This file is indexed.

/usr/include/rheolef/field_expr_v2_variational.h is in librheolef-dev 6.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
#ifndef _RHEOLEF_FIELD_EXPR_V2_VARIATIONAL_H
#define _RHEOLEF_FIELD_EXPR_V2_VARIATIONAL_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
///
/// =========================================================================
//
// variational expressions are used for field assembly
// e.g. for right-hand-side of linear systems
//
// author: Pierre.Saramito@imag.fr
//
// date: 21 september 2015 
//
// Notes: use template expressions and SFINAE techniques
//
// SUMMARY:
// 1. unary function 
//    1.1. unary node
//    1.2. unary calls
// 2. binary operators +-  between two variational exprs
//    2.1. binary node
//    2.2. binary calls
// 3. binary operators */ between a variational and a nonlinear expr
//    3.1. helper
//    3.2. binary node
//    3.3. binary calls
//
#include "rheolef/field_expr_v2_variational_terminal.h"

namespace rheolef {

// ---------------------------------------------------------------------------
// 1. unary function 
// ---------------------------------------------------------------------------
// 1.1. unary node
// ---------------------------------------------------------------------------
// ex: -v, 2*v, v/3
namespace details {

template <class UnaryFunction, class Expr>
class field_expr_v2_variational_unary {
public:
// typedefs:

  typedef geo_element::size_type                        size_type;
  typedef typename Expr::memory_type                    memory_type;
  typedef typename details::generic_unary_traits<UnaryFunction>::template result_hint<typename Expr::value_type>::type
                                                        value_type;
  typedef typename scalar_traits<value_type>::type  	scalar_type;
  typedef typename  float_traits<scalar_type>::type 	float_type;
  typedef space_basic<scalar_type,memory_type>		space_type;
  typedef typename Expr::vf_tag_type                    vf_tag_type;
  typedef typename details::dual_vf_tag<vf_tag_type>::type
                                                        vf_dual_tag_type;
  typedef field_expr_v2_variational_unary<UnaryFunction,Expr>                      self_type;
  typedef field_expr_v2_variational_unary<UnaryFunction,typename Expr::dual_self_type>  
                                                        dual_self_type;

// alocators:

  field_expr_v2_variational_unary (const UnaryFunction& f, const Expr& expr) 
    : _f(f), _expr(expr) {}

  field_expr_v2_variational_unary (const field_expr_v2_variational_unary<UnaryFunction,Expr>& x)
    : _f(x._f), _expr(x._expr) {}

// accessors:

  static bool have_test_space() { return true; } // check !
  const space_type&  get_vf_space()  const { return _expr.get_vf_space(); }
  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<value_type>::value;
  space_constant::valued_type valued_tag() const {
    return details::generic_unary_traits<UnaryFunction>::valued_tag(_expr.valued_tag());
  }
  size_type n_derivative() const { return _expr.n_derivative(); }

// mutable modifiers:

  void initialize (const geo_basic<float_type,memory_type>& dom, const quadrature<float_type>& quad, bool ignore_sys_coord) const { 
    _expr.initialize (dom, quad, ignore_sys_coord);
  }
  void initialize (const band_basic<float_type,memory_type>& gh, const quadrature<float_type>& quad, bool ignore_sys_coord) const {  
    _expr.initialize (gh, quad, ignore_sys_coord);
  }
  void element_initialize (const geo_element& K) const {
    _expr.element_initialize (K);
  }
  void element_initialize_on_side (const geo_element& K,  const side_information_type& sid) {
    _expr.element_initialize_on_side (K, sid);
  }
  // -------------
  // evaluate
  // -------------
  // evaluate when all arg types are determinated
  template<class ValueType, class Arg, class Status>
  struct evaluate_call_check {
    void operator() (const self_type& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      fatal_macro ("invalid type resolution: ValueType="<<typename_macro(ValueType)
          << ", Arg="<<typename_macro(Arg)
          << ", UnaryFunction="<<typename_macro(UnaryFunction)
      );
    }
  };
  template<class ValueType, class Arg>
  struct evaluate_call_check<ValueType,Arg,std::true_type> {
    void operator() (const self_type& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      std::vector<Arg> value1 (value.size());
      obj._expr.basis_evaluate (hat_K, q, value1);
      for (size_type loc_idof = 0, loc_ndof = value1.size(); loc_idof < loc_ndof; ++loc_idof) {
        value[loc_idof] = obj._f (value1[loc_idof]);
      }
    }
  };
  template<class ValueType, class Arg>
  void evaluate_call (const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
    // check if ValueType is a valid return_type for this function:
    typedef typename scalar_traits<ValueType>::type S;
    typedef undeterminated_basic<S> undet;
    typedef typename details::generic_unary_traits<UnaryFunction>::template hint<Arg,undet>::result_type result_type;
    // TODO: instead of is_equal, could have compatible scalars T1,T2 ?
    typedef typename details::is_equal<ValueType,result_type>::type status_t;
    evaluate_call_check<ValueType,Arg,status_t> eval;
    eval (*this, hat_K, q, value);
  }
  // when arg is defined at compile time:
  template<class This, class ValueType, class Arg, class Status>
  struct evaluate_switch {
    void operator() (const This& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      obj.template evaluate_call<ValueType, Arg> (hat_K, q, value);
    }
  };
  // when arg is undeterminated at compile time
  template<class This, class ValueType, class Arg>
  struct evaluate_switch<This, ValueType, Arg, std::true_type> {
    void operator() (const This& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      typedef typename scalar_traits<Arg>::type T;
      space_constant::valued_type arg_valued_tag = obj._expr.valued_tag();
      switch (arg_valued_tag) {
        case space_constant::scalar:
	  obj.template evaluate_call<ValueType, T>                (hat_K, q, value); break;
        case space_constant::vector:
	  obj.template evaluate_call<ValueType, point_basic<T> >  (hat_K, q, value); break;
        case space_constant::tensor:
        case space_constant::unsymmetric_tensor:
	  obj.template evaluate_call<ValueType, tensor_basic<T> > (hat_K, q, value); break;
        default: error_macro ("unexpected argument valued tag="<<arg_valued_tag);
      }
    }
  };
  template<class ValueType>
  void basis_evaluate (const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
    typedef typename details::generic_unary_traits<UnaryFunction>::template hint<typename Expr::value_type,ValueType>::argument_type
                     A1;
    typedef typename is_undeterminated<A1>::type status_t;
    evaluate_switch <self_type, ValueType, A1, status_t> eval;
    eval (*this, hat_K, q, value);
  }
  template<class ValueType>
  void valued_check() const {
    typedef typename details::generic_unary_traits<UnaryFunction>::template hint<typename Expr::value_type,ValueType>::argument_type
                     A1;
    if (! is_undeterminated<A1>::value) _expr.template valued_check<A1>();
  }
protected:
// data:
  UnaryFunction  _f;
  Expr           _expr;
};
template<class F, class Expr> struct is_field_expr_v2_variational_arg    <field_expr_v2_variational_unary<F,Expr> > : std::true_type {};

