This file is indexed.

/usr/include/trilinos/ROL_PrimalDualInteriorPointStep.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER


#ifndef ROL_PRIMALDUALINTERIORPOINTSTEP_H
#define ROL_PRIMALDUALINTERIORPOINTSTEP_H

#include "ROL_VectorsNorms.hpp"
#include "ROL_PartitionedVector.hpp"
#include "ROL_InteriorPointPenalty.hpp"
#include "ROL_PrimalDualInteriorPointResidual.hpp"
#include "ROL_Krylov.hpp"


/** @ingroup step_group
  
    Given the Type-EB problem
    
    \f[ \min_x f(x)\quad \text{s.t.}\quad c(x) = \f]
 
    with the bound constraint \f[ l \leq x \leq u \f]

    We introduce a barrier penalty to formuate a Type-E problem

    \f[ \min_x \varphi_\mu(x) = f(x) - \mu\sum\limits_i xscratch_i^l \ln(x_i-l_i) + xscratch_i^l \ln(u_i-x_i) \f]

    Where the weights are 
 
    \f[ l_i = \begin{cases} 0 & l_i=-\infty \\ 1 & l_i > -\infty\end{cases} ,\quad
        u_i = \begin{cases} 0 & u_i=\infty \\ 1 & u_i < \infty \end{cases} \f]


    Algorithm: 

    1) initialize parameters, counter, filter

    2) Evaluate \f$E_0\f$, check if (mu=0) problem converged

    3) Evaluate \f$E_\mu\f$, check convergence of (mu>0) problem
      3.1) Compute \f$\mu_{j+1}\f$ and \f$\tau_{j+1}\f$, increment j
      3.2) Reinitialize Filter
      3.3) If k=0, goto 3, else go to 4

    4) Compute search direction

    5) Do backtracking line search
      5.1) Initialize with max step length
      5.2) Compute trial point
      5.3) Check acceptability to filter. If good go to 5.4, else 5.5
      5.4) Check sufficient decrease. If accept go to 5.6, 5.5
      5.5) Initialize second-order correction
      5.6) Compute 2nd-order correction
      5.7) Check acceptability to filter. If reject, go to 5.10     
      5.8) Check sufficient decrease w.r.t current iterate. If accept, go to 5.6, else 5.9
      5.9) 2nd-order correction. If \f$p=p^\text{max}\f$, go to 5.6, else go to 5.10
      5.10) Choose new trial step size. If too small go to feasibility restoration phase 9, 
            else go to 5.6

   6) Accept trial point, set alpha, update muliplier estimates

   7) Augment filter if necesary

   8) Continue with next iteration, increase iteration counter and go to 2

   9) Feasibility restoration phase. Augmet filter and compute new iterate by 
      decreasing feasibility measure. Go to 8. 

   Jump to 5.10 if we encounter a NaN or Inf at a trial point  

*/

namespace ROL {
namespace InteriorPoint {
template <class Real> 
class PrimalDualInteriorPointStep : public Step<Real> {

  typedef Vector<Real>                                V;
  typedef PartitionedVector<Real>                     PV;
  typedef Objective<Real>                             OBJ;
  typedef BoundConstraint<Real>                       BND;
  typedef Krylov<Real>                                KRYLOV;
  typedef LinearOperator<Real>                        LINOP;
  typedef LinearOperatorFromEqualityConstraint<Real>  LOPEC;
  typedef EqualityConstraint<Real>                    EQCON;
  typedef StepState<Real>                             STATE;
  typedef InteriorPointPenalty<Real>                  PENALTY;
  typedef PrimalDualInteriorPointResidual<Real>       RESIDUAL;

private:

  Teuchos::RCP<KRYLOV> krylov_;      // Krylov solver for the Primal Dual system 
  Teuchos::RCP<LINOP>  precond_;     // Preconditioner for the Primal Dual system

  Teuchos::RCP<BND> pbnd_;           // bound constraint for projecting x sufficiently away from the given bounds

  Teuchos::RCP<V> x_;                // Optimization vector
  Teuchos::RCP<V> g_;                // Gradient of the Lagrangian
  Teuchos::RCP<V> l_;                // Lagrange multiplier

  Teuchos::RCP<V> xl_;               // Lower bound vector
  Teuchos::RCP<V> xu_;               // Upper bound vector

  Teuchos::RCP<V> zl_;               // Lagrange multiplier for lower bound
  Teuchos::RCP<V> zu_;               // Lagrange multiplier for upper bound

  Teuchos::RCP<V> xscratch_;         // Scratch vector (size of x)
  Teuchos::RCP<V> lscratch_;         // Scratch vector (size of l)

  Teuchos::RCP<V> zlscratch_;        // Scratch vector (size of x)
  Teuchos::RCP<V> zuscratch_;        // Scratch vector (size of x)

  Teuchos::RCP<V> maskL_;            // Elements are 1 when xl>-INF, zero for xl = -INF
  Teuchos::RCP<V> maskU_;            // Elements are 1 when xu< INF, zero for xu =  INF

  int iterKrylov_;
  int flagKrylov_;       

  bool symmetrize_;        // Symmetrize the Primal Dual system if true

  Elementwise::Multiply<Real> mult_; 

  // Parameters used by the Primal-Dual Interior Point Method

  Real mu_;                // Barrier penalty parameter
 
  Real eps_tol_;           // Error function tolerance   
  Real tau_;               // Current fraction-to-the-boundary parameter
  Real tau_min_;           // Minimum fraction-to-the-boundary parameter
  Real kappa_eps_;
  Real kappa_mu_;
  Real kappa1_;            // Feasibility projection parameter
  Real kappa2_;            // Feasibility projection parameter
  Real kappa_eps_;         // 
  Real lambda_max_;        // Equality multiplier maximum value
  Real theta_mu_;
  Real gamma_theta_;
  Real gamma_phi_
  Real sd_;                // Lagragian gradient scaling parameter
  Real scl_;               // Lower bound complementarity scaling parameter
  Real scu_;               // Upper bound complementarity scaling parameter
  Real smax_;              // Maximum scaling parameter

  Real diml_;              // Dimension of constaint
  Real dimx_;              // Dimension of optimization vector



  void updateState( const V& x, const V &l, OBJ &obj, 
                    EQCON &con, BND &bnd, ALGO &algo_state ) {
  
    Real tol = std::sqrt(ROL_EPSILON<Real>());
    Teuchos::RCP<STATE> state = Step<Real>::getState();

    obj.update(x,true,algo_state.iter);
    con.update(x,true,algo_state.iter);

    algo_state.value = obj.value(tol);
    con.value(*(state->constraintVec),x,tol);

    obj.gradient(*(state->gradientVec),x,tol);   
    con.applyAdjointJacobian(*g_,l,x,tol);

    state->gradientVec->plus(*g_); // \f$ \nabla f(x)-\nabla c(x)\lambda \f$

    state->gradientVec->axpy(-1.0,*zl_); 
    state->gradientVec->axpy(-1.0,*zu_);

    // Scaled Lagrangian gradient sup norm
    algo_state.gnorm = normLinf(*(state->gradientVec))/sd_;

    // Constraint sup norm 
    algo_state.cnorm = normLinf(*(state->constraintVec));

    Elementwise::Multiply<Real> mult;

    Real lowerViolation;
    Real upperViolation;
     
    // Deviation from complementarity
    xscratch_->set(x);
    xscratch_->applyBinary(mult,*zl_);
    
    exactLowerViolation = normLinf(*xscratch_)/scl_;
 
    xscratch_->set(x);
    xscratch_->applyBunary(mult,*zu_);
    
    exactUpperBound = normLinf(*xscratch_)/scu_;

    // Measure ||xz||  
    algo_state.aggregateModelError = std::max(exactLowerViolation,
                                              exactUpperViolation);

  }

  /* When the constraint Jacobians are ill-conditioned, we can compute 
     multiplier vectors with very large norms, making it difficult to 
     satisfy the primal-dual equations to a small tolerance. These 
     parameters allow us to rescale the constraint qualification component
     of the convergence criteria 
  */
  void updateScalingParameters(void) {

    Real nl  = normL1(*l_);
    Real nzl = normL1(*zl_);
    Real nzu = normL1(*zu_);

    sd_  = (nl+nzl+nzu)/(diml_+2*dimx);
    sd_  = std::max(smax_,sd_)

    sd_ /= smax_;

    scl_  = nzl/dimx_;
    scl_  = std::max(smax_,scl_);
    scl_ /= smax_;

    scu_  = nzu/dimx_;
    scu_  = std::max(smax_,scu_);
    scu_ /= smax_;
  }

public:

  using Step<Real>::initialize;
  using Step<Real>::compute;
  using Step<Real>::update;

  PrimalDualInteriorPointStep( Teuchos::ParameterList &parlist, 
                               const Teuchos::RCP<Krylov<Real> > &krylov = Teuchos::null,
                               const Teuchos::RCP<LinearOperator<Real> > &precond = Teuchos::null ) : 
    Step<Real>(), krylov_(krylov), precond_(precond), iterKrylov_(0), flagKrylov_(0) {

    typedef Teuchos::ParameterList PL;

    PL &iplist = parlist.sublist("Step").sublist("Primal Dual Interior Point");

    kappa1_     = iplist.get("Bound Perturbation Coefficient 1",        1.e-2);
    kappa2_     = iplist.get("Bound Perturbation Coefficient 2",        1.e-2);
    lambda_max_ = iplist.get("Equality Multiplier Maximum Value",       1.e3 ); 
    smax_       = iplist.get("Maximum Scaling Parameter",               1.e2 );
    tau_min_    = iplist.get("Minimum Fraction-to-Boundary Parameter",  0.99 );
    kappa_mu_   = iplist.get("Multiplicative Penalty Reduction Factor", 0.2  );
    theta_mu_   = iplist.get("Penalty Update Power",                    1.5  );
    eps_tol_    = iplist.get("Error Tolerance",                         1.e-8);
    symmetrize_ = iplist.get("Symmetrize Primal Dual System",           true );

    PL &filter  = iplist.sublist("Filter Parameters");

    if(krylov_ == Teuchos::null) {
      krylov_ = KrylovFactory<Real>(parlist);
    }

    if( precond_ == Teuchos::null) {
      class IdentityOperator : public LINOP {
      public: 
        apply( V& Hv, const V &v, Real tol ) const {
          Hv.set(v);
        }
      }; // class IdentityOperator

      precond_ = Teuchos::rcp( new IdentityOperator<Real>() );
    }

  } 



  ~PrimalDualInteriorPointStep() {


  void initialize( Vector<Real> &x, const Vector<Real> &g, Vector<Real> &l, const Vector<Real> &c,
                   Objective<Real> &obj, EqualityConstraint<Real> &con, BoundConstraint<Real> &bnd,
                   AlgorithmState<Real> &algo_state ) {

    using Teuchos::RCP; using Teuchos::rcp;
    using Elementwise::ValueSet;   

    RCP<PENALTY> &ipPen = Teuchos::dyn_cast<PENALTY>(obj);

    // Initialize step state
    RCP<STATE> state = Step<Real>::getState();    
    state->descentVec   = x.clone();
    state->gradientVec  = g.clone();
    state->constaintVec = c.clone();

    diml_ = l.dimension();
    dimx_ = x.dimension();

    Real one(1.0); 
    Real zero(0.0);
    Real tol = std::sqrt(ROL_EPSILON<Real>());

    x_ = x.clone();
    g_ = g.clone();
    l_ = l.clone();
    c_ = c.clone();

    xscratch_ = x.clone(); 
    lscratch_ = l.clone(); 

    zlscratch_ = x.clone(); 
    zuscratch_ = x.clone(); 

    // Multipliers for lower and upper bounds 
    zl_ = x.clone();
    zu_ = x.clone();

    /*******************************************************************************************/
    /* Identify (implicitly) the index sets of upper and lower bounds by creating mask vectors */
    /*******************************************************************************************/
  
    xl_ = bnd.getLowerVectorRCP();
    xu_ = bnd.getUpperVectorRCP();

    maskl_ = ipPen.getLowerMask();
    masku_ = ipPen.getUpperMask();
    
    // Initialize bound constraint multipliers to 1 one where the corresponding bounds are finite
    zl_->set(maskl_);
    zu_->set(masku_);

    /*******************************************************************************************/
    /* Create a new bound constraint with perturbed bounds                                     */
    /*******************************************************************************************/
    
    Teuchos::RCP<V> xdiff = xu_->clone();
    xdiff->set(*xu_); 
    xdiff->axpy(-1.0,*xl_);
    xdiff->scale(kappa2_);    

    class Max1X : public Elementwise::UnaryFunction<Real> {
    public:
      Real apply( const Real &x ) const {
        return std::max(1.0,x);
      }
    };

    Max1X                            max1x;
    Elementwise::AbsoluteValue<Real> absval;
    Elementwise::Min                 min;

    // Lower perturbation vector
    Teuchos::RCP<V> pl = xl_->clone();
    pl->applyUnary(absval);
    pl->applyUnary(max1x);               // pl_i = max(1,|xl_i|)
    pl->scale(kappa1_);
    pl->applyBinary(min,xdiff);          // pl_i = min(kappa1*max(1,|xl_i|),kappa2*(xu_i-xl_i))

    // Upper perturbation vector
    Teuchos::RCP<V> pu = xu_->clone();
    pu->applyUnary(absval);
    pu->applyUnary(max1x);              // pu_i = max(1,|xu_i|)
    pu->scale(kappa_1); 
    pu->applyBinary(min,xdiff);         // pu_u = min(kappa1*max(1,|xu_i|,kappa2*(xu_i-xl_i)))

    // Modified lower and upper bounds so that x in [xl+pl,xu-pu] using the above perturbation vectors
    pl->plus(*xl_);
    pu->scale(-1.0);
    pu->plus(*xu_);

    pbnd_ = Teuchos::rcp( new BoundConstraint<Real>(pl,pu) )

    // Project the initial guess onto the perturbed bounds
    pbnd_->project(x);


    /*******************************************************************************************/
    /* Solve least-squares problem for initial equality multiplier                             */
    /*******************************************************************************************/
   
    // \f$-(\nabla f-z_l+z_u) \f$
    g_->set(*zl_);
    g_->axpy(-1.0,g);
    g_->axpy(-1.0,*zu_)

    // We only need the updated multiplier
    lscratch_->zero();
    con.solveAugmentedSystem(*xscratch_,*l_,*g_,*lscratch_,x,tol);

    // If the multiplier supremum is too large, zero the vector as this appears to avoid poor
    // initial guesses of the multiplier in the case where the constraint Jacobian is 
    // ill-conditioned 
    if( normInf(l_) > lambda_max_ ) {
      l_->zero();
    }
 
    // Initialize the algorithm state
    algo_state.nfval = 0;
    algo_state.ncval = 0;
    algo_state.ngrad = 0;

    updateState(x,l,obj,con,bnd,algo_state);

  } // initialize()


  void compute( Vector<Real> &s, const Vector<Real> &x, const Vector<Real> &l, 
                Objective<Real> &obj, EqualityConstraint<Real> &con, 
                BoundConstraint<Real> &bnd, AlgorithmState<Real> &algo_state ) {


    using Teuchos::RCP; using Teuchos::rcp; 

    Elementwise::Fill<Real>     minus_mu(-mu_); 
    Elementwise::Divide<Real>   div;
    Elementwise::Multiply<Real> mult;

    RCP<STATE> state = Step<Real>::getState();    

    RCP<OBJ>   obj_ptr = Teuchos::rcpFromRef(obj);
    RCP<EQCON> con_ptr = Teuchos::rcpFromRef(con); 
    RCP<BND>   bnd_ptr = Teuchos::rcpFromRef(bnd);


    /*******************************************************************************************/
    /* Form Primal-Dual system residual and operator then solve for direction vector           */
    /*******************************************************************************************/
    
          
    RCP<V> rhs = CreatePartitionedVector(state->gradientVec,
                                         state->constraintVec,
                                         resL_,
                                         resU_);
    
    RCP<V> sysvec = CreatePartitionedVector( x_, l_, zl_, zu_ );


    RCP<RESIDUAL> residual = rcp( new RESIDUAL(obj,con,bnd,*sol,maskL_,maskU_,w_,mu_,symmetrize_) ); 

    residual->value(*rhs,*sysvec,tol);

    RCP<V> sol = CreatePartitionedVector( xscratch_, lscratch_, zlscratch_, zuscratch_ );

    LOPEC jacobian( sysvec, residual ); 

    
    krylov_->run(*sol,jacobian,*residual,*precond_,iterKrylov_,flagKrylov_); 
    
    /*******************************************************************************************/
    /* Perform line search                                                                     */
    /*******************************************************************************************/



  } // compute() 
  


  void update( Vector<Real> &x, Vector<Real> &l, const Vector<Real> &s,
               Objective<Real> &obj, EqualityConstraint<Real> &con, 
               BoundConstraint<Real> &bnd, AlgorithmState<Real> &algo_state ) {

    // Check deviation from shifted complementarity
    Elementwise::Shift<Real>    minus_mu(-mu_);

    xscratch_->set(x);
    xscratch_->applyBinary(mult,*zl_);
    xscratch_->applyUnary(minus_mu);

    lowerViolation = normLinf(*xscratch_)/scl_; // \f$ \max_i xz_l^i - \mu \f$
 
    xscratch_->set(x);
    xscratch_->applyBinary(mult,*zu_);
    xscratch_->applyUnary(minus_mu);            
    
    upperBound = normLinf(*xscratch_)/scu_;

    // Evaluate \f$E_\mu(x,\lambda,z_l,z_u)\f$
    Real Emu = algo_state.gnorm;
    Emu = std::max(Emu,algo_state.cnorm);
    Emu = std::max(Emu,upperBound);
    Emu = std::max(Emu,lowerBound);

    // If sufficiently converged for the current mu, update it
    if(Emu < (kappa_epsilon_*mu_) ) {
      Real mu_old = mu_;
 
      /* \mu_{j+1} = \max\left{ \frac{\epsilon_\text{tol}}{10},
                                \min\{ \kappa_{\mu} \mu_j, 
                                       \mu_j^{\theta_\mu}\} \right\} */
      mu_ = std::min(kappa_mu_*mu_old,std::pow(mu_old,theta_mu_));
      mu_ = std::max(eps_tol_/10.0,mu_);
 
     // Update fraction-to-boundary parameter
     tau_ = std::max(tau_min_,1.0-mu_);     

          
 
    } 

  } // update() 




  // TODO: Implement header print out
  std::string printHeader( void ) const {
    std::string head("");
    return head;
  }

  // TODO: Implement name print out
  std::string printName( void ) const {
    std::string name("");
    return name;
  }


}; // class PrimalDualInteriorPointStep

} // namespace InteriorPoint
} // namespace ROL


#endif //  ROL_PRIMALDUALINTERIORPOINTSTEP_H