This file is indexed.

/usr/include/rheolef/form_expr_v2_variational.h is in librheolef-dev 6.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
#ifndef _RHEOLEF_FORM_EXPR_V2_VARIATIONAL_H
#define _RHEOLEF_FORM_EXPR_V2_VARIATIONAL_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
///
/// =========================================================================
//
// variational expressions are used for form assembly
//
// author: Pierre.Saramito@imag.fr
//
// date: 23 september 2015 
//
// Notes: use template expressions and SFINAE techniques
//
// SUMMARY:
// 1. concept
// 2. unary function 
//    2.1. unary node
//    2.2. unary calls
// 3. binary operators +-  between two variational forms
//    3.1. binary node
//    3.2. binary calls
// 4. binary operators * between two variational fields that returns a form
//    4.1. unary node
//    4.2. unary calls
// 5. binary operators */ between a variational form and a nonlinear expr
//    5.1. binary node
//    5.2. binary calls
// 6. binary operators */ between a variational form and a constant
//
#include "rheolef/field_expr_v2_variational.h"
#include <boost/numeric/ublas/matrix.hpp> // ublas::matrix

namespace rheolef {
namespace ublas = boost::numeric::ublas;

// -------------------------------------------------------------------
// 1. concept
// -------------------------------------------------------------------
namespace details {

// Define a trait type for detecting form expression valid arguments
template<class T>                       struct is_form_expr_v2_variational_arg                         : std::false_type {};

} // namespace details
// ---------------------------------------------------------------------------
// 2. unary function
// example: -(u*v), 2*(u*v), (u*v)/2
// ---------------------------------------------------------------------------
// 2.1. unary node
// ---------------------------------------------------------------------------
namespace details {

template<class UnaryFunction, class Expr>
class form_expr_v2_variational_unary {
public:
// typedefs:

  typedef geo_element::size_type                   	size_type;
  typedef typename Expr::memory_type                    memory_type;
  typedef typename details::generic_unary_traits<UnaryFunction>::template result_hint<
          typename Expr::value_type>::type              result_hint;
  typedef typename details::generic_unary_traits<UnaryFunction>::template hint<
	  typename Expr::value_type
	 ,result_hint>::result_type                     value_type;
  typedef typename scalar_traits<value_type>::type  	scalar_type;
  typedef typename  float_traits<value_type>::type 	float_type;
  typedef space_basic<scalar_type,memory_type>		space_type;
  typedef typename Expr::vf_tag_type                    vf_tag_type;
  typedef typename details::dual_vf_tag<vf_tag_type>::type
                                                        vf_dual_tag_type;
  typedef form_expr_v2_variational_unary<UnaryFunction,Expr>           self_type;
  typedef form_expr_v2_variational_unary<UnaryFunction, typename Expr::dual_self_type>
                                                        dual_self_type;
  typedef typename Expr::maybe_symmetric::type          maybe_symmetric;

  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<value_type>::value;

// alocators:

  form_expr_v2_variational_unary (const UnaryFunction& f, const Expr& expr)
    : _f(f), _expr(expr) {}

// accessors:

  const space_type&  get_trial_space() const { return _expr.get_trial_space(); }
  const space_type&  get_test_space()  const { return _expr.get_test_space(); }
  size_type n_derivative() const             { return _expr.n_derivative(); }

// mutable modifiers:

  bool initialize (const geo_basic<float_type,memory_type>& dom, const quadrature<float_type>& quad, bool ignore_sys_coord) const { 
    return _expr.initialize (dom, quad, ignore_sys_coord);
  }
  void initialize (const band_basic<float_type,memory_type>& gh, const quadrature<float_type>& quad, bool ignore_sys_coord) const {  
    _expr.initialize (gh, quad, ignore_sys_coord);
  }
  void element_initialize (const geo_element& K) const {
    _expr.element_initialize (K);
  }
  template<class ValueType>
  void basis_evaluate (const reference_element& hat_K, size_type q, ublas::matrix<ValueType>& value) const {
    // ValueType is float_type in general: elementary matrix
    typedef ValueType A1;
    ublas::matrix<A1> value1 (value.size1(), value.size2());
    _expr.basis_evaluate (hat_K, q, value1);
    for (size_type i = 0, ni = value.size1(); i < ni; ++i) {
    for (size_type j = 0, nj = value.size2(); j < nj; ++j) {
      value(i,j) = _f (value1(i,j));
    }}
  }
  template<class ValueType>
  bool valued_check() const {
    typedef ValueType A1;
    if (! is_undeterminated<A1>::value) return _expr.template valued_check<A1>();
    return true;
  }
protected:
// data:
  UnaryFunction  _f;
  Expr           _expr;
};
template<class F, class Expr> struct is_form_expr_v2_variational_arg    <form_expr_v2_variational_unary<F,Expr> > : std::true_type {};

} // namespace details
// ---------------------------------------------------------------------------
// 2.2. unary calls
// ---------------------------------------------------------------------------

#define _RHEOLEF_make_form_expr_v2_variational_unary(FUNCTION,FUNCTOR)	\
template<class Expr>								\
inline										\
typename									\
std::enable_if<									\
  details::is_form_expr_v2_variational_arg<Expr>::value				\
 ,details::form_expr_v2_variational_unary<					\
    FUNCTOR									\
   ,Expr									\
  >										\
>::type										\
FUNCTION (const Expr& expr)							\
{										\
  return details::form_expr_v2_variational_unary <FUNCTOR,Expr> (FUNCTOR(), expr); \
}

_RHEOLEF_make_form_expr_v2_variational_unary (operator+, details::unary_plus)
_RHEOLEF_make_form_expr_v2_variational_unary (operator-, details::negate)
#undef _RHEOLEF_make_form_expr_v2_variational_unary

// ---------------------------------------------------------------------------
// 3. binary operators +-  between two variational forms
// ---------------------------------------------------------------------------
// 3.1. binary node
// ---------------------------------------------------------------------------
// example: operator+ between two forms as in
//	    (u*v) + dot(grad(u),grad(v))

namespace details {

template<class BinaryFunction, class Expr1, class Expr2>
class form_expr_v2_variational_binary {
public:
// typedefs:

  typedef geo_element::size_type                   	size_type;
  typedef typename promote_memory<typename Expr1::memory_type,typename Expr2::memory_type>::type 
 				                   	memory_type;
  typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<
          typename Expr1::value_type
         ,typename Expr2::value_type>::type             result_hint;
  typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,result_hint>::result_type                     value_type;
  typedef typename scalar_traits<value_type>::type  	scalar_type;
  typedef typename  float_traits<value_type>::type 	float_type;
  typedef space_basic<scalar_type,memory_type>		space_type; // TODO: deduce from Exprs
  typedef typename details::bf_vf_tag<BinaryFunction,
	typename Expr1::vf_tag_type,
	typename Expr2::vf_tag_type>::type              vf_tag_type;
  typedef typename details::dual_vf_tag<vf_tag_type>::type
                                                        vf_dual_tag_type;
  typedef form_expr_v2_variational_binary<BinaryFunction,Expr1,Expr2>         self_type;
  typedef form_expr_v2_variational_binary<BinaryFunction,typename Expr1::dual_self_type,
                                        typename Expr2::dual_self_type>
                                                        dual_self_type;
  typedef typename and_type<typename Expr1::maybe_symmetric::type,
		            typename Expr2::maybe_symmetric::type>::type
	                                               maybe_symmetric;

  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<value_type>::value;

// alocators:

  form_expr_v2_variational_binary (const BinaryFunction& f, 
		    const Expr1&    expr1,
                    const Expr2&    expr2)
    : _f(f), _expr1(expr1), _expr2(expr2) {}

// accessors:

  const space_type&  get_trial_space() const { return _expr1.get_trial_space(); }
  const space_type&  get_test_space()  const { return _expr1.get_test_space(); }
  size_type n_derivative() const             { return std::max(_expr1.n_derivative(), _expr2.n_derivative()); }

// mutable modifiers:

  // TODO: at init, check that exp1 & expr2 has the same test & trial spaces
  bool initialize (const geo_basic<float_type,memory_type>& dom, const quadrature<float_type>& quad, bool ignore_sys_coord) const { 
    return _expr1.initialize (dom, quad, ignore_sys_coord) &&
           _expr2.initialize (dom, quad, ignore_sys_coord);
  }
  void initialize (const band_basic<float_type,memory_type>& gh, const quadrature<float_type>& quad, bool ignore_sys_coord) const {  
    _expr1.initialize (gh, quad, ignore_sys_coord);
    _expr2.initialize (gh, quad, ignore_sys_coord);
  }
  void element_initialize (const geo_element& K) const {
    _expr1.element_initialize (K);
    _expr2.element_initialize (K);
  }
  // ValueType is float_type in general: elementary matrix
  template<class ValueType>
  void basis_evaluate (const reference_element& hat_K, size_type q, ublas::matrix<ValueType>& value) const {
    // for f=operator+ => sum of two elementary matrix of the same type
    // TODO: otherwise ValueType1 and 2 could be obtained from the hint<> helper
    typedef ValueType A1;
    typedef ValueType A2;
    ublas::matrix<A1> value1 (value.size1(), value.size2());
    ublas::matrix<A2> value2 (value.size1(), value.size2());
    _expr1.basis_evaluate (hat_K, q, value1);
    _expr2.basis_evaluate (hat_K, q, value2);
    for (size_type i = 0, ni = value.size1(); i < ni; ++i) {
    for (size_type j = 0, nj = value.size2(); j < nj; ++j) {
      value(i,j) = _f (value1(i,j), value2(i,j));
    }}
  }
  template<class ValueType>
  bool valued_check() const {
    typedef ValueType A1;
    typedef ValueType A2;
    bool status = true;
    if (! is_undeterminated<A1>::value)  status &= _expr1.template valued_check<A1>();
    if (! is_undeterminated<A2>::value)  status &= _expr2.template valued_check<A2>();
    return status;
  }
protected:
// data:
  BinaryFunction  _f;
  Expr1           _expr1;
  Expr2           _expr2;
};
template<class F, class Expr1, class Expr2> struct is_form_expr_v2_variational_arg    <form_expr_v2_variational_binary<F,Expr1,Expr2> > : std::true_type {};

} // namespace details

// ---------------------------------------------------------------------------
// 3.2. binary calls
// ---------------------------------------------------------------------------

#define _RHEOLEF_form_expr_v2_variational_binary(FUNCTION,FUNCTOR)		\
template <class Expr1, class Expr2>						\
inline										\
typename									\
std::enable_if<									\
     details::is_form_expr_v2_variational_arg <Expr1>::value			\
  && details::is_form_expr_v2_variational_arg <Expr2>::value			\
 ,details::form_expr_v2_variational_binary<					\
    FUNCTOR									\
   ,Expr1									\
   ,Expr2									\
  >										\
>::type										\
FUNCTION (const Expr1& expr1, const Expr2& expr2)				\
{										\
  return details::form_expr_v2_variational_binary				\
    <FUNCTOR,   Expr1, Expr2>							\
    (FUNCTOR(), expr1, expr2);							\
}

_RHEOLEF_form_expr_v2_variational_binary (operator+, details::plus)
_RHEOLEF_form_expr_v2_variational_binary (operator-, details::minus)

#undef _RHEOLEF_form_expr_v2_variational_binary

// ---------------------------------------------------------------------------
// 4. binary operators * between two variational fields that returns a form
//    example: integrate(u*v)
// ---------------------------------------------------------------------------
// 4.1. binary node
// ---------------------------------------------------------------------------
namespace details {

template<class BinaryFunction, class Expr1, class Expr2>
class form_expr_v2_variational_binary_field {
public:
// typedefs:

  typedef geo_element::size_type                   	size_type;
  typedef typename promote_memory<typename Expr1::memory_type,typename Expr2::memory_type>::type 
 				                   	memory_type;
  typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<
          typename Expr1::value_type
         ,typename Expr2::value_type>::type             result_hint;
  typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,result_hint>::result_type                     value_type;
  typedef typename scalar_traits<value_type>::type  	scalar_type;
  typedef typename  float_traits<value_type>::type 	float_type;
  typedef space_basic<scalar_type,memory_type>		space_type; // TODO: deduce from Exprs
  typedef typename details::bf_vf_tag<BinaryFunction,
	typename Expr1::vf_tag_type,
	typename Expr2::vf_tag_type>::type              vf_tag_type;
  typedef typename details::dual_vf_tag<vf_tag_type>::type
                                                        vf_dual_tag_type;
  typedef form_expr_v2_variational_binary_field<BinaryFunction,Expr1,Expr2>   self_type;
  typedef form_expr_v2_variational_binary_field<BinaryFunction,typename Expr1::dual_self_type,typename Expr2::dual_self_type>
                                                        dual_self_type;
  typedef typename and_type<typename details::generic_binary_traits<BinaryFunction>::is_symmetric::type,
		            typename details::is_equal<
				Expr1,
				typename Expr2::dual_self_type>::type>::type 
	                                                maybe_symmetric;

  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<value_type>::value;

// alocators:

  form_expr_v2_variational_binary_field (const BinaryFunction& f, 
		    const Expr1&    expr1,
                    const Expr2&    expr2)
    : _f(f), _expr1(expr1), _expr2(expr2) {}

// accessors:

  const space_type&  get_test_space()  const { 
    return (details::is_equal<typename Expr1::vf_tag_type, details::vf_tag_01>::value) ?
	_expr1.get_vf_space() : _expr2.get_vf_space();
  }
  const space_type&  get_trial_space() const {
    return (details::is_equal<typename Expr1::vf_tag_type, details::vf_tag_10>::value) ?
	_expr1.get_vf_space() : _expr2.get_vf_space();
  }

  size_type n_derivative() const             { return _expr1.n_derivative() + _expr2.n_derivative(); }

// mutable modifiers:

  bool initialize (const geo_basic<float_type,memory_type>& dom, const quadrature<float_type>& quad, bool ignore_sys_coord) const { 
       	_expr1.initialize (dom, quad, ignore_sys_coord);
        _expr2.initialize (dom, quad, ignore_sys_coord);
	return true;
  }
  void initialize (const band_basic<float_type,memory_type>& gh, const quadrature<float_type>& quad, bool ignore_sys_coord) const {  
           _expr1.initialize (gh, quad, ignore_sys_coord);
           _expr2.initialize (gh, quad, ignore_sys_coord);
  }
  void element_initialize (const geo_element& K) const {
    _expr1.element_initialize (K);
    _expr2.element_initialize (K);
  }
  template<class ValueType, class Arg1, class Arg2>
  void evaluate_call (const reference_element& hat_K, size_type q, ublas::matrix<ValueType>& value) const {
    if (details::is_equal<typename Expr2::vf_tag_type, details::vf_tag_01>::value) {
      // expr1 is trial and expr2 is test
      std::vector<Arg2> v_test  (value.size1()); _expr2.basis_evaluate (hat_K, q, v_test);
      std::vector<Arg1> u_trial (value.size2()); _expr1.basis_evaluate (hat_K, q, u_trial);
      for (size_type i = 0, ni = value.size1(); i < ni; ++i) {
      for (size_type j = 0, nj = value.size2(); j < nj; ++j) {
        value(i,j) = _f (u_trial[j], v_test[i]);
      }}
    } else {
      // expr2 is trial and expr1 is test
      std::vector<Arg2> v_test  (value.size1()); _expr1.basis_evaluate (hat_K, q, v_test);
      std::vector<Arg1> u_trial (value.size2()); _expr2.basis_evaluate (hat_K, q, u_trial);
      for (size_type i = 0, ni = value.size1(); i < ni; ++i) {
      for (size_type j = 0, nj = value.size2(); j < nj; ++j) {
        value(i,j) = _f (u_trial[j], v_test[i]);
      }}
    }
  }
  // when both args are defined at compile time:
  template<class This, class ValueType,
        class Arg1,        space_constant::valued_type Arg1Tag,
        class Arg2,        space_constant::valued_type Arg2Tag>
  struct evaluate_switch {
    void operator() (const This& obj, const reference_element& hat_K, size_type q, ublas::matrix<ValueType>& value) const {
      obj.template evaluate_call<ValueType, Arg1, Arg2> (hat_K, q, value);
    }
  };
  template<class ValueType>
  void basis_evaluate (const reference_element& hat_K, size_type q, ublas::matrix<ValueType>& value) const {
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,ValueType>::first_argument_type   first_argument_type;
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,ValueType>::second_argument_type second_argument_type;
    static const space_constant::valued_type  first_argument_tag = space_constant::valued_tag_traits<first_argument_type>::value;
    static const space_constant::valued_type second_argument_tag = space_constant::valued_tag_traits<second_argument_type>::value;
    evaluate_switch <self_type, ValueType,
        first_argument_type,   first_argument_tag,
        second_argument_type, second_argument_tag>   eval;
    eval (*this, hat_K, q, value);
  }
  template<class ValueType>
  bool valued_check() const {
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,ValueType>::first_argument_type   A1;
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename Expr1::value_type
	 ,typename Expr2::value_type
	 ,ValueType>::second_argument_type A2;
    if (! is_undeterminated<A1>::value)  _expr1.template valued_check<A1>();
    if (! is_undeterminated<A2>::value)  _expr2.template valued_check<A2>();
    return true;
  }
protected:
// data:
  BinaryFunction  _f;
  Expr1           _expr1;
  Expr2           _expr2;
};
template<class F, class Expr1, class Expr2> struct is_form_expr_v2_variational_arg    <form_expr_v2_variational_binary_field<F,Expr1,Expr2> > : std::true_type {};

} // namespace details
// ---------------------------------------------------------------------------
// 4.2. binary calls
// ---------------------------------------------------------------------------
namespace details {

template<class Expr1, class Expr2, class Sfinae = void>
struct is_form_expr_v2_variational_binary_field : std::false_type {};

template <class Expr1, class Expr2>
struct is_form_expr_v2_variational_binary_field <
  Expr1
 ,Expr2
 ,typename
  std::enable_if<
       is_field_expr_v2_variational_arg<Expr1>::value
    && is_field_expr_v2_variational_arg<Expr2>::value
  >::type
>
: and_type<
    is_field_expr_v2_variational_arg<Expr1>
   ,is_field_expr_v2_variational_arg<Expr2>
   ,std::is_same <
      typename Expr1::vf_tag_type
     ,typename dual_vf_tag<typename Expr2::vf_tag_type>::type
    >
  >
{};

} // namespace details

#define _RHEOLEF_form_expr_v2_variational_binary_field(FUNCTION,FUNCTOR)	\
template <class Expr1, class Expr2>						\
inline										\
typename									\
std::enable_if<									\
  details::is_form_expr_v2_variational_binary_field <Expr1,Expr2>::value	\
 ,details::form_expr_v2_variational_binary_field<				\
    FUNCTOR									\
   ,Expr1									\
   ,Expr2									\
  >										\
>::type										\
FUNCTION (const Expr1& expr1, const Expr2& expr2)				\
{										\
  return details::form_expr_v2_variational_binary_field				\
    <FUNCTOR,   Expr1, Expr2>							\
    (FUNCTOR(), expr1, expr2);							\
}

_RHEOLEF_form_expr_v2_variational_binary_field (operator*, details::multiplies)
_RHEOLEF_form_expr_v2_variational_binary_field (dot,       details::dot_)
_RHEOLEF_form_expr_v2_variational_binary_field (ddot,      details::ddot_)

#undef _RHEOLEF_form_expr_v2_variational_binary_field 

// ---------------------------------------------------------------------------
// 5. binary operators */ between a variational form and a nonlinear expr
// ---------------------------------------------------------------------------
// 5.1. binary node
// ---------------------------------------------------------------------------
// example: integrate(eta_h*(u*v))

namespace details {

template<class BinaryFunction, class NLExpr, class VFExpr>
class form_expr_v2_variational_binary_binded {
public:
// typedefs:

  typedef geo_element::size_type                   	size_type;
  typedef typename promote_memory<typename NLExpr::memory_type,typename VFExpr::memory_type>::type 
 				                   	memory_type;
  typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<
          typename NLExpr::value_type
         ,typename VFExpr::value_type>::type             result_hint;
  typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
	  typename NLExpr::value_type
	 ,typename VFExpr::value_type
	 ,result_hint>::result_type                     value_type;
  typedef typename scalar_traits<value_type>::type  	scalar_type;
  typedef typename  float_traits<value_type>::type 	float_type;
  typedef space_basic<scalar_type,memory_type>		space_type; // TODO: deduce from Exprs
  typedef typename details::bf_vf_tag<BinaryFunction,
	details::vf_tag_00,
	typename VFExpr::vf_tag_type>::type             vf_tag_type;
  typedef typename details::dual_vf_tag<vf_tag_type>::type
                                                        vf_dual_tag_type;
  typedef form_expr_v2_variational_binary_binded <BinaryFunction,NLExpr,VFExpr>         self_type;
  typedef form_expr_v2_variational_binary_binded <BinaryFunction,NLExpr,typename VFExpr::dual_self_type>
                                                        dual_self_type;
  typedef typename VFExpr::maybe_symmetric::type	maybe_symmetric;
  // TODO: symmetry: works only when eta_h is scalar
  // TODO: problem when ddot(eta_h,otimes(u,v)) when eta_h is unsymmetric tensor 
  // and "unsymmetric tensor" is not known at compile time

  static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<value_type>::value;

// alocators:

  form_expr_v2_variational_binary_binded (const BinaryFunction& f, 
		    const NLExpr&    nl_expr,
                    const VFExpr&    vf_expr)
    : _f(f), 
      _nl_expr(nl_expr),
      _vf_expr(vf_expr),
      _scalar_nl_value_quad(),
      _vector_nl_value_quad(),
      _tensor_nl_value_quad(),
      _tensor3_nl_value_quad(),
      _tensor4_nl_value_quad()
    {}

// accessors:

  const space_type&  get_trial_space() const { return _vf_expr.get_trial_space(); }
  const space_type&  get_test_space()  const { return _vf_expr.get_test_space(); }
  size_type n_derivative() const             { return _vf_expr.n_derivative(); }

// mutable modifiers:

  bool initialize (const geo_basic<float_type,memory_type>& dom, const quadrature<float_type>& quad, bool ignore_sys_coord) const { 
    _nl_expr.initialize (dom, quad);
    _vf_expr.initialize (dom, quad, ignore_sys_coord);
    return true;
  }
  void initialize (const band_basic<float_type,memory_type>& gh, const quadrature<float_type>& quad, bool ignore_sys_coord) const {  
    _nl_expr.initialize (gh.level_set(), quad);
    _vf_expr.initialize (gh,             quad, ignore_sys_coord);
  }
  // ---------------------------------------------
  // element initialize: evaluate nl_expr
  // ---------------------------------------------
  void element_initialize (const geo_element& K) const {
    typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
          typename NLExpr::value_type
         ,typename VFExpr::value_type
         ,value_type>::first_argument_type   first_argument_type;
    nl_switch<self_type,first_argument_type> nl_helper;
    nl_helper.element_initialize (*this, K);
    _vf_expr.element_initialize (K);
  }
  template<class ValueType>
  void basis_evaluate (const reference_element& hat_K, size_type q, ublas::matrix<ValueType>& value) const {
    typedef ValueType Arg1; // TODO: switch
    typedef ValueType Arg2; // TODO: switch ; is float_type in general, as elementary matrix
    nl_switch<self_type,Arg1> nl_helper;
    const Arg1& value1 = nl_helper.get_nl_value (*this, q);
    ublas::matrix<Arg2> value2 (value.size1(), value.size2());
    _vf_expr.basis_evaluate (hat_K, q, value2);
    for (size_type i = 0, ni = value.size1(); i < ni; ++i) {
    for (size_type j = 0, nj = value.size2(); j < nj; ++j) {
      value(i,j) = _f (value1, value2(i,j));
    }}
  }
  template<class ValueType>
  bool valued_check() const {
    typedef ValueType A1;
    typedef ValueType A2;
    bool status = true;
    if (! is_undeterminated<A1>::value)  status &= _nl_expr.template valued_check<A1>();
    if (! is_undeterminated<A2>::value)  status &= _vf_expr.template valued_check<A2>();
    return status;
  }
//protected:
// data:
  BinaryFunction  _f;
  NLExpr          _nl_expr;
  VFExpr          _vf_expr;
  mutable std::vector<scalar_type>                 _scalar_nl_value_quad;
  mutable std::vector<point_basic<scalar_type> >   _vector_nl_value_quad;
  mutable std::vector<tensor_basic<scalar_type> >  _tensor_nl_value_quad;
  mutable std::vector<tensor3_basic<scalar_type> > _tensor3_nl_value_quad;
  mutable std::vector<tensor4_basic<scalar_type> > _tensor4_nl_value_quad;
};
template<class F, class Expr1, class Expr2> struct is_form_expr_v2_variational_arg    <form_expr_v2_variational_binary_binded<F,Expr1,Expr2> > : std::true_type {};

} // namespace details

// ---------------------------------------------------------------------------
// 5.2. binary calls
// ---------------------------------------------------------------------------
namespace details {
  
template<class Expr1, class Expr2, class Sfinae = void>
struct is_form_expr_v2_variational_binary_multiplies_divides_left : std::false_type {};

template<class Expr1, class Expr2>
struct is_form_expr_v2_variational_binary_multiplies_divides_left <
  Expr1
 ,Expr2
 ,typename
  std::enable_if<
       is_field_expr_v2_nonlinear_arg <Expr1>::value
    && is_form_expr_v2_variational_arg<Expr2>::value
  >::type
>
: std::true_type
{};

template<class Expr1, class Expr2>
struct is_form_expr_v2_variational_binary_multiplies_divides_right
:      is_form_expr_v2_variational_binary_multiplies_divides_left <Expr2,Expr1> {};

} // namespace details

#define _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_left(FUNCTION,FUNCTOR)	\
template<class Expr1, class Expr2>						\
inline										\
typename									\
std::enable_if<									\
  details::is_form_expr_v2_variational_binary_multiplies_divides_left <Expr1,Expr2>::value \
 ,details::form_expr_v2_variational_binary_binded<				\
    FUNCTOR									\
   ,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type \
   ,Expr2 /* vf */								\
  >										\
>::type										\
FUNCTION (const Expr1& expr1, const Expr2& expr2)				\
{										\
  typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type wrap1_t; \
  return details::form_expr_v2_variational_binary_binded 			\
	<FUNCTOR,   wrap1_t,        Expr2> 					\
	(FUNCTOR(), wrap1_t(expr1), expr2); 					\
}

#define _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_right(FUNCTION,FUNCTOR) \
template<class Expr1, class Expr2>						\
inline										\
typename									\
std::enable_if<									\
  details::is_form_expr_v2_variational_binary_multiplies_divides_right <Expr1,Expr2>::value \
 ,details::form_expr_v2_variational_binary_binded<				\
    details::swapper<FUNCTOR>							\
   , typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type \
   ,Expr1 /* vf */								\
  >										\
>::type										\
FUNCTION (const Expr1& expr1, const Expr2& expr2)				\
{										\
  typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type wrap2_t; \
  return details::form_expr_v2_variational_binary_binded 			\
	<details::swapper<FUNCTOR>,            wrap2_t,        Expr1> 		\
	(details::swapper<FUNCTOR>(FUNCTOR()), wrap2_t(expr2), expr1); 		\
}
#define _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides(FUNCTION,FUNCTOR) \
        _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_left  (FUNCTION,FUNCTOR) \
        _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_right (FUNCTION,FUNCTOR)

_RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides       (operator*, details::multiplies)
_RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_right (operator/, details::divides)
_RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides       (dot,       details::dot_)
_RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides       (ddot,      details::ddot_)
#undef _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_left
#undef _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_right
#undef _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides

// ---------------------------------------------------------------------------
// 6. binary operators */ between a variational form and a constant
// ---------------------------------------------------------------------------
namespace details {
  
template<class Expr1, class Expr2, class Sfinae = void>
struct is_form_expr_v2_variational_binary_multiplies_divides_constant_left : std::false_type {};

template<class Expr1, class Expr2>
struct is_form_expr_v2_variational_binary_multiplies_divides_constant_left <
  Expr1
 ,Expr2
 ,typename
  std::enable_if<
       is_rheolef_arithmetic          <Expr1>::value
    && is_form_expr_v2_variational_arg<Expr2>::value
  >::type
>
: std::true_type
{};

template<class Expr1, class Expr2>
struct is_form_expr_v2_variational_binary_multiplies_divides_constant_right
:      is_form_expr_v2_variational_binary_multiplies_divides_constant_left <Expr2,Expr1> {};

} // namespace details

#define _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_constant_left(FUNCTION,FUNCTOR)	\
template<class Expr1, class Expr2>						\
inline										\
typename									\
std::enable_if<									\
  details::is_form_expr_v2_variational_binary_multiplies_divides_constant_left <Expr1,Expr2>::value \
 ,details::form_expr_v2_variational_unary<				\
    details::binder_first <FUNCTOR, Expr1> 					\
   ,Expr2 /* vf */								\
  >										\
>::type										\
FUNCTION (const Expr1& expr1, const Expr2& expr2)				\
{										\
  return details::form_expr_v2_variational_unary 				\
	<details::binder_first <FUNCTOR,Expr1>,                    Expr2> 	\
	(details::binder_first <FUNCTOR,Expr1> (FUNCTOR(), expr1), expr2); 	\
}

#define _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_constant_right(FUNCTION,FUNCTOR)	\
template<class Expr1, class Expr2>						\
inline										\
typename									\
std::enable_if<									\
  details::is_form_expr_v2_variational_binary_multiplies_divides_constant_right <Expr1,Expr2>::value \
 ,details::form_expr_v2_variational_unary<				\
    details::binder_second <FUNCTOR, Expr2> 					\
   ,Expr1 /* vf */								\
  >										\
>::type										\
FUNCTION (const Expr1& expr1, const Expr2& expr2)				\
{										\
  return details::form_expr_v2_variational_unary 				\
	<details::binder_second <FUNCTOR,Expr2>,                    Expr1> 	\
	(details::binder_second <FUNCTOR,Expr2> (FUNCTOR(), expr2), expr1); 	\
}

#define _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_constant(FUNCTION,FUNCTOR)		\
        _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_constant_left  (FUNCTION,FUNCTOR) 	\
        _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_constant_right (FUNCTION,FUNCTOR)


_RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_constant       (operator*, details::multiplies)
_RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_constant_right (operator/, details::divides)
_RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_constant       (dot,       details::dot_)
_RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_constant       (ddot,      details::ddot_)

#undef _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_constant_right
#undef _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_constant_left
#undef _RHEOLEF_make_form_expr_v2_variational_binary_operator_multiplies_divides_constant

} // namespace rheolef
#endif // _RHEOLEF_FORM_EXPR_V2_VARIATIONAL_H