} // namespace details

// ---------------------------------------------------------------------------
// 1.2. unary calls
// ---------------------------------------------------------------------------

#define _RHEOLEF_make_field_expr_v2_variational_unary_operator(FUNCTION,FUNCTOR)	\
template<class Expr>								\
inline										\
typename									\
std::enable_if<									\
  details::is_field_expr_v2_variational_arg<Expr>::value			\
 ,details::field_expr_v2_variational_unary<					\
    FUNCTOR									\
   ,Expr									\
  >										\
>::type										\
FUNCTION (const Expr& expr)							\
{										\
  return details::field_expr_v2_variational_unary <FUNCTOR,Expr> (FUNCTOR(), expr); \
}

_RHEOLEF_make_field_expr_v2_variational_unary_operator (operator+, details::unary_plus)
_RHEOLEF_make_field_expr_v2_variational_unary_operator (operator-, details::negate)
_RHEOLEF_make_field_expr_v2_variational_unary_operator (tr,        details::tr_)
_RHEOLEF_make_field_expr_v2_variational_unary_operator (trans,     details::trans_)
#undef _RHEOLEF_make_field_expr_v2_variational_unary_operator

// ---------------------------------------------------------------------------
// 2. binary operators +-  between variationals
// ---------------------------------------------------------------------------
// 2.1. binary node
// ---------------------------------------------------------------------------
// ex: v+v, v-v

namespace details {

template<class BinaryFunction, class Expr1, class Expr2>
class field_expr_v2_variational_binary {
public:
// typedefs:

  typedef geo_element::size_type                   	size_type;
  typedef typename promote_memory<typename Expr1::memory_type,typename Expr2::memory_type>::type 
 				                   	memory_type;
  typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<
          typename Expr1::value_type
         ,typename Expr2::value_type>::type             result_hint;
  typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,result_hint>::result_type                     value_type;
  typedef typename scalar_traits<value_type>::type  	scalar_type;
  typedef typename  float_traits<value_type>::type 	float_type;
  typedef space_basic<scalar_type,memory_type>		space_type; // TODO: deduce from Exprs
  typedef typename details::bf_vf_tag<BinaryFunction,
	typename Expr1::vf_tag_type,
	typename Expr2::vf_tag_type>::type              vf_tag_type;
  typedef typename details::dual_vf_tag<vf_tag_type>::type
                                                        vf_dual_tag_type;
  typedef field_expr_v2_variational_binary <BinaryFunction,Expr1,Expr2>        self_type;
  typedef field_expr_v2_variational_binary <BinaryFunction,typename Expr1::dual_self_type,typename Expr2::dual_self_type>  
                                                        dual_self_type;

// alocators:

  field_expr_v2_variational_binary (const BinaryFunction& f, 
		    const Expr1&    expr1,
                    const Expr2&    expr2)
    : _f(f), _expr1(expr1), _expr2(expr2) {}

// accessors:

  static bool have_test_space() { return true; }
  const space_type&  get_vf_space()  const { return _expr1.get_vf_space(); }
  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<value_type>::value;
  space_constant::valued_type valued_tag() const {
    return details::generic_binary_traits<BinaryFunction>::valued_tag(_expr1.valued_tag(), _expr2.valued_tag());
  }
  size_type n_derivative() const { return _expr1.n_derivative() + _expr2.n_derivative(); }

// mutable modifiers:

  // TODO: check that expr1 & expr2 have the same get_vf_space()
  void initialize (const geo_basic<float_type,memory_type>& dom, const quadrature<float_type>& quad, bool ignore_sys_coord) const { 
    _expr1.initialize (dom, quad, ignore_sys_coord);
    _expr2.initialize (dom, quad, ignore_sys_coord);
  }
  void initialize (const band_basic<float_type,memory_type>& gh, const quadrature<float_type>& quad, bool ignore_sys_coord) const {  
    _expr1.initialize (gh, quad, ignore_sys_coord);
    _expr2.initialize (gh, quad, ignore_sys_coord);
  }
  void element_initialize (const geo_element& K) const {
    _expr1.element_initialize (K);
    _expr2.element_initialize (K);
  }
  // evaluate when all arg types are determinated
  template<class ValueType, class Arg1, class Arg2, class Status>
  struct evaluate_call_check {
    void operator() (const self_type& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      fatal_macro ("invalid type resolution");
    }
  };
  template<class ValueType, class Arg1, class Arg2>
  struct evaluate_call_check<ValueType,Arg1,Arg2,std::true_type> {
    void operator() (const self_type& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      std::vector<Arg1> value1 (value.size());
      std::vector<Arg2> value2 (value.size());
      obj._expr1.basis_evaluate (hat_K, q, value1);
      obj._expr2.basis_evaluate (hat_K, q, value2);
      for (size_type loc_idof = 0, loc_ndof = value1.size(); loc_idof < loc_ndof; ++loc_idof) {
        value[loc_idof] = obj._f (value1[loc_idof], value2[loc_idof]);
      }
    }
  };
  template<class ValueType, class Arg1, class Arg2>
  void evaluate_call (const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
    typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<Arg1,Arg2>::type result_type;
    // TODO: instead of is_equal, could have compatible scalars T1,T2 ?
    typedef typename details::is_equal<ValueType,result_type>::type status_t;
    evaluate_call_check<ValueType,Arg1,Arg2,status_t> eval;
    eval (*this, hat_K, q, value);
  }
  template<class This, class ValueType, class Arg1, class Arg2, class Undet1, class Undet2>
  struct evaluate_switch {};
  // when both args are defined at compile time:
  template<class This, class ValueType, class Arg1, class Arg2>
  struct evaluate_switch<This, ValueType, Arg1, Arg2, std::false_type, std::false_type> {
    void operator() (const This& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      obj.template evaluate_call<ValueType, Arg1, Arg2> (hat_K, q, value);
    }
  };
  // when first arg is undeterminated
  template<class This, class ValueType, class Arg1, class Arg2>
  struct evaluate_switch<This, ValueType, Arg1, Arg2, std::true_type, std::false_type> {
    void operator() (const This& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      typedef typename scalar_traits<Arg1>::type T1;
      space_constant::valued_type arg1_valued_tag = obj._expr1.valued_tag();
      switch (arg1_valued_tag) {
        case space_constant::scalar:
	  obj.template evaluate_call<ValueType, T1, Arg2>               (hat_K, q, value); break;
        case space_constant::vector:
	  obj.template evaluate_call<ValueType, point_basic<T1>, Arg2>  (hat_K, q, value); break;
        case space_constant::tensor:
        case space_constant::unsymmetric_tensor:
	  obj.template evaluate_call<ValueType, tensor_basic<T1>, Arg2> (hat_K, q, value); break;
        default: error_macro ("unexpected first argument valued tag="<<arg1_valued_tag);
      }
    }
  };
  // when second arg is undeterminated
  template<class This, class ValueType, class Arg1, class Arg2>
  struct evaluate_switch<This, ValueType, Arg1, Arg2, std::false_type, std::true_type> {
    void operator() (const This& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      typedef typename scalar_traits<Arg2>::type T2;
      space_constant::valued_type arg2_valued_tag = obj._expr2.valued_tag();
      switch (arg2_valued_tag) {
        case space_constant::scalar:
	  obj.template evaluate_call<ValueType, Arg1, T2>                (hat_K, q, value); break;
        case space_constant::vector:
	  obj.template evaluate_call<ValueType, Arg1, point_basic<T2> >  (hat_K, q, value); break;
        case space_constant::tensor:
        case space_constant::unsymmetric_tensor:
	  obj.template evaluate_call<ValueType, Arg1, tensor_basic<T2> > (hat_K, q, value); break;
        default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
      }
    }
  };
  // when one arg or both are undefined at compile time:
  // TODO: optimize when only one arg is undeterminated
  template<class This, class ValueType, class Arg1, class Arg2>
  struct evaluate_switch<This, ValueType, Arg1, Arg2, std::true_type, std::true_type> {
    void operator() (const This& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      typedef typename scalar_traits<Arg1>::type T1;
      typedef typename scalar_traits<Arg2>::type T2;
      space_constant::valued_type arg1_valued_tag = obj._expr1.valued_tag();
      space_constant::valued_type arg2_valued_tag = obj._expr2.valued_tag();
      switch (arg1_valued_tag) {
        case space_constant::scalar: {
          switch (arg2_valued_tag) {
            case space_constant::scalar:
	      obj.template evaluate_call<ValueType, T1, T2>                (hat_K, q, value); break;
            case space_constant::vector:
	      obj.template evaluate_call<ValueType, T1, point_basic<T2> >  (hat_K, q, value); break;
            case space_constant::tensor:
            case space_constant::unsymmetric_tensor:
	      obj.template evaluate_call<ValueType, T1, tensor_basic<T2> > (hat_K, q, value); break;
            default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
          }
          break;
        }
        case space_constant::vector: {
          switch (arg2_valued_tag) {
            case space_constant::scalar:
	      obj.template evaluate_call<ValueType, point_basic<T1>, T2>                (hat_K, q, value); break;
            case space_constant::vector:
	      obj.template evaluate_call<ValueType, point_basic<T1>, point_basic<T2> >  (hat_K, q, value); break;
            case space_constant::tensor:
            case space_constant::unsymmetric_tensor:
	      obj.template evaluate_call<ValueType, point_basic<T1>, tensor_basic<T2> > (hat_K, q, value); break;
            default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
          }
          break;
        }
        case space_constant::tensor:
        case space_constant::unsymmetric_tensor: {
          switch (arg2_valued_tag) {
            case space_constant::scalar:
	      obj.template evaluate_call<ValueType, tensor_basic<T1>, T2>                (hat_K, q, value); break;
            case space_constant::vector:
	      obj.template evaluate_call<ValueType, tensor_basic<T1>, point_basic<T2> >  (hat_K, q, value); break;
            case space_constant::tensor:
            case space_constant::unsymmetric_tensor:
	      obj.template evaluate_call<ValueType, tensor_basic<T1>, tensor_basic<T2> > (hat_K, q, value); break;
            default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
          }
          break;
        }
        default: error_macro ("unexpected first argument valued tag="<<arg1_valued_tag);
      }
    }
  };
  // main eval call:
  template<class ValueType>
  void basis_evaluate (const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,ValueType>::first_argument_type   A1;
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,ValueType>::second_argument_type A2;
    static const space_constant::valued_type  first_argument_tag = space_constant::valued_tag_traits<A1>::value;
    static const space_constant::valued_type second_argument_tag = space_constant::valued_tag_traits<A2>::value;
    typedef field_expr_v2_variational_binary<BinaryFunction, Expr1, Expr2> This;
    typedef typename is_undeterminated<A1>::type undet_1;
    typedef typename is_undeterminated<A2>::type undet_2;
    evaluate_switch <This, ValueType, A1, A2, undet_1, undet_2> eval;
    eval (*this, hat_K, q, value);
  }
  template<class ValueType>
  void valued_check() const {
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,ValueType>::first_argument_type   A1;
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,ValueType>::second_argument_type A2;
    if (! is_undeterminated<A1>::value) _expr1.template valued_check<A1>();
    if (! is_undeterminated<A2>::value) _expr2.template valued_check<A2>();
  }
protected:
// data:
  BinaryFunction  _f;
  Expr1           _expr1;
  Expr2           _expr2;
};
template <class F, class Expr1, class Expr2> struct is_field_expr_v2_variational_arg    <field_expr_v2_variational_binary<F,Expr1,Expr2> > : std::true_type {};

} // namespace details
// ---------------------------------------------------------------------------
// 2.2. binary call
// ---------------------------------------------------------------------------
namespace details {
  
template<class Expr1, class Expr2, class Sfinae = void>
struct is_field_expr_v2_variational_binary_plus_minus : std::false_type {};

template<class Expr1, class Expr2>
struct is_field_expr_v2_variational_binary_plus_minus <
  Expr1
 ,Expr2
 ,typename
  std::enable_if<
       is_field_expr_v2_variational_arg<Expr1>::value
    && is_field_expr_v2_variational_arg<Expr2>::value
  >::type
>
: and_type<
    is_field_expr_v2_variational_arg<Expr1>
   ,is_field_expr_v2_variational_arg<Expr2>
   ,std::is_same <
      typename Expr1::vf_tag_type
     ,typename Expr2::vf_tag_type
    >
  >
{};

} // namespace details

#define _RHEOLEF_make_field_expr_v2_variational_binary_operator_plus_minus(FUNCTION,FUNCTOR)	\
template<class Expr1, class Expr2>						\
inline										\
typename									\
std::enable_if<									\
  details::is_field_expr_v2_variational_binary_plus_minus <Expr1,Expr2>::value	\
 ,details::field_expr_v2_variational_binary<					\
    FUNCTOR									\
   ,Expr1									\
   ,Expr2									\
  >										\
>::type										\
FUNCTION (const Expr1& expr1, const Expr2& expr2)				\
{										\
  return details::field_expr_v2_variational_binary <FUNCTOR, Expr1, Expr2> (FUNCTOR(), expr1, expr2); \
}

_RHEOLEF_make_field_expr_v2_variational_binary_operator_plus_minus (operator+, details::plus)
_RHEOLEF_make_field_expr_v2_variational_binary_operator_plus_minus (operator-, details::minus)
#undef _RHEOLEF_make_field_expr_v2_variational_binary_operator_plus_minus

// ---------------------------------------------------------------------------
// 3. binary operators */ between a variational and a nonlinear expr
// ---------------------------------------------------------------------------
// 3.1. helper
// ---------------------------------------------------------------------------
namespace details {

  template<class This, class Arg1>
  struct nl_switch {
    typedef typename This::size_type size_type;
    void element_initialize (const This& obj, const geo_element& K) const {
      space_constant::valued_type nl_arg_valued_tag = obj._nl_expr.valued_tag();
      switch (nl_arg_valued_tag) {
        case space_constant::scalar:
          obj._nl_expr.evaluate (K, obj._scalar_nl_value_quad); break;
        case space_constant::vector:
          obj._nl_expr.evaluate (K, obj._vector_nl_value_quad); break;
        case space_constant::tensor:
        case space_constant::unsymmetric_tensor:
          obj._nl_expr.evaluate (K, obj._tensor_nl_value_quad); break;
        case space_constant::tensor3:
          obj._nl_expr.evaluate (K, obj._tensor3_nl_value_quad); break;
        case space_constant::tensor4:
          obj._nl_expr.evaluate (K, obj._tensor4_nl_value_quad); break;
        default: error_macro ("unexpected first argument valued tag="<<nl_arg_valued_tag); // ICI
      }
    }
    void element_initialize_on_side (const This& obj, const geo_element& K, const side_information_type& sid) const {
      space_constant::valued_type nl_arg_valued_tag = obj._nl_expr.valued_tag();
      switch (nl_arg_valued_tag) {
        case space_constant::scalar:
          obj._nl_expr.evaluate_on_side (K, sid, obj._scalar_nl_value_quad); break;
        case space_constant::vector:
          obj._nl_expr.evaluate_on_side (K, sid, obj._vector_nl_value_quad); break;
        case space_constant::tensor:
        case space_constant::unsymmetric_tensor:
          obj._nl_expr.evaluate_on_side (K, sid, obj._tensor_nl_value_quad); break;
        case space_constant::tensor3:
          obj._nl_expr.evaluate_on_side (K, sid, obj._tensor3_nl_value_quad); break;
        case space_constant::tensor4:
          obj._nl_expr.evaluate_on_side (K, sid, obj._tensor4_nl_value_quad); break;
        default: error_macro ("unexpected first argument valued tag="<<nl_arg_valued_tag);
      }
    }
    Arg1 get_nl_value (const This& obj, size_type q) const {
      // Arg1 may be solved at compile time for real evaluation
      fatal_macro ("unexpected argument type="<<typename_macro(Arg1));
      return Arg1();
    }
  };
  template<class This> struct nl_switch<This,typename This::scalar_type> {
    typedef typename This::size_type size_type;
    typedef typename This::scalar_type scalar_type;
    void element_initialize (const This& obj, const geo_element& K) const {
      obj._nl_expr.evaluate (K, obj._scalar_nl_value_quad); }
    void element_initialize_on_side (const This& obj, const geo_element& K, const side_information_type& sid) const {
      obj._nl_expr.evaluate_on_side (K, sid, obj._scalar_nl_value_quad); }
    const scalar_type& get_nl_value (const This& obj, size_type q) const {
      return obj._scalar_nl_value_quad[q]; }
  };
  template<class This> struct nl_switch<This,point_basic<typename This::scalar_type> > {
    typedef typename This::size_type size_type;
    typedef typename This::scalar_type scalar_type;
    void element_initialize (const This& obj, const geo_element& K) const {
      obj._nl_expr.evaluate (K, obj._vector_nl_value_quad); }
    void element_initialize_on_side (const This& obj, const geo_element& K, const side_information_type& sid) const {
      obj._nl_expr.evaluate_on_side (K, sid, obj._vector_nl_value_quad); }
    const point_basic<scalar_type>& get_nl_value (const This& obj, size_type q) const {
      return obj._vector_nl_value_quad[q]; }
  };
  template<class This> struct nl_switch<This,tensor_basic<typename This::scalar_type> > {
    typedef typename This::size_type size_type;
    typedef typename This::scalar_type scalar_type;
    void element_initialize (const This& obj, const geo_element& K) const {
      obj._nl_expr.evaluate (K, obj._tensor_nl_value_quad); }
    void element_initialize_on_side (const This& obj, const geo_element& K, const side_information_type& sid) const {
      obj._nl_expr.evaluate_on_side (K, sid, obj._tensor_nl_value_quad); }
    const tensor_basic<scalar_type>& get_nl_value (const This& obj, size_type q) const {
      return obj._tensor_nl_value_quad[q]; }
  };
  template<class This> struct nl_switch<This,tensor3_basic<typename This::scalar_type> > {
    typedef typename This::size_type size_type;
    typedef typename This::scalar_type scalar_type;
    void element_initialize (const This& obj, const geo_element& K) const {
      obj._nl_expr.evaluate (K, obj._tensor3_nl_value_quad); }
    void element_initialize_on_side (const This& obj, const geo_element& K, const side_information_type& sid) const {
      obj._nl_expr.evaluate_on_side (K, sid, obj._tensor3_nl_value_quad); }
    const tensor3_basic<scalar_type>& get_nl_value (const This& obj, size_type q) const {
      return obj._tensor3_nl_value_quad[q]; }
  };
  template<class This> struct nl_switch<This,tensor4_basic<typename This::scalar_type> > {
    typedef typename This::size_type size_type;
    typedef typename This::scalar_type scalar_type;
    void element_initialize (const This& obj, const geo_element& K) const {
      obj._nl_expr.evaluate (K, obj._tensor4_nl_value_quad); }
    void element_initialize_on_side (const This& obj, const geo_element& K, const side_information_type& sid) const {
      obj._nl_expr.evaluate_on_side (K, sid, obj._tensor4_nl_value_quad); }
    const tensor4_basic<scalar_type>& get_nl_value (const This& obj, size_type q) const {
      return obj._tensor4_nl_value_quad[q]; }
  };

} // namespace details

// ---------------------------------------------------------------------------
// 3.2. binary node
// ---------------------------------------------------------------------------
// 
// function call: (f nl_expr vf_expr)
// examples: f = operator*, operator/
//   eta_h*v
//   v/eta_h
//   dot(v,normal())
// at any quadrature node xq, the compuation eta_h(xq) is performed 
// and then we loop on the basis functions for v :
//     eta_q = eta_h(xq);
//     for i=0..nk-1
//       value[i] = f (eta_q, v(xq)[i]);
// since we can swap the two args (see the details::swap_fun<f> class),
// we assume that the first argument is a field or a general field_nl_expr
//       and that the second argument is a test of a general field_vf_expr
//
// Implementation note: this operation do not reduces to field_expr_v2_variational_unary
// with a class-function that contains eta_h since :
//  - the value of eta_h may be refreshed at each xq 
//    (this could be achieved by replacing std::binder1st with an adequate extension)
//  - the valued category of eta_h is not always known at compile-time.
//    It is known in dot(eta_h,v) but not with eta_h*v
//    and the class-functions for field_expr_v2_variational_unary may have Arg1 and Result determined.
// So we switch to a specific field_expr_v2_variational_binary_binded that is abble to solve the
// valued type at run time. When it is possible, it is determined at compile-time.
// 
namespace details {

template<class BinaryFunction, class NLExpr, class VFExpr>
class field_expr_v2_variational_binary_binded {
public:
// typedefs:

  typedef geo_element::size_type                   	size_type;
  typedef typename promote_memory<typename NLExpr::memory_type,typename VFExpr::memory_type>::type 
 				                   	memory_type;
  typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<
          typename NLExpr::value_type
         ,typename VFExpr::value_type>::type             result_hint;
  typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename NLExpr::value_type
	 ,typename VFExpr::value_type
	 ,result_hint>::result_type                     value_type;
  typedef typename scalar_traits<value_type>::type  	scalar_type;
  typedef typename  float_traits<value_type>::type 	float_type;
  typedef space_basic<scalar_type,memory_type>		space_type; // TODO: deduce from Exprs
  typedef typename VFExpr::vf_tag_type                  vf_tag_type;
  typedef typename details::dual_vf_tag<vf_tag_type>::type
                                                        vf_dual_tag_type;
  typedef field_expr_v2_variational_binary_binded<BinaryFunction,NLExpr,VFExpr> self_type;
  typedef field_expr_v2_variational_binary_binded<BinaryFunction,NLExpr,typename VFExpr::dual_self_type>  
                                                        dual_self_type;

// alocators:

  field_expr_v2_variational_binary_binded (const BinaryFunction& f, 
		    const NLExpr&    nl_expr,
                    const VFExpr&    vf_expr)
    : _f(f), 
      _nl_expr(nl_expr),
      _vf_expr(vf_expr),
      _scalar_nl_value_quad(),
      _vector_nl_value_quad(),
      _tensor_nl_value_quad(),
      _tensor4_nl_value_quad()
    {}

  field_expr_v2_variational_binary_binded (const field_expr_v2_variational_binary_binded<BinaryFunction,NLExpr,VFExpr>& x)
    : _f(x._f), 
      _nl_expr(x._nl_expr),
      _vf_expr(x._vf_expr),
      _scalar_nl_value_quad(x._scalar_nl_value_quad),
      _vector_nl_value_quad(x._vector_nl_value_quad),
      _tensor_nl_value_quad(x._tensor_nl_value_quad),
      _tensor4_nl_value_quad(x._tensor4_nl_value_quad)
    {}

// accessors:

  static bool have_test_space() { return true; } // deduce & check !
  const space_type&  get_vf_space()  const { return _vf_expr.get_vf_space(); }
  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<value_type>::value;
  space_constant::valued_type valued_tag() const {
    return details::generic_binary_traits<BinaryFunction>::valued_tag(_nl_expr.valued_tag(), _vf_expr.valued_tag());
  }
  size_type n_derivative() const { return _vf_expr.n_derivative(); }

// mutable modifiers:

  void initialize (const geo_basic<float_type,memory_type>& dom, const quadrature<float_type>& quad, bool ignore_sys_coord) const { 
    _nl_expr.initialize (dom, quad);
    _vf_expr.initialize (dom, quad, ignore_sys_coord);
  }
  void initialize (const band_basic<float_type,memory_type>& gh, const quadrature<float_type>& quad, bool ignore_sys_coord) const {  
    _nl_expr.initialize (gh.level_set(), quad);
    _vf_expr.initialize (gh,             quad, ignore_sys_coord);
  }
  // ---------------------------------------------
  // element initialize: evaluate nl_expr
  // ---------------------------------------------
  void element_initialize (const geo_element& K) const {
    typedef typename promote<
	  typename NLExpr::value_type
         ,typename details::generic_binary_traits<BinaryFunction>::template hint<
	    typename NLExpr::value_type
	   ,typename VFExpr::value_type
	   ,value_type>::first_argument_type
      >::type
      A1;
    nl_switch<self_type,A1> nl_helper;
    nl_helper.element_initialize (*this, K);
    _vf_expr.element_initialize (K);
  }
  void element_initialize_on_side (const geo_element& K, const side_information_type& sid) {
    typedef typename promote<
	  typename NLExpr::value_type
         ,typename details::generic_binary_traits<BinaryFunction>::template hint<
	    typename NLExpr::value_type
	   ,typename VFExpr::value_type
	   ,value_type>::first_argument_type
      >::type
      A1;
    nl_switch<self_type,A1> nl_helper;
    nl_helper.element_initialize_on_side (*this, K, sid);
    _vf_expr.element_initialize_on_side (K, sid);
  }
  // ---------------------------------------------
  // basis evaluate
  // ---------------------------------------------
  // evaluate when all arg types are determinated
  template<class ValueType, class Arg1, class Arg2, class Status>
  struct evaluate_call_check {
    void operator() (const self_type& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      fatal_macro ("invalid type resolution");
    }
  };
  template<class ValueType, class Arg1, class Arg2>
  struct evaluate_call_check<ValueType,Arg1,Arg2,std::true_type> {
    void operator() (const self_type& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      nl_switch<self_type,Arg1> nl_helper;
      const Arg1& value1 = nl_helper.get_nl_value (obj, q);
      std::vector<Arg2> value2 (value.size());
      obj._vf_expr.basis_evaluate (hat_K, q, value2);
      for (size_type loc_idof = 0, loc_ndof = value.size(); loc_idof < loc_ndof; ++loc_idof) {
        value[loc_idof] = obj._f (value1, value2[loc_idof]);
      }
    }
  };
  template<class ValueType, class Arg1, class Arg2>
  void evaluate_call (const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
    typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<Arg1,Arg2>::type result_type;
    // TODO: instead of is_equal, could have compatible scalars T1,T2 ?
    typedef typename details::is_equal<ValueType,result_type>::type status_t;
    evaluate_call_check<ValueType,Arg1,Arg2,status_t> eval;
    eval (*this, hat_K, q, value);
  }
  template<class This, class ValueType, class Arg1, class Arg2, class Undet1, class Undet2>
  struct evaluate_switch {};
  // when both args are defined at compile time:
  template<class This, class ValueType, class Arg1, class Arg2>
  struct evaluate_switch<This, ValueType, Arg1, Arg2, std::false_type, std::false_type> {
    void operator() (const This& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      obj.template evaluate_call<ValueType, Arg1, Arg2> (hat_K, q, value);
    }
  };
  // when first arg is undeterminated
  template<class This, class ValueType, class Arg1, class Arg2>
  struct evaluate_switch<This, ValueType, Arg1, Arg2, std::true_type, std::false_type> {
    void operator() (const This& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      typedef typename scalar_traits<Arg1>::type T1;
      space_constant::valued_type arg1_valued_tag = obj._nl_expr.valued_tag();
      switch (arg1_valued_tag) {
        case space_constant::scalar:
	  obj.template evaluate_call<ValueType, T1, Arg2>               (hat_K, q, value); break;
        case space_constant::vector:
	  obj.template evaluate_call<ValueType, point_basic<T1>, Arg2>  (hat_K, q, value); break;
        case space_constant::tensor:
        case space_constant::unsymmetric_tensor:
	  obj.template evaluate_call<ValueType, tensor_basic<T1>, Arg2> (hat_K, q, value); break;
        case space_constant::tensor3:
	  obj.template evaluate_call<ValueType, tensor3_basic<T1>, Arg2> (hat_K, q, value); break;
        case space_constant::tensor4:
	  obj.template evaluate_call<ValueType, tensor4_basic<T1>, Arg2> (hat_K, q, value); break;
        default: error_macro ("unexpected first argument valued tag="<<arg1_valued_tag);
      }
    }
  };
  // when second arg is undeterminated
  template<class This, class ValueType, class Arg1, class Arg2>
  struct evaluate_switch<This, ValueType, Arg1, Arg2, std::false_type, std::true_type> {
    void operator() (const This& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      typedef typename scalar_traits<Arg2>::type T2;
      space_constant::valued_type arg2_valued_tag = obj._vf_expr.valued_tag();
      switch (arg2_valued_tag) {
        case space_constant::scalar:
	  obj.template evaluate_call<ValueType, Arg1, T2>                (hat_K, q, value); break;
        case space_constant::vector:
	  obj.template evaluate_call<ValueType, Arg1, point_basic<T2> >  (hat_K, q, value); break;
        case space_constant::tensor:
        case space_constant::unsymmetric_tensor:
	  obj.template evaluate_call<ValueType, Arg1, tensor_basic<T2> > (hat_K, q, value); break;
        case space_constant::tensor3:
	  obj.template evaluate_call<ValueType, Arg1, tensor3_basic<T2> > (hat_K, q, value); break;
        case space_constant::tensor4:
	  obj.template evaluate_call<ValueType, Arg1, tensor4_basic<T2> > (hat_K, q, value); break;
        default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
      }
    }
  };
  // when one arg or both are undefined at compile time:
  // TODO: optimize when only one arg is undeterminated
  template<class This, class ValueType, class Arg1, class Arg2>
  struct evaluate_switch<This, ValueType, Arg1, Arg2, std::true_type, std::true_type> {
    void operator() (const This& obj, const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
      typedef typename scalar_traits<Arg1>::type T1;
      typedef typename scalar_traits<Arg2>::type T2;
      space_constant::valued_type arg1_valued_tag = obj._nl_expr.valued_tag();
      space_constant::valued_type arg2_valued_tag = obj._vf_expr.valued_tag();
      switch (arg1_valued_tag) {
        case space_constant::scalar: {
          switch (arg2_valued_tag) {
            case space_constant::scalar:
	      obj.template evaluate_call<ValueType, T1, T2>                (hat_K, q, value); break;
            case space_constant::vector:
	      obj.template evaluate_call<ValueType, T1, point_basic<T2> >  (hat_K, q, value); break;
            case space_constant::tensor:
            case space_constant::unsymmetric_tensor:
	      obj.template evaluate_call<ValueType, T1, tensor_basic<T2> > (hat_K, q, value); break;
            case space_constant::tensor3:
	      obj.template evaluate_call<ValueType, T1, tensor3_basic<T2> > (hat_K, q, value); break;
            case space_constant::tensor4:
	      obj.template evaluate_call<ValueType, T1, tensor4_basic<T2> > (hat_K, q, value); break;
            default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
          }
          break;
        }
        case space_constant::vector: {
          switch (arg2_valued_tag) {
            case space_constant::scalar:
	      obj.template evaluate_call<ValueType, point_basic<T1>, T2>                (hat_K, q, value); break;
            case space_constant::vector:
	      obj.template evaluate_call<ValueType, point_basic<T1>, point_basic<T2> >  (hat_K, q, value); break;
            case space_constant::tensor:
            case space_constant::unsymmetric_tensor:
	      obj.template evaluate_call<ValueType, point_basic<T1>, tensor_basic<T2> > (hat_K, q, value); break;
            case space_constant::tensor3:
	      obj.template evaluate_call<ValueType, point_basic<T1>, tensor3_basic<T2> > (hat_K, q, value); break;
            case space_constant::tensor4:
	      obj.template evaluate_call<ValueType, point_basic<T1>, tensor4_basic<T2> > (hat_K, q, value); break;
            default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
          }
          break;
        }
        case space_constant::tensor:
        case space_constant::unsymmetric_tensor: {
          switch (arg2_valued_tag) {
            case space_constant::scalar:
	      obj.template evaluate_call<ValueType, tensor_basic<T1>, T2>                (hat_K, q, value); break;
            case space_constant::vector:
	      obj.template evaluate_call<ValueType, tensor_basic<T1>, point_basic<T2> >  (hat_K, q, value); break;
            case space_constant::tensor:
            case space_constant::unsymmetric_tensor:
	      obj.template evaluate_call<ValueType, tensor_basic<T1>, tensor_basic<T2> > (hat_K, q, value); break;
            case space_constant::tensor3:
	      obj.template evaluate_call<ValueType, tensor_basic<T1>, tensor3_basic<T2> > (hat_K, q, value); break;
            case space_constant::tensor4:
	      obj.template evaluate_call<ValueType, tensor_basic<T1>, tensor4_basic<T2> > (hat_K, q, value); break;
            default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
          }
          break;
        }
        case space_constant::tensor3: {
          switch (arg2_valued_tag) {
            case space_constant::scalar:
	      obj.template evaluate_call<ValueType, tensor3_basic<T1>, T2>                (hat_K, q, value); break;
            case space_constant::vector:
	      obj.template evaluate_call<ValueType, tensor3_basic<T1>, point_basic<T2> >  (hat_K, q, value); break;
            case space_constant::tensor:
            case space_constant::unsymmetric_tensor:
	      obj.template evaluate_call<ValueType, tensor3_basic<T1>, tensor_basic<T2> > (hat_K, q, value); break;
            case space_constant::tensor3:
	      obj.template evaluate_call<ValueType, tensor3_basic<T1>, tensor3_basic<T2> > (hat_K, q, value); break;
            case space_constant::tensor4:
	      obj.template evaluate_call<ValueType, tensor3_basic<T1>, tensor4_basic<T2> > (hat_K, q, value); break;
            default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
          }
          break;
        }
        case space_constant::tensor4: {
          switch (arg2_valued_tag) {
            case space_constant::scalar:
	      obj.template evaluate_call<ValueType, tensor4_basic<T1>, T2>                (hat_K, q, value); break;
            case space_constant::vector:
	      obj.template evaluate_call<ValueType, tensor4_basic<T1>, point_basic<T2> >  (hat_K, q, value); break;
            case space_constant::tensor:
            case space_constant::unsymmetric_tensor:
	      obj.template evaluate_call<ValueType, tensor4_basic<T1>, tensor_basic<T2> > (hat_K, q, value); break;
            case space_constant::tensor3:
	      obj.template evaluate_call<ValueType, tensor4_basic<T1>, tensor3_basic<T2> > (hat_K, q, value); break;
            case space_constant::tensor4:
	      obj.template evaluate_call<ValueType, tensor4_basic<T1>, tensor4_basic<T2> > (hat_K, q, value); break;
            default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
          }
          break;
        }
        default: error_macro ("unexpected first argument valued tag="<<arg1_valued_tag);
      }
    }
  };
  // main eval call:
  template<class ValueType>
  void basis_evaluate (const reference_element& hat_K, size_type q, std::vector<ValueType>& value) const {
    typedef typename promote<
       typename NLExpr::value_type
      ,typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename NLExpr::value_type
	 ,typename VFExpr::value_type
	 ,ValueType>::first_argument_type
      >::type  A1;
    typedef typename promote<
        typename VFExpr::value_type
       ,typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename NLExpr::value_type
	 ,typename VFExpr::value_type
	 ,ValueType>::second_argument_type
       >::type A2;
    static const space_constant::valued_type  first_argument_tag = space_constant::valued_tag_traits<A1>::value;
    static const space_constant::valued_type second_argument_tag = space_constant::valued_tag_traits<A2>::value;
    typedef typename is_undeterminated<A1>::type undet_1;
    typedef typename is_undeterminated<A2>::type undet_2;
    evaluate_switch <self_type, ValueType, A1, A2, undet_1, undet_2> eval;
    eval (*this, hat_K, q, value);
  }
  template<class ValueType>
  void valued_check() const {
    typedef typename promote<
       typename NLExpr::value_type
      ,typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename NLExpr::value_type
	 ,typename VFExpr::value_type
	 ,ValueType>::first_argument_type
      >::type  A1;
    typedef typename promote<
        typename VFExpr::value_type
       ,typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename NLExpr::value_type
	 ,typename VFExpr::value_type
	 ,ValueType>::second_argument_type
       >::type A2;

    if (! is_undeterminated<A1>::value) _nl_expr.template valued_check<A1>();
    if (! is_undeterminated<A2>::value) _vf_expr.template valued_check<A2>();
  }
//protected:
// data:
  BinaryFunction  _f;
  NLExpr          _nl_expr;
  VFExpr          _vf_expr;
  mutable std::vector<scalar_type>                 _scalar_nl_value_quad;
  mutable std::vector<point_basic<scalar_type> >   _vector_nl_value_quad;
  mutable std::vector<tensor_basic<scalar_type> >  _tensor_nl_value_quad;
  mutable std::vector<tensor3_basic<scalar_type> > _tensor3_nl_value_quad;
  mutable std::vector<tensor4_basic<scalar_type> > _tensor4_nl_value_quad;
};
template<class F, class Expr1, class Expr2> struct is_field_expr_v2_variational_arg    <field_expr_v2_variational_binary_binded<F,Expr1,Expr2> > : std::true_type {};

} // namespace details
// ---------------------------------------------------------------------------
// 3.3. binary calls
// ---------------------------------------------------------------------------
namespace details {
  
template<class Expr1, class Expr2, class Sfinae = void>
struct is_field_expr_v2_variational_binary_multiplies_divides_left : std::false_type {};

template<class Expr1, class Expr2>
struct is_field_expr_v2_variational_binary_multiplies_divides_left <
  Expr1
 ,Expr2
 ,typename
  std::enable_if<
       is_field_expr_v2_nonlinear_arg  <Expr1>::value
    && is_field_expr_v2_variational_arg<Expr2>::value
  >::type
>
: std::true_type
{};

template<class Expr1, class Expr2>
struct is_field_expr_v2_variational_binary_multiplies_divides_right
:      is_field_expr_v2_variational_binary_multiplies_divides_left <Expr2,Expr1> {};

} // namespace details

#define _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_left(FUNCTION,FUNCTOR)	\
template<class Expr1, class Expr2>						\
inline										\
typename									\
std::enable_if<									\
  details::is_field_expr_v2_variational_binary_multiplies_divides_left <Expr1,Expr2>::value \
 ,details::field_expr_v2_variational_binary_binded<				\
    FUNCTOR									\
   ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type \
   ,Expr2 /* vf */								\
  >										\
>::type										\
FUNCTION (const Expr1& expr1, const Expr2& expr2)				\
{										\
  typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type wrap1_t; \
  return details::field_expr_v2_variational_binary_binded 			\
	<FUNCTOR,   wrap1_t,        Expr2> 					\
	(FUNCTOR(), wrap1_t(expr1), expr2); 					\
}

#define _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_right(FUNCTION,FUNCTOR) \
template<class Expr1, class Expr2>						\
inline										\
typename									\
std::enable_if<									\
  details::is_field_expr_v2_variational_binary_multiplies_divides_right <Expr1,Expr2>::value \
 ,details::field_expr_v2_variational_binary_binded<				\
    details::swapper<FUNCTOR>							\
   , typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type \
   ,Expr1 /* vf */								\
  >										\
>::type										\
FUNCTION (const Expr1& expr1, const Expr2& expr2)				\
{										\
  typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type wrap2_t; \
  return details::field_expr_v2_variational_binary_binded 			\
	<details::swapper<FUNCTOR>,            wrap2_t,        Expr1> 		\
	(details::swapper<FUNCTOR>(FUNCTOR()), wrap2_t(expr2), expr1); 		\
}
#define _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides(FUNCTION,FUNCTOR) \
        _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_left  (FUNCTION,FUNCTOR) \
        _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_right (FUNCTION,FUNCTOR)

_RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides       (operator*, details::multiplies)
_RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_right (operator/, details::divides)
_RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides       (dot,       details::dot_)
_RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides       (ddot,      details::ddot_)
#undef _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_left
#undef _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_right
#undef _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides

// ---------------------------------------------------------------------------
// 5. binary operators */ between one variational and a constant
// ---------------------------------------------------------------------------
namespace details {
  
template<class Expr1, class Expr2, class Sfinae = void>
struct is_field_expr_v2_variational_binary_multiplies_divides_constant_left : std::false_type {};

template<class Expr1, class Expr2>
struct is_field_expr_v2_variational_binary_multiplies_divides_constant_left <
  Expr1
 ,Expr2
 ,typename
  std::enable_if<
       is_field_expr_v2_constant       <Expr1>::value
    && is_field_expr_v2_variational_arg<Expr2>::value
  >::type
>
: std::true_type
{};

template<class Expr1, class Expr2>
struct is_field_expr_v2_variational_binary_multiplies_divides_constant_right
:      is_field_expr_v2_variational_binary_multiplies_divides_constant_left <Expr2,Expr1> {};

} // namespace details

#define _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_constant_left(FUNCTION,FUNCTOR)	\
template<class Expr1, class Expr2>						\
inline										\
typename									\
std::enable_if<									\
  details::is_field_expr_v2_variational_binary_multiplies_divides_constant_left <Expr1,Expr2>::value \
 ,details::field_expr_v2_variational_unary<				\
    details::binder_first <FUNCTOR, Expr1> 					\
   ,Expr2 /* vf */								\
  >										\
>::type										\
FUNCTION (const Expr1& expr1, const Expr2& expr2)				\
{										\
  return details::field_expr_v2_variational_unary 				\
	<details::binder_first <FUNCTOR,Expr1>,                    Expr2> 	\
	(details::binder_first <FUNCTOR,Expr1> (FUNCTOR(), expr1), expr2); 	\
}

#define _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_constant_right(FUNCTION,FUNCTOR)	\
template<class Expr1, class Expr2>						\
inline										\
typename									\
std::enable_if<									\
  details::is_field_expr_v2_variational_binary_multiplies_divides_constant_right <Expr1,Expr2>::value \
 ,details::field_expr_v2_variational_unary<				\
    details::binder_second <FUNCTOR, Expr2> 					\
   ,Expr1 /* vf */								\
  >										\
>::type										\
FUNCTION (const Expr1& expr1, const Expr2& expr2)				\
{										\
  return details::field_expr_v2_variational_unary 				\
	<details::binder_second <FUNCTOR,Expr2>,                    Expr1> 	\
	(details::binder_second <FUNCTOR,Expr2> (FUNCTOR(), expr2), expr1); 	\
}

#define _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_constant(FUNCTION,FUNCTOR)		\
        _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_constant_left  (FUNCTION,FUNCTOR) 	\
        _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_constant_right (FUNCTION,FUNCTOR)


_RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_constant       (operator*, details::multiplies)
_RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_constant_right (operator/, details::divides)
_RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_constant       (dot,       details::dot_)
_RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_constant       (ddot,      details::ddot_)

#undef _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_constant_right
#undef _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_constant_left
#undef _RHEOLEF_make_field_expr_v2_variational_binary_operator_multiplies_divides_constant

} // namespace rheolef
#endif // _RHEOLEF_FIELD_EXPR_V2_VARIATIONAL_H