This file is indexed.

/usr/include/vtk-7.1/vtkDualDepthPeelingPass.h is in libvtk7-dev 7.1.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkDualDepthPeelingPass.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/

/**
 * @class   vtkDualDepthPeelingPass
 * @brief   Implements the dual depth peeling algorithm.
 *
 *
 * Dual depth peeling is an augmentatation of the standard depth peeling
 * algorithm that peels two layers (front and back) for each render pass. The
 * technique is described in "Order independent transparency with dual depth
 * peