename std::vector<Arg1>::const_iterator tmp1 = tmp1_value.begin();
    typename std::vector<Arg2>::const_iterator tmp2 = tmp2_value.begin();
    for (typename std::vector<Result>::iterator
        iter = value.begin(),
	last = value.end(); iter != last; ++iter, ++tmp1, ++tmp2) {
      *iter = _f (*tmp1, *tmp2);
    }
  }
  template<class This, class Result, class ReturnType, class Arg1, class Arg2>
  struct evaluate_internal {
    void operator() (const This& obj, const geo_element& K, std::vector<Result>& value) const {
      fatal_macro ("unexpected return type "	
	<< pretty_typename_macro(ReturnType) << ": "
	<< pretty_typename_macro(Result) << " was expected for function "
	<< pretty_typename_macro(BinaryFunction) << "("
	<< pretty_typename_macro(Arg1) << ","
	<< pretty_typename_macro(Arg2) << ")");
    }
  };
  template<class This, class Result, class Arg1, class Arg2>
  struct evaluate_internal<This,Result,Result,Arg1,Arg2> {
    void operator() (const This& obj, const geo_element& K, std::vector<Result>& value) const {
      obj.template evaluate_internal2 <Result,Arg1,Arg2> (K, value);
    }
  };
  template<class Result, class Arg1, class Arg2>
  void evaluate_call (const geo_element& K, std::vector<Result>& value) const {
    typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<Arg1,Arg2>::type ReturnType;
    typedef field_expr_v2_nonlinear_node_binary<BinaryFunction, Expr1, Expr2> This;
    evaluate_internal<This,Result,ReturnType,Arg1,Arg2> eval_int;
    eval_int (*this, K, value);
  }
  // when both args are defined at compile time:
  template<class This, class Result,
	class Arg1,        space_constant::valued_type Arg1Tag,
  	class Arg2,        space_constant::valued_type Arg2Tag>
  struct evaluate_switch {
    void operator() (const This& obj, const geo_element& K, std::vector<Result>& value) const {
      obj.template evaluate_call<Result, Arg1, Arg2> (K, value);
    }
  };
  // when both args are undefined at compile time:
  template<class This, class Result,
	class Arg1,
  	class Arg2>
  struct evaluate_switch<This, Result,
	Arg1,   space_constant::last_valued,
        Arg2,   space_constant::last_valued> {
    void operator() (const This& obj, const geo_element& K, std::vector<Result>& value) const {
      typedef typename scalar_traits<Arg1>::type T1;
      typedef typename scalar_traits<Arg2>::type T2;
      space_constant::valued_type arg1_valued_tag = obj._expr1.valued_tag();
      space_constant::valued_type arg2_valued_tag = obj._expr2.valued_tag();
      switch (arg1_valued_tag) {
        case space_constant::scalar: {
          switch (arg2_valued_tag) {
            case space_constant::scalar:
	      obj.template evaluate_call<Result, T1, T2>                (K, value); break;
            case space_constant::vector:
	      obj.template evaluate_call<Result, T1, point_basic<T2> >  (K, value); break;
            case space_constant::tensor:
            case space_constant::unsymmetric_tensor:
	      obj.template evaluate_call<Result, T1, tensor_basic<T2> > (K, value); break;
            case space_constant::tensor3:
	      obj.template evaluate_call<Result, T1, tensor3_basic<T2> > (K, value); break;
            default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
          }
          break;
        }
        case space_constant::vector: {
          switch (arg2_valued_tag) {
            case space_constant::scalar:
	      obj.template evaluate_call<Result, point_basic<T1>, T2>                (K, value); break;
            case space_constant::vector:
	      obj.template evaluate_call<Result, point_basic<T1>, point_basic<T2> >  (K, value); break;
            case space_constant::tensor:
            case space_constant::unsymmetric_tensor:
	      obj.template evaluate_call<Result, point_basic<T1>, tensor_basic<T2> > (K, value); break;
            case space_constant::tensor3:
	      obj.template evaluate_call<Result, point_basic<T1>, tensor3_basic<T2> > (K, value); break;
            default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
          }
          break;
        }
        case space_constant::tensor:
        case space_constant::unsymmetric_tensor: {
          switch (arg2_valued_tag) {
            case space_constant::scalar:
	      obj.template evaluate_call<Result, tensor_basic<T1>, T2>                (K, value); break;
            case space_constant::vector:
	      obj.template evaluate_call<Result, tensor_basic<T1>, point_basic<T2> >  (K, value); break;
            case space_constant::tensor:
            case space_constant::unsymmetric_tensor:
	      obj.template evaluate_call<Result, tensor_basic<T1>, tensor_basic<T2> > (K, value); break;
            case space_constant::tensor3:
	      obj.template evaluate_call<Result, tensor_basic<T1>, tensor3_basic<T2> > (K, value); break;
            default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
          }
          break;
        }
        case space_constant::tensor3: {
          switch (arg2_valued_tag) {
            case space_constant::scalar:
	      obj.template evaluate_call<Result, tensor3_basic<T1>, T2>                (K, value); break;
            case space_constant::vector:
	      obj.template evaluate_call<Result, tensor3_basic<T1>, point_basic<T2> >  (K, value); break;
            case space_constant::tensor:
            case space_constant::unsymmetric_tensor:
	      obj.template evaluate_call<Result, tensor3_basic<T1>, tensor_basic<T2> > (K, value); break;
            case space_constant::tensor3:
	      obj.template evaluate_call<Result, tensor3_basic<T1>, tensor3_basic<T2> > (K, value); break;
            default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
          }
          break;
        }
        default: error_macro ("unexpected first argument valued tag="<<arg1_valued_tag);
      }
    }
  };
  // when only first arg is defined at compile time:
  template<class This, class Result,
	class Arg1,        space_constant::valued_type Arg1Tag,
  	class Arg2>
  struct evaluate_switch<This, Result,
	Arg1,   Arg1Tag,
        Arg2,   space_constant::last_valued> {
    void operator() (const This& obj, const geo_element& K, std::vector<Result>& value) const {
      typedef typename scalar_traits<Arg2>::type T2;
      space_constant::valued_type arg2_valued_tag = obj._expr2.valued_tag();
      switch (arg2_valued_tag) {
        case space_constant::scalar:
	  obj.template evaluate_call<Result, Arg1, T2>                (K, value); break;
        case space_constant::vector:
	  obj.template evaluate_call<Result, Arg1, point_basic<T2> >  (K, value); break;
        case space_constant::tensor:
        case space_constant::unsymmetric_tensor:
	  obj.template evaluate_call<Result, Arg1, tensor_basic<T2> > (K, value); break;
        case space_constant::tensor3:
	  obj.template evaluate_call<Result, Arg1, tensor3_basic<T2> > (K, value); break;
        default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
      }
    }
  };
  // when only second arg is defined at compile time:
  template<class This, class Result,
	class Arg1,     
  	class Arg2,        space_constant::valued_type Arg2Tag>
  struct evaluate_switch<This, Result,
	Arg1,              space_constant::last_valued,
        Arg2,              Arg2Tag> {
    void operator() (const This& obj, const geo_element& K, std::vector<Result>& value) const {
      typedef typename scalar_traits<Arg1>::type T1;
      space_constant::valued_type arg1_valued_tag = obj._expr1.valued_tag();
      switch (arg1_valued_tag) {
        case space_constant::scalar:
	  obj.template evaluate_call<Result, T1, Arg2>               (K, value); break;
        case space_constant::vector:
	  obj.template evaluate_call<Result, point_basic<T1>, Arg2>  (K, value); break;
        case space_constant::tensor:
        case space_constant::unsymmetric_tensor:
	  obj.template evaluate_call<Result, tensor_basic<T1>, Arg2> (K, value); break;
        case space_constant::tensor3:
	  obj.template evaluate_call<Result, tensor3_basic<T1>, Arg2> (K, value); break;
        default: error_macro ("unexpected first argument valued tag="<<arg1_valued_tag);
      }
    }
  };
  template<class Result>
  bool evaluate (const geo_element& K, std::vector<Result>& value) const
  {
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
          typename Expr1::value_type
         ,typename Expr2::value_type
         ,Result>::first_argument_type   A1;
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
          typename Expr1::value_type
         ,typename Expr2::value_type
         ,Result>::second_argument_type A2;
    static const space_constant::valued_type  first_argument_tag = space_constant::valued_tag_traits<A1>::value;
    static const space_constant::valued_type second_argument_tag = space_constant::valued_tag_traits<A2>::value;
    typedef field_expr_v2_nonlinear_node_binary<BinaryFunction, Expr1, Expr2> This;
    evaluate_switch <This, Result, A1, first_argument_tag, A2, second_argument_tag>   eval;
    eval (*this, K, value);
    return true;
  }
  template<class Result>
  bool valued_check() const {
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
          typename Expr1::value_type
         ,typename Expr2::value_type
         ,Result>::first_argument_type   A1;
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
          typename Expr1::value_type
         ,typename Expr2::value_type
         ,Result>::second_argument_type A2;
    bool status = true;
    if (! is_undeterminated<A1>::value)  status &= _expr1.template valued_check<A1>();
    if (! is_undeterminated<A2>::value)  status &= _expr2.template valued_check<A2>();
    return status;
  }

protected:
// data:
  BinaryFunction  _f;
  Expr1           _expr1;
  Expr2           _expr2;
};
template<class F, class Expr1, class Expr2> struct is_field_expr_v2_nonlinear_arg     <field_expr_v2_nonlinear_node_binary<F,Expr1,Expr2> > : std::true_type {};


} // namespace details
// -------------------------------------------
// 2.2. binary calls
// -------------------------------------------
// 2.2.1. plus and minus
// -------------------------------------------
/*
    combination table:

    + -   c L N
        c c L .
        L L L .
        N . . .

    legend;
      c : constant, as scalar, point, tensor, ect
      L : linear: as field, field_indirect, or field_expr_v2 node (linear expr)
      N : function, functor or field_expr_v2_nonlinear node
      . : means that the operation may be implemented here
          => at least one of the two args is of type N (a wrapped nonlin expr)
             and the other is either c, L or N :
	     when c: c value is embeded in bind_first or bind_second
                     and the operation reduces to an  unary one
	     when L: L is embeded in field_expr_v2_nonlinear_terminal_field
	     when N: no wrapper is need
          The L and N cases are grouped, thanks to the wrapper_traits
          and it remains to cases :
	  1) one arg is a field_expr_v2_nonlinear or a function and the second is either
	     a field_expr_v2_nonlinear or a functioon, or a field_expr_v2 (linear) 
	  2) one arg is a field_expr_v2_nonlinear or a function and the second argument is a constant

*/
// ------------------------------------------------------------------------------------
// 2.2.1.1. any args are a constant
// ------------------------------------------------------------------------------------
namespace details {

template <class Expr1, class Expr2>
struct is_field_expr_v2_nonlinear_binary_operator_plus_minus_half
: and_type<
    is_field_expr_v2_nonlinear_arg<Expr1>
   ,not_type <
      is_field_expr_v2_linear_arg <Expr1>
    >
   ,is_field_expr_v2_nonlinear_arg<Expr2>
  >
{};

template <class Expr1, class Expr2>
struct is_field_expr_v2_nonlinear_binary_operator_plus_minus
: or_type<
    is_field_expr_v2_nonlinear_binary_operator_plus_minus_half<Expr1,Expr2>,
    is_field_expr_v2_nonlinear_binary_operator_plus_minus_half<Expr2,Expr1>
  >
{};

} // namespace details

#define _RHEOLEF_make_field_expr_v2_nonlinear_binary_general(FUNCTION,FUNCTOR,IS_EXPR) \
template<class Expr1, class Expr2>						\
inline										\
typename									\
std::enable_if<									\
  IS_EXPR <Expr1,Expr2>::value							\
 ,details::field_expr_v2_nonlinear_node_binary<					\
    FUNCTOR									\
   ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type	\
   ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type 	\
  >										\
>::type										\
FUNCTION (const Expr1& expr1, const Expr2& expr2)				\
{										\
  typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type wrap1_t; \
  typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type wrap2_t; \
  return details::field_expr_v2_nonlinear_node_binary <FUNCTOR,wrap1_t,wrap2_t> \
	(FUNCTOR(), wrap1_t(expr1), wrap2_t(expr2)); 	\
}

#define _RHEOLEF_make_field_expr_v2_nonlinear_binary_operator_plus_minus(FUNCTION,FUNCTOR) \
        _RHEOLEF_make_field_expr_v2_nonlinear_binary_general (FUNCTION, FUNCTOR, details::is_field_expr_v2_nonlinear_binary_operator_plus_minus)

_RHEOLEF_make_field_expr_v2_nonlinear_binary_operator_plus_minus (operator+, details::plus)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_operator_plus_minus (operator-, details::minus)
#undef  _RHEOLEF_make_field_expr_v2_nonlinear_binary_operator_plus_minus

// ------------------------------------------------------------------------------------
// 2.2.1.2. one is a constant
// ------------------------------------------------------------------------------------
namespace details {

