This file is indexed.

/usr/include/rheolef/geo_element_curved_ball.h is in librheolef-dev 6.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
#ifndef _RHEOLEF_GEO_ELEMENT_CURVED_BALL_H
#define _RHEOLEF_GEO_ELEMENT_CURVED_BALL_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
///
/// =========================================================================
//
// transfinite piola transformaton from
// * a triangle (a,b,c) or a quadrangle(a,b,c,d)
//   to a curved triangle or quadrangle
//   where edge (a,b) is an arc of a circle.
// * a tetra (a,b,c,d) or an hexa(a,b,c,d,e,f,g,h)
//   to a curved tetra or hexa
//   where face (a,b,c), or (a,b,c,d) for hexa,
//   is a part of sphere boundary
//
// Remark: can be generalized from a circle/ball
//   to any curved boundary, by sending a function
//   that project or replace internal nodes onto the boundary.
//   See SherKar-2005, page 224.
//
// author: Pierre.Saramito@imag.fr
//
// date: 22 november 2011
// 
// TODO:
//  * tetra, hexa
//  * ellipse(r1,r2,r3,c)
//  * parametrized by a function that project on the bdry ?
//
#include "point.h"

namespace rheolef {

// ====================================================================================
// quadrangle (a,b,c,d) with curved edge (a,b)
// ====================================================================================
template<class T>
class curved_ball_q {
public:
// allocator:
  curved_ball_q (const point_basic<T>& a0, const point_basic<T>& b0, const point_basic<T>& c0, const point_basic<T>& d0,
	const point_basic<T>& center0 = point_basic<T>(0,0), const T& radius0 = 1)
   : a(a0), b(b0), c(c0), d(d0), center(center0), radius(radius0) {}
// accessor:
  point_basic<T> operator() (const point_basic<T>& hat_x) const {
     // transform large square [-1:1]^2 into small one [0:1]^2
     T x = 0.5*(hat_x[0]+1);
     T y = 0.5*(hat_x[1]+1);
     return f_small_carre (x, y);
  }
// internals:
protected:
  point_basic<T> f_ab (const T& s) const {
	point_basic<T> x = (1-s)*a + s*b;
	return center + radius*(x-center)/norm(x-center);
  }
  point_basic<T> f_bc (const T& s) const { return (1-s)*b + s*c; }
  point_basic<T> f_dc (const T& s) const { return (1-s)*d + s*c; }
  point_basic<T> f_ad (const T& s) const { return (1-s)*a + s*d; }
  /*
    Transformation for a square: from eqn (17) in:
    @article{GorHal-1972,
     author = {W. J. Gordon and C. A. Hall},
     title = {Transfinite element methods:
            blending-function interpolation over
            arbitrary curved element domains},
     journal = {Numer. Math.},
     volume = 21,
     pages = {109--129},
     year = 1973,
     url = {http://www.springerlink.com/content/p5517206551228j6/fulltext.pdf},
     keywords = {method!fem!curved}
    }
  */
  point_basic<T> f_small_carre (const T& x, const T& y) const {
    // small carre: 0 <= x,y <= 1
    return (1-x)*f_ad(y) + x*f_bc(y)
         + (1-y)*f_ab(x) + y*f_dc(x)
           - (1-x)*(1-y)*a
           -    x *(1-y)*b
           -    x *   y *c
           - (1-x)*   y *d
  	;
  }
protected:
// data:
  point_basic<T> a, b, c, d, center;
  T radius;
};
#ifdef TO_CLEAN
// ====================================================================================
// triangle (a,b,c) with curved edge (a,b)
// ====================================================================================
template<class T>
class curved_ball_t_old : public curved_ball_q {
public:
// allocator:
  curved_ball_t_old (const point_basic<T>& a0, const point_basic<T>& b0, const point_basic<T>& c0,
	const point_basic<T>& center0 = point_basic<T>(0,0), const T& radius0 = 1)
   : curved_ball_q (a0, b0, c0, c0, center0, radius0) {}
// accessor:
  point_basic<T> operator() (const point_basic<T>& hat_x) const {
    /* Transform for a triangle, from eqn (27) in:
	@article{DeySheFla-1997,
	 title = {Geometry representation issues associated with p-version finite element computations},
	 author = {S. Dey and M. S. Shephard and J. E. Flaherty},
	 journal = {Comput. Meth. Appl. Mech. Engrg.},
	 volume = 150, 
	 year = 1997, 
	 pages = {39--55}
	}
      Remark : SheKar-1999, p. 162-163 : cite GorHal-1973 for a quadrangle
      but says that the triangle-to-square transform + the quadrangle formulae
      does not work here (its true, I have checked) because of a singular jacobian.
      Triangle requires thus a specific formulae as it is done here.
      Also: similar ref: eqn (3.17), page 169 in SolSegDol-2004 is incorrect.
    */
    T la = 1 - hat_x[0] - hat_x[1]; // barycentric coords
    T lb = hat_x[0];
    T lc = hat_x[1];
    return 0.5*( la/(1-lb)*f_ab(lb) + lb/(1-la)*f_ab(1-la)
               + lb/(1-lc)*f_bc(lc) + lc/(1-lb)*f_bc(1-lb) 
	       + lc/(1-la)*f_ca(la) + la/(1-lc)*f_ca(1-lc)
	       - la*a - lb*b - lc*c);
  }
// internals:
protected:
  point_basic<T> f_ca (const T& s) const { return f_ad(1-s); }
};
#endif // TO_CLEAN
// ====================================================================================
// triangle (a,b,c) with i-th curved edge
// ====================================================================================
template<class T>
class curved_ball_t {
public:
// allocator:
  curved_ball_t (const point_basic<T>& a0, const point_basic<T>& b0, const point_basic<T>& c0,
	size_t loc_curved_iedg, const point_basic<T>& center0 = point_basic<T>(0,0), const T& radius0 = 1)
   : node(), center(center0), radius(radius0), is_bdry_edg()
  {
    node[0] = a0;
    node[1] = b0;
    node[2] = c0;
    is_bdry_edg.fill (false);
    is_bdry_edg [loc_curved_iedg] = true;
  }
// accessor:
  point_basic<T> operator() (const point_basic<T>& hat_x) const {
    /* Transform for a triangle, from eqn (27) in:
	@article{DeySheFla-1997,
	 title = {Geometry representation issues associated with p-version finite element computations},
	 author = {S. Dey and M. S. Shephard and J. E. Flaherty},
	 journal = {Comput. Meth. Appl. Mech. Engrg.},
	 volume = 150, 
	 year = 1997, 
	 pages = {39--55}
	}
      Remark : SheKar-1999, p. 162-163 : cite GorHal-1973 for a quadrangle
      but says that the triangle-to-square transform + the quadrangle formulae
      does not work here (its true, I have checked) because of a singular jacobian.
      Triangle requires thus a specific formulae as it is done here.
      Also: similar ref: eqn (3.17), page 169 in SolSegDol-2004 is incorrect.
    */
    T la = 1 - hat_x[0] - hat_x[1]; // barycentric coords
    T lb = hat_x[0];
    T lc = hat_x[1];
    return 0.5*( la/(1-lb)*edge(0,lb) + lb/(1-la)*edge(0,1-la)
               + lb/(1-lc)*edge(1,lc) + lc/(1-lb)*edge(1,1-lb) 
	       + lc/(1-la)*edge(2,la) + la/(1-lc)*edge(2,1-lc)
	       - la*node[0] - lb*node[1] - lc*node[2]);
  }
protected:
// internals:
  point_basic<T> project_on_boundary (const point_basic<T>& x) const {
    return center + radius*(x-center)/norm(x-center);
  }
  point_basic<T> edge (size_t loc_iedg, const T& hat_x) const {
    const point_basic<T>& a = node [loc_iedg];
    const point_basic<T>& b = node [(loc_iedg+1)%3];
    point_basic<T> x = (1-hat_x)*a + hat_x*b;
    if (is_bdry_edg [loc_iedg]) {
      return project_on_boundary (x);
    } else {
      return x;
    }
  }
// data:
  std::array<point_basic<T>,3> node;
  point_basic<T> center;
  T radius;
  std::array<bool,3> is_bdry_edg;
};
#ifdef TO_CLEAN
// ====================================================================================
// tetrahedron (a,b,c,d) with curved face (a,b,c)
// ====================================================================================
template<class T>
class curved_ball_T_old {
public:
// allocator:
  curved_ball_T_old (const point_basic<T>& a0, const point_basic<T>& b0, const point_basic<T>& c0, const point_basic<T>& d0,
	const point_basic<T>& center0 = point_basic<T>(0,0), const T& radius0 = 1)
   : a(a0), b(b0), c(c0), d(d0), center(center0), radius(radius0) {}
// accessor:
  point_basic<T> operator() (const point_basic<T>& hat_x) const {
    T la = 1 - hat_x[0] - hat_x[1] - hat_x[2]; // barycentric coords
    T lb = hat_x[0];
    T lc = hat_x[1];
    T ld = hat_x[2];
 
    curved_ball_t_old G_abd (a, b, d, center, radius);
    curved_ball_t_old G_acd (a, c, d, center, radius);
    curved_ball_t_old G_bcd (b, c, d, center, radius);

    point_basic<T> s_abc = f_abc((la*a + lb*b + lc*c)/(la+lb+lc));
    point_basic<T> s_abd = G_abd(point_basic<T>(lb, ld)/(la+lb+ld));
    point_basic<T> s_acd = G_acd(point_basic<T>(lc, ld)/(la+lc+ld));
    point_basic<T> s_bcd = G_bcd(point_basic<T>(lc, ld)/(lb+lc+ld));
    point_basic<T> e_ab  = f_ab ((la*a + lb*b)/(la+lb));
    point_basic<T> e_ac  = f_ac ((la*a + lc*c)/(la+lc));
    point_basic<T> e_ad  = f_ad ((la*a + ld*d)/(la+ld));
    point_basic<T> e_bc  = f_bc ((lb*b + lc*c)/(lb+lc));
    point_basic<T> e_cd  = f_cd ((lc*c + ld*d)/(lc+ld));
    point_basic<T> e_bd  = f_bd ((lb*b + ld*d)/(lb+ld));
    return (1-ld)*s_abc
         + (1-lc)*s_abd
         + (1-lb)*s_acd
         + (1-la)*s_bcd
         - (1-lc-ld)*e_ab
         - (1-ld-lb)*e_ac
         - (1-lb-lc)*e_ad
         - (1-la-ld)*e_bc
         - (1-la-lb)*e_cd
         - (1-la-lc)*e_bd
         + la*a + lb*b + lc*c + ld*d;
  }
// internals:
protected:
    /* Transform for a tetra, from eqn (30) in:
	@article{DeySheFla-1997,
	 title = {Geometry representation issues associated with p-version finite element computations},
	 author = {S. Dey and M. S. Shephard and J. E. Flaherty},
	 journal = {Comput. Meth. Appl. Mech. Engrg.},
	 volume = 150, 
	 pages = {39--55},
	 year = 1997
	}
    */
  point_basic<T> project_on_boundary (const point_basic<T>& x) const {
    return center + radius*(x-center)/norm(x-center);
  }
  point_basic<T> f_abc (const point_basic<T>& x) const { return project_on_boundary (x); }
  point_basic<T> f_abd (const point_basic<T>& x) const { return x; }
  point_basic<T> f_acd (const point_basic<T>& x) const { return x; }
  point_basic<T> f_bcd (const point_basic<T>& x) const { return x; }
  point_basic<T> f_ab  (const point_basic<T>& x) const { return project_on_boundary (x); }
  point_basic<T> f_ac  (const point_basic<T>& x) const { return project_on_boundary (x); }
  point_basic<T> f_bc  (const point_basic<T>& x) const { return project_on_boundary (x); }
  point_basic<T> f_ad  (const point_basic<T>& x) const { return x; }
  point_basic<T> f_bd  (const point_basic<T>& x) const { return x; }
  point_basic<T> f_cd  (const point_basic<T>& x) const { return x; }
// data:
  point_basic<T> a, b, c, d, center;
  T radius;
};
#endif // TO_CLEAN
// ====================================================================================
// tetrahedron (a,b,c,d) with i-th curved face
// ====================================================================================
template<class T>
class curved_ball_T {
public:
// allocator:
  curved_ball_T (const point_basic<T>& a0, const point_basic<T>& b0, const point_basic<T>& c0, const point_basic<T>& d0,
	const point_basic<T>& center0 = point_basic<T>(0,0), const T& radius0 = 1)
   : node(), center(center0), radius(radius0), is_bdry_edg(), is_bdry_fac(), is_curved_fac()
  {
    node[0] = a0;
    node[1] = b0;
    node[2] = c0;
    node[3] = d0;
    is_bdry_fac.fill(false);
    is_bdry_edg.fill(false);
    is_curved_fac.fill(false);
  }
// modifiers:
  void set_boundary_face (size_t loc_ifac_curved)
  {
    is_bdry_fac[loc_ifac_curved] = true;
    // then, all faces are either on boundary or have a curved edge:
    for (size_t loc_ifac = 0; loc_ifac < 4; loc_ifac++) {
      if (!is_bdry_fac [loc_ifac]) {
        is_curved_fac[loc_ifac] = true;
      }
    }
    // the three edges of the bdry face are also on the boundary
    for (size_t loc_ifac_jedg = 0; loc_ifac_jedg < 3; loc_ifac_jedg++) {
      size_t loc_jedg = reference_element_T::face2edge (loc_ifac_curved, loc_ifac_jedg);
      is_bdry_edg [loc_jedg] = true;
    }
  }
  void set_boundary_edge (size_t loc_iedg_curved)
  {
    is_bdry_edg [loc_iedg_curved] = true;
    // also, the two faces that contains this edge are then curved (if not yet on the boundary)
    for (size_t loc_ifac = 0; loc_ifac < 4; loc_ifac++) {
      for (size_t loc_ifac_jedg = 0; loc_ifac_jedg < 3; loc_ifac_jedg++) {
        size_t loc_jedg = reference_element_T::face2edge (loc_ifac, loc_ifac_jedg);
        if (loc_jedg != loc_iedg_curved) continue;
	// this face contains the boundary edge:
        if (!is_bdry_fac [loc_ifac]) {
          is_curved_fac[loc_ifac] = true;
          break;
        }
      }
    }
  }
// accessor:
  point_basic<T> operator() (const point_basic<T>& hat_x) const {
    /* Transform for a tetra, from eqn (30) in:
	@article{DeySheFla-1997,
	 title = {Geometry representation issues associated with p-version finite element computations},
	 author = {S. Dey and M. S. Shephard and J. E. Flaherty},
	 journal = {Comput. Meth. Appl. Mech. Engrg.},
	 volume = 150, 
	 pages = {39--55},
	 year = 1997
	}
    */
    // 1) compute the baycentric coordinates: lambda_i(xj) = delta_ij
    std::array<T,4> l;
    l[0] = 1 - hat_x[0] - hat_x[1] - hat_x[2];
    l[1] = hat_x[0];
    l[2] = hat_x[1];
    l[3] = hat_x[2];

    // 2) compute the contribution of all faces
    std::array<size_t,3> S;       // table of local vertices indexes
    std::array<bool,4>   is_on_S; // when vertex is on S
    point_basic<T> x_all_faces (0,0,0);
    for (size_t loc_ifac = 0; loc_ifac < 4; loc_ifac++) {
      is_on_S.fill (false);
      for (size_t loc_ifac_jv = 0; loc_ifac_jv < 3; loc_ifac_jv++) {
        S[loc_ifac_jv] = reference_element_T::subgeo_local_node (1, 2, loc_ifac, loc_ifac_jv);
        is_on_S [S[loc_ifac_jv]] = true;
      }
      // jv_3 is the only index in 0..3 that is not on the face ifac:
      size_t jv_3 = size_t(-1);
      for (size_t loc_jv = 0; loc_jv < 4; loc_jv++) {
        if (!is_on_S [loc_jv]) jv_3 = loc_jv;
      }
      T sum = l[S[0]] + l[S[1]] + l[S[2]];
      point_basic<T> hat_xi (l[S[1]]/sum, l[S[2]]/sum);
      x_all_faces += (1 - l[jv_3])*x_face (loc_ifac, hat_xi);
    }
    // 2) compute the contribution of all edges
    point_basic<T> x_all_edges (0,0,0);
    for (size_t loc_iedg = 0; loc_iedg < 6; loc_iedg++) {
      // edge = [a,b] and c & d are the two others verices of the tetra
      size_t ia = reference_element_T::subgeo_local_node (1, 1, loc_iedg, 0);
      size_t ib = reference_element_T::subgeo_local_node (1, 1, loc_iedg, 1);
      size_t ic = size_t(-1);
      size_t id = size_t(-1);
      for (size_t loc_iv = 0; loc_iv < 4; loc_iv++) {
        if (loc_iv == ia || loc_iv == ib) continue;
        if (ic == size_t(-1)) { ic = loc_iv; continue; }
        id = loc_iv;
      }
      assert_macro (ic != size_t(-1) && id != size_t(-1), "unexpected");
      T hat_xi = l[ib]/(l[ia] + l[ib]);
      x_all_edges += (1 - l[ic] - l[id])*x_edge (loc_iedg, hat_xi);
    }
    // 3) compute the contribution of all vertices
    point_basic<T> x_all_vertices (0,0,0);
    for (size_t loc_iv = 0; loc_iv < 4; loc_iv++) {
      x_all_vertices += l[loc_iv]*node[loc_iv];
    }
    return x_all_faces - x_all_edges + x_all_vertices;
  }
// internals:
protected:
  point_basic<T> x_face (size_t loc_ifac, const point_basic<T>& hat_x) const {
    size_t ia = reference_element_T::subgeo_local_node (1, 2, loc_ifac, 0);
    size_t ib = reference_element_T::subgeo_local_node (1, 2, loc_ifac, 1);
    size_t ic = reference_element_T::subgeo_local_node (1, 2, loc_ifac, 2);
    const point_basic<T>& a = node[ia];
    const point_basic<T>& b = node[ib];
    const point_basic<T>& c = node[ic];
    if (is_curved_fac [loc_ifac]) {
      // search the edge who lives on the boundary
      size_t loc_ifac_jedg_bdry = size_t(-1);
      for (size_t loc_ifac_jedg = 0; loc_ifac_jedg < 3; loc_ifac_jedg++) {
        size_t loc_jedg = reference_element_T::face2edge (loc_ifac, loc_ifac_jedg);
        if (is_bdry_edg [loc_jedg]) {
          loc_ifac_jedg_bdry = loc_ifac_jedg;
          break;
        }
      }
      assert_macro (loc_ifac_jedg_bdry != size_t(-1), "unexpected");
      curved_ball_t<T> F (a, b, c, loc_ifac_jedg_bdry, center, radius);
      return F (hat_x);
    } else {
      point_basic<T> x = (1 - hat_x[0] - hat_x[1])*a + hat_x[0]*b + hat_x[1]*c;
      if (is_bdry_fac [loc_ifac]) {
        return project_on_boundary (x);
      } else { // strait face
        return x;
      }
    }
  }
  point_basic<T> x_edge (size_t loc_iedg, const T& hat_x) const {
    size_t ia = reference_element_T::subgeo_local_node (1, 1, loc_iedg, 0);
    size_t ib = reference_element_T::subgeo_local_node (1, 1, loc_iedg, 1);
    const point_basic<T>& a = node[ia];
    const point_basic<T>& b = node[ib];
    point_basic<T> x = (1 - hat_x)*a + hat_x*b;
    if (is_bdry_edg [loc_iedg]) {
      return project_on_boundary (x);
    } else {
      return x;
    }
  }
  point_basic<T> project_on_boundary (const point_basic<T>& x) const {
	return center + radius*(x-center)/norm(x-center);
  }
  point_basic<T> f_abc (const point_basic<T>& x) const { return project_on_boundary (x); }
  point_basic<T> f_abd (const point_basic<T>& x) const { return x; }
  point_basic<T> f_acd (const point_basic<T>& x) const { return x; }
  point_basic<T> f_bcd (const point_basic<T>& x) const { return x; }
  point_basic<T> f_ab  (const point_basic<T>& x) const { return project_on_boundary (x); }
  point_basic<T> f_ac  (const point_basic<T>& x) const { return project_on_boundary (x); }
  point_basic<T> f_bc  (const point_basic<T>& x) const { return project_on_boundary (x); }
  point_basic<T> f_ad  (const point_basic<T>& x) const { return x; }
  point_basic<T> f_bd  (const point_basic<T>& x) const { return x; }
  point_basic<T> f_cd  (const point_basic<T>& x) const { return x; }
// data:
  std::array<point_basic<T>,4> node;
  point_basic<T> center;
  T radius;
  std::array<bool,6> is_bdry_edg;
  std::array<bool,4> is_bdry_fac;
  std::array<bool,4> is_curved_fac;
};
// ====================================================================================
// TODO: hexahedron with a curved face
// ====================================================================================
template<class T>
class curved_ball_H {
public:
// allocator:
  curved_ball_H (const point_basic<T>& a0, const point_basic<T>& b0, const point_basic<T>& c0, const point_basic<T>& d0,
                 const point_basic<T>& e0, const point_basic<T>& f0, const point_basic<T>& g0, const point_basic<T>& h0,
	const point_basic<T>& center0 = point_basic<T>(0,0), const T& radius0 = 1)
   : a(a0), b(b0), c(c0), d(d0), e(e0), f(f0), g(g0), h(h0), center(center0), radius(radius0) {}
// accessor:
  point_basic<T> operator() (const point_basic<T>& z) const {
     error_macro ("curved H: not yet");
     return point_basic<T>();
  }
// internals:
protected:
    /* Transform for an hexa, from annex A in:
	@article{KirSza-1997, 
	 author = {G. Kir\'alyfalvi and B. A. Szab\'o},
	 title = {Quasi-regional mapping for the $p$-version
		of the finite element method},
	 journal = {Finite Elements in Analysis and Design},
	 volume = 27, 
	 pages = {85--97},
	 year = 1997, 
	 keywords = {method!fem!curved!blending}
	}
    */
// data:
  point_basic<T> a, b, c, d, e, f, g, h, center;
  T radius;
};

} // namespace rheolef
#endif // _RHEOLEF_GEO_ELEMENT_CURVED_BALL_H