/usr/include/sopt/sdmm.h is in libsopt-dev 2.0.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 | #ifndef SOPT_SDMM_H
#define SOPT_SDMM_H
#include "sopt/config.h"
#include <limits>
#include <numeric>
#include <vector>
#include "sopt/conjugate_gradient.h"
#include "sopt/exception.h"
#include "sopt/linear_transform.h"
#include "sopt/logging.h"
#include "sopt/proximal.h"
#include "sopt/proximal_expression.h"
#include "sopt/types.h"
#include "sopt/wrapper.h"
namespace sopt {
namespace algorithm {
//! \brief Simultaneous-direction method of the multipliers
//! \details The algorithm is detailed in (doi) 10.1093/mnras/stu202.
template <class SCALAR> class SDMM {
public:
//! Values indicating how the algorithm ran
struct Diagnostic {
//! Number of iterations
t_uint niters;
//! Wether convergence was achieved
bool good;
//! Conjugate gradient result
ConjugateGradient::Diagnostic cg_diagnostic;
};
struct DiagnosticAndResult : public Diagnostic {
//! Vector which minimizes the sum of functions.
Vector<SCALAR> x;
};
//! Scalar type
typedef SCALAR value_type;
//! Scalar type
typedef value_type Scalar;
//! Real type
typedef typename real_type<Scalar>::type Real;
//! Type of then underlying vectors
typedef Vector<SCALAR> t_Vector;
//! Type of the A and A^H operations
typedef LinearTransform<t_Vector> t_LinearTransform;
//! Type of the proximal functions
typedef ProximalFunction<SCALAR> t_Proximal;
//! Type of the convergence function
typedef ConvergenceFunction<SCALAR> t_IsConverged;
SDMM()
: itermax_(std::numeric_limits<t_uint>::max()), gamma_(1e-8),
conjugate_gradient_(std::numeric_limits<t_uint>::max(), 1e-6),
is_converged_([](t_Vector const &) { return false; }) {}
virtual ~SDMM() {}
// Macro helps define properties that can be initialized as in
// auto sdmm = SDMM<float>().prop0(value).prop1(value);
#define SOPT_MACRO(NAME, TYPE) \
TYPE const &NAME() const { return NAME##_; } \
SDMM<SCALAR> &NAME(TYPE const &NAME) { \
NAME##_ = NAME; \
return *this; \
} \
\
protected: \
TYPE NAME##_; \
\
public:
//! Maximum number of iterations
SOPT_MACRO(itermax, t_uint);
//! Gamma
SOPT_MACRO(gamma, Real);
//! Conjugate gradient
SOPT_MACRO(conjugate_gradient, ConjugateGradient);
//! A function verifying convergence
SOPT_MACRO(is_converged, t_IsConverged);
#undef SOPT_MACRO
//! Helps setup conjugate gradient
SDMM<SCALAR> &conjugate_gradient(t_uint itermax, t_real tolerance) {
conjugate_gradient_.itermax(itermax);
conjugate_gradient_.tolerance(tolerance);
return *this;
}
//! \brief Appends a proximal and linear transform
template <class PROXIMAL, class T> SDMM<SCALAR> &append(PROXIMAL proximal, T args) {
proximals().emplace_back(proximal);
transforms().emplace_back(linear_transform(args));
return *this;
}
//! \brief Appends a proximal with identity as the linear transform
template <class PROXIMAL> SDMM<SCALAR> &append(PROXIMAL proximal) {
return append(proximal, linear_transform_identity<Scalar>());
}
//! \brief Appends a proximal with the linear transform as pair of functions
template <class PROXIMAL, class L, class LADJOINT>
SDMM<SCALAR> &append(PROXIMAL proximal, L l, LADJOINT ladjoint) {
return append(proximal, linear_transform<t_Vector>(l, ladjoint));
}
//! \brief Appends a proximal with the linear transform as pair of functions
template <class PROXIMAL, class L, class LADJOINT>
SDMM<SCALAR> &append(PROXIMAL proximal, L l, LADJOINT ladjoint, std::array<t_int, 3> sizes) {
return append(proximal, linear_transform<t_Vector>(l, ladjoint, sizes));
}
//! \brief Appends a proximal with the linear transform as pair of functions
template <class PROXIMAL, class L, class LADJOINT>
SDMM<SCALAR> &append(PROXIMAL proximal, L l, std::array<t_int, 3> dsizes, LADJOINT ladjoint,
std::array<t_int, 3> isizes) {
return append(proximal, linear_transform<t_Vector>(l, dsizes, ladjoint, isizes));
}
//! \brief Implements SDMM
//! \details Follows Combettes and Pesquet "Proximal Splitting Methods in Signal Processing",
//! arXiv:0912.3522v4 [math.OC] (2010), equation 65.
//! See therein for notation
Diagnostic operator()(t_Vector &out, t_Vector const &input) const;
DiagnosticAndResult operator()(t_Vector const &input) const {
DiagnosticAndResult result;
static_cast<Diagnostic &>(result) = operator()(result.x, input);
return result;
}
//! Makes it simple to chain different calls to SDMM
DiagnosticAndResult operator()(DiagnosticAndResult const &warmstart) const {
DiagnosticAndResult result;
static_cast<Diagnostic &>(result) = operator()(result.x, warmstart.x);
return result;
}
//! Linear transforms associated with each objective function
std::vector<t_LinearTransform> const &transforms() const { return transforms_; }
//! Linear transforms associated with each objective function
std::vector<t_LinearTransform> &transforms() { return transforms_; }
//! Linear transform associated with a given objective function
t_LinearTransform const &transforms(t_uint i) const { return transforms_[i]; }
//! Linear transform associated with a given objective function
t_LinearTransform &transforms(t_uint i) { return transforms_[i]; }
//! Proximal of each objective function
std::vector<t_Proximal> const &proximals() const { return proximals_; }
//! Linear transforms associated with each objective function
std::vector<t_Proximal> &proximals() { return proximals_; }
//! Proximal associated with a given objective function
t_Proximal const &proximals(t_uint i) const { return proximals_[i]; }
//! Proximal associated with a given objective function
t_Proximal &proximals(t_uint i) { return proximals_[i]; }
//! Lazy call to specific proximal function
template <class T0>
proximal::ProximalExpression<t_Proximal const &, T0>
proximals(t_uint i, Eigen::MatrixBase<T0> const &x) const {
return {proximals()[i], gamma(), x};
}
//! Number of terms
t_uint size() const { return proximals().size(); }
// We must declare the first argument explicitly so that the function never
// match the getter with the same name.
//! \brief Forwards to internal conjugage gradient object
//! \details Removes the need for ugly extra brackets.
template <class T0, class... T>
auto conjugate_gradient(T0 &&t0, T &&... args) const
-> decltype(this->conjugate_gradient()(std::forward<T0>(t0), std::forward<T>(args)...)) {
return conjugate_gradient()(std::forward<T0>(t0), std::forward<T>(args)...);
}
//! Forwards to convergence function parameter
bool is_converged(t_Vector const &x) const { return is_converged()(x); }
protected:
//! Linear transforms associated with each objective function
std::vector<t_LinearTransform> transforms_;
//! Proximal of each objective function
std::vector<t_Proximal> proximals_;
//! Type of the list of vectors
typedef std::vector<t_Vector> t_Vectors;
//! Conjugate gradient step
virtual ConjugateGradient::Diagnostic
solve_for_xn(t_Vector &out, t_Vectors const &y, t_Vectors const &z) const;
//! Direction step
virtual void update_directions(t_Vectors &y, t_Vectors &z, t_Vector const &x) const;
//! Initializes intermediate values
virtual void initialization(t_Vectors &y, t_Vectors &z, t_Vector const &x) const;
//! Checks that the input make sense
virtual void sanity_check(t_Vector const &input) const;
};
template <class SCALAR>
typename SDMM<SCALAR>::Diagnostic SDMM<SCALAR>::
operator()(t_Vector &out, t_Vector const &input) const {
sanity_check(input);
bool convergence = false;
t_uint niters(0);
// Figures out where itermax or convergence reached
auto const has_finished = [&convergence, &niters, this](t_Vector const &out) {
convergence = is_converged(out);
return niters >= itermax() or convergence;
};
SOPT_HIGH_LOG("Performing SDMM ");
out = input;
t_Vectors y(transforms().size()), z(transforms().size());
// Initial step replaces iteration update with initialization
initialization(y, z, input);
auto cg_diagnostic = solve_for_xn(out, y, z);
while(not has_finished(out)) {
SOPT_LOW_LOG("Iteration {}/{}. ", niters, itermax());
// computes y and z from out and transforms
update_directions(y, z, out);
SOPT_LOW_LOG(" - sum z_ij = {}",
std::accumulate(z.begin(), z.end(), Scalar(0e0),
[](Scalar const &a, t_Vector const &z) { return a + z.sum(); }));
// computes x = L^-1 y
cg_diagnostic = solve_for_xn(out, y, z);
SOPT_LOW_LOG(" - CG Residual = {} in {}/{} iterations", cg_diagnostic.residual,
cg_diagnostic.niters, conjugate_gradient().itermax());
++niters;
}
return {niters, convergence, cg_diagnostic};
}
template <class SCALAR>
ConjugateGradient::Diagnostic
SDMM<SCALAR>::solve_for_xn(t_Vector &out, t_Vectors const &y, t_Vectors const &z) const {
assert(z.size() == transforms().size());
assert(y.size() == transforms().size());
SOPT_TRACE("Solving for x_n");
// Initialize b of A x = b = sum_i L_i^H(z_i - y_i)
t_Vector b = out.Zero(out.size());
for(t_uint i(0); i < transforms().size(); ++i)
b += transforms(i).adjoint() * (y[i] - z[i]);
if(b.stableNorm() < 1e-12) {
out.fill(0e0);
return {0, 0, true};
}
// Then create operator A
auto A = [this](t_Vector &out, t_Vector const &input) {
out = out.Zero(input.size());
for(auto const &transform : this->transforms())
out += transform.adjoint() * (transform * input).eval();
};
// Call conjugate gradient
auto const diagnostic = this->conjugate_gradient(out, A, b);
if(not diagnostic.good) {
SOPT_ERROR("CG error - iterations: {}/{} - residuals {}\n", diagnostic.niters,
conjugate_gradient().itermax(), diagnostic.residual);
SOPT_THROW("Conjugate gradient failed to converge");
}
return diagnostic;
}
template <class SCALAR>
void SDMM<SCALAR>::update_directions(t_Vectors &y, t_Vectors &z, t_Vector const &x) const {
SOPT_TRACE("Updating directions");
for(t_uint i(0); i < transforms().size(); ++i) {
z[i] += transforms(i) * x;
y[i] = proximals(i, z[i]);
z[i] -= y[i];
}
}
template <class SCALAR>
void SDMM<SCALAR>::initialization(t_Vectors &y, t_Vectors &z, t_Vector const &x) const {
SOPT_TRACE("Initializing SDMM");
for(t_uint i(0); i < transforms().size(); i++) {
y[i] = transforms(i) * x;
z[i].resize(y[i].size());
z[i].fill(0);
assert(z[i].size() == y[i].size());
SOPT_TRACE(" - transform {}: {}", i, y[i].transpose());
}
}
template <class SCALAR> void SDMM<SCALAR>::sanity_check(t_Vector const &x) const {
bool doexit = false;
if(proximals().size() != transforms().size()) {
SOPT_ERROR("Internal error: number of proximals and transforms do not match");
doexit = true;
}
if(x.size() == 0)
SOPT_WARN("Input vector has zero size");
if(size() == 0)
SOPT_WARN("No operators - SDMM is empty");
for(t_uint i(0); i < size(); ++i) {
auto const xdual = t_Vector::Zero((transforms(i) * x).size());
auto const r = (transforms(i).adjoint() * xdual).size();
if(r != x.size()) {
SOPT_ERROR("Output size of transform {} and input do not match: {} vs {}", i, r, x.size());
doexit = true;
}
}
if(doexit)
SOPT_THROW("Input to SDMM is inconsistent");
}
}
} /* sopt::algorithm */
#endif
|