// avoid 2*(linear expr) that is a linear-expr
template <class Expr1, class Expr2>
struct is_field_expr_v2_nonlinear_binary_operator_constant_at_left
: and_type<
    is_field_expr_v2_constant     <Expr1>
   ,is_field_expr_v2_nonlinear_arg<Expr2>
   ,not_type <
      is_field_expr_v2_linear_arg <Expr2>
    >
  >
{};
template <class Expr1, class Expr2>
struct is_field_expr_v2_nonlinear_binary_operator_constant_at_right
:      is_field_expr_v2_nonlinear_binary_operator_constant_at_left<Expr2,Expr1>
{};

} // namespace details

// general version used by: plus, minus, multiplies and divides
#define _RHEOLEF_make_field_expr_v2_nonlinear_binary_general_constant(FUNCTION, FUNCTOR, IS_AT_LEFT, IS_AT_RIGHT) \
template<class Expr1, class Expr2>						\
inline										\
typename 									\
std::enable_if<									\
  IS_AT_LEFT <Expr1,Expr2>::value, 						\
  details::field_expr_v2_nonlinear_node_unary<					\
    details::binder_first<							\
      FUNCTOR									\
     ,typename details::field_promote_first_argument<				\
        Expr1									\
       ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type::value_type \
      >::type									\
    >										\
   ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type \
  >										\
>::type										\
FUNCTION (const Expr1& expr1, const Expr2& expr2)				\
{										\
  typedef typename details::field_promote_first_argument<			\
        Expr1									\
       ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type::value_type \
      >::type									\
      value_type;								\
  typedef details::binder_first<FUNCTOR,value_type> fun_t;			\
  typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type wrap2_t; \
  return details::field_expr_v2_nonlinear_node_unary<fun_t,wrap2_t>(fun_t(FUNCTOR(), expr1), wrap2_t(expr2)); \
}										\
template<class Expr1, class Expr2>						\
inline										\
typename 									\
std::enable_if<									\
  IS_AT_RIGHT <Expr1,Expr2>::value, 						\
  details::field_expr_v2_nonlinear_node_unary<					\
    details::binder_second<							\
      FUNCTOR									\
     ,typename details::field_promote_second_argument<				\
        typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type::value_type \
       ,Expr2									\
      >::type									\
    >										\
   ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type \
  >										\
>::type										\
FUNCTION (const Expr1& expr1, const Expr2& expr2)				\
{										\
  typedef typename details::field_promote_second_argument<			\
        typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type::value_type \
       ,Expr2									\
      >::type									\
      value_type;								\
  typedef details::binder_second<FUNCTOR,value_type> fun_t;			\
  typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type wrap1_t; \
  return details::field_expr_v2_nonlinear_node_unary<fun_t,wrap1_t>(fun_t(FUNCTOR(), expr2), wrap1_t(expr1)); \
}

// less general version, used by +-* but not by / which is unsymmetric
#define _RHEOLEF_make_field_expr_v2_nonlinear_binary_operator_constant(FUNCTION,FUNCTOR) 	\
        _RHEOLEF_make_field_expr_v2_nonlinear_binary_general_constant (FUNCTION,FUNCTOR,	\
		details::is_field_expr_v2_nonlinear_binary_operator_constant_at_left,		\
		details::is_field_expr_v2_nonlinear_binary_operator_constant_at_right)

_RHEOLEF_make_field_expr_v2_nonlinear_binary_operator_constant (operator+, details::plus)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_operator_constant (operator-, details::minus)

// note: later undef _RHEOLEF_make_field_expr_v2_nonlinear_binary_operator_constant
//       at it is re-used below

// -------------------------------------------
// 2.2.2. multiplies
// -------------------------------------------
/*
          c L N
        c c L .
        L L . .  
        N . . .

    legend;
      c : constant, as scalar, point, tensor, ect
      L : linear: as field, field_indirect, or field_expr_v2 node (linear expr)
      N : function, functor or field_expr_v2_nonlinear node
      . : means that the operation may be implemented here
          => either : at least one of the two args is of type N 
                      and the other is either c, L or N :
             or     : both two are of type L
	     when c: c value is embeded in bind_first or bind_second
                     and the operation reduces to an  unary one
	     when L: L is embeded in field_expr_v2_nonlinear_terminal_field
	     when N: no wrapper is need
          The L and N cases are grouped, thanks to the wrapper_traits
          and it remains to cases :
	  1) one arg is a field_expr_v2_nonlinear or a function and the second is either
	     a field_expr_v2_nonlinear or a functioon, or a field_expr_v2 (linear) 
	  2) one arg is a field_expr_v2_nonlinear or a function and the second argument is a constant
*/
// ------------------------------------------------------------------------------------
// 2.2.2.1. any args are a constant
// ------------------------------------------------------------------------------------
namespace details {

template <class Expr1, class Expr2>
struct is_field_expr_v2_nonlinear_binary_operator_multiplies
: and_type<
    is_field_expr_v2_nonlinear_arg <Expr1>
   ,is_field_expr_v2_nonlinear_arg <Expr2>
  >
{};

} // namespace details

_RHEOLEF_make_field_expr_v2_nonlinear_binary_general (operator*, details::multiplies, details::is_field_expr_v2_nonlinear_binary_operator_multiplies)

// ------------------------------------------------------------------------------------
// 2.2.2.2. one is a constant
// ------------------------------------------------------------------------------------

_RHEOLEF_make_field_expr_v2_nonlinear_binary_operator_constant (operator*, details::multiplies)
#undef _RHEOLEF_make_field_expr_v2_nonlinear_binary_operator_constant

// -------------------------------------------
// 2.2.3. divides
// -------------------------------------------
/*
          c L N
        c c . .  
        L L . . 
        N . . .

    legend;
      c : constant, as scalar, point, tensor, ect
      L : linear: as field, field_indirect, or field_expr_v2 node (linear expr)
      N : function, functor or field_expr_v2_nonlinear node
      . : means that the operation may be implemented here
          => either : first arg is of type N
                      and the second is either c, L or N :
             or     : the first is L and the second is L or N
          => it remains to cases :
	  1) both args are L or N
	  2) first arg is N and the snd is c
             or first arg is c an the second is L or N
*/
// ------------------------------------------------------------------------------------
// 2.2.3.1. any arg are a constant
// ------------------------------------------------------------------------------------
namespace details {

template <class Expr1, class Expr2>
struct is_field_expr_v2_nonlinear_binary_operator_divides
: and_type<
    is_field_expr_v2_nonlinear_arg <Expr1>
   ,is_field_expr_v2_nonlinear_arg <Expr2>
  >
{};

} // namespace details

_RHEOLEF_make_field_expr_v2_nonlinear_binary_general (operator/, details::divides, details::is_field_expr_v2_nonlinear_binary_operator_divides)

// ------------------------------------------------------------------------------------
// 2.2.3.2. one arg is a constant
// ------------------------------------------------------------------------------------
namespace details {

template <class Expr1, class Expr2>
struct is_field_expr_v2_nonlinear_binary_operator_divides_constant_at_left
: and_type<
    is_field_expr_v2_constant     <Expr1>
   ,is_field_expr_v2_nonlinear_arg<Expr2>
  >
{};
// right version exclude all linear field_expr / constant
template <class Expr1, class Expr2>
struct is_field_expr_v2_nonlinear_binary_operator_divides_constant_at_right
: and_type<
    and_type<
      is_field_expr_v2_nonlinear_arg<Expr1>
     ,not_type <
        is_field_expr_v2_linear_arg <Expr1>
      >
    >
   ,is_field_expr_v2_constant       <Expr2>
  >
{};

} // namespace details

#define _RHEOLEF_make_field_expr_v2_nonlinear_binary_operator_constant_divides(FUNCTION,FUNCTOR) 	\
        _RHEOLEF_make_field_expr_v2_nonlinear_binary_general_constant (FUNCTION,FUNCTOR,	\
		details::is_field_expr_v2_nonlinear_binary_operator_divides_constant_at_left,		\
		details::is_field_expr_v2_nonlinear_binary_operator_divides_constant_at_right)

_RHEOLEF_make_field_expr_v2_nonlinear_binary_operator_constant_divides (operator/, details::divides)

#undef _RHEOLEF_make_field_expr_v2_nonlinear_binary_operator_constant_divides
// -------------------------------------------
// 2.2.4. std::maths
// -------------------------------------------
namespace details {

template <class Expr1, class Expr2>
struct is_field_expr_v2_nonlinear_binary_function
: and_type<
     is_field_expr_v2_nonlinear_arg<Expr1>
    ,is_field_expr_v2_nonlinear_arg<Expr2>
  >
{};

template <class Expr1, class Expr2>
struct is_field_expr_v2_nonlinear_binary_function_constant_at_left
: and_type<
    is_field_expr_v2_constant<Expr1>
   ,is_field_expr_v2_nonlinear_arg<Expr2>
  >
{};

template <class Expr1, class Expr2>
struct is_field_expr_v2_nonlinear_binary_function_constant_at_right
:      is_field_expr_v2_nonlinear_binary_function_constant_at_left<Expr2,Expr1>
{};

} // namespace details


#define _RHEOLEF_make_field_expr_v2_nonlinear_binary_function(FUNCTION)				\
        _RHEOLEF_make_field_expr_v2_nonlinear_binary_general (					\
		FUNCTION, 									\
		details::FUNCTION##_, 								\
		details::is_field_expr_v2_nonlinear_binary_function) 				\
        _RHEOLEF_make_field_expr_v2_nonlinear_binary_general_constant (		\
		FUNCTION,									\
		details::FUNCTION##_,								\
		details::is_field_expr_v2_nonlinear_binary_function_constant_at_left,		\
		details::is_field_expr_v2_nonlinear_binary_function_constant_at_right)

_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (atan2)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (pow)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (fmod)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (min)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (max)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (dot)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (ddot)

#undef _RHEOLEF_make_field_expr_v2_nonlinear_binary_function
#undef _RHEOLEF_make_field_expr_v2_nonlinear_binary_general_constant
#undef _RHEOLEF_make_field_expr_v2_nonlinear_binary_general

// -------------------------------------------
// 2.3. binary compose
// -------------------------------------------
// note: compose 1 & 2 are not reductible to n-ary
//       as it uses deductible return types
// TODO: do not use deductible types => reduces to n-ary !!

// two args are field-expressions
template<class Function, class Expr1, class Expr2>
inline
typename
std::enable_if<
     details::is_field_expr_v2_nonlinear_arg<Expr1>::value
  && details::is_field_expr_v2_nonlinear_arg<Expr2>::value
 ,details::field_expr_v2_nonlinear_node_binary<
    typename details::function_traits<Function>::functor_type
   ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type
   ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type
  >
>::type
compose (const Function& f, const Expr1& expr1, const Expr2& expr2)
{
  typedef typename details::function_traits<Function>::functor_type                      fun_wrap_t;
  typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type expr1_wrap_t;
  typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type expr2_wrap_t;
  return details::field_expr_v2_nonlinear_node_binary 
	<fun_wrap_t,    expr1_wrap_t,        expr2_wrap_t> 
	(fun_wrap_t(f), expr1_wrap_t(expr1), expr2_wrap_t(expr2));
}
// left arg is a constant
template <class Function, class Expr1, class Expr2>
inline
typename
std::enable_if<
  details::is_field_expr_v2_nonlinear_binary_function_constant_at_left <Expr1,Expr2>::value,
  details::field_expr_v2_nonlinear_node_unary<
    details::binder_first<
      typename details::function_traits<Function>::functor_type
     ,typename promote<
        Expr1
       ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type::value_type
      >::type
    >
   ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type
  >
>::type
compose (const Function& f, const Expr1& expr1, const Expr2& expr2)
{
  typedef typename promote<
    Expr1
   ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type::value_type
  >::type value_type;
  typedef typename details::function_traits<Function>::functor_type wrap_fun_t;
  typedef details::binder_first<wrap_fun_t,value_type> binded_fun_t;
  typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type wrap2_t;
  return details::field_expr_v2_nonlinear_node_unary
	   <binded_fun_t,                       wrap2_t>
           (binded_fun_t(wrap_fun_t(f), expr1), wrap2_t(expr2));
}
// right arg is a constant
template <class Function, class Expr1, class Expr2>
inline
typename
std::enable_if<
  details::is_field_expr_v2_nonlinear_binary_function_constant_at_right <Expr1,Expr2>::value,
  details::field_expr_v2_nonlinear_node_unary<
    details::binder_second<
      typename details::function_traits<Function>::functor_type
     ,typename promote<
        typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type::value_type
       ,Expr2
      >::type
    >
   ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type
  >
>::type
compose (const Function& f, const Expr1& expr1, const Expr2& expr2)
{
  typedef typename promote<
    typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type::value_type
   ,Expr2
  >::type value_type;
  typedef typename details::function_traits<Function>::functor_type wrap_fun_t;
  typedef details::binder_second<wrap_fun_t,value_type>             binded_fun_t;
  typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type wrap1_t;
  return details::field_expr_v2_nonlinear_node_unary
	   <binded_fun_t,                       wrap1_t>
           (binded_fun_t(wrap_fun_t(f), expr2), wrap1_t(expr1));
}

} // namespace rheolef
#endif // _RHEOLEF_FIELD_EXPR_V2_NONLINEAR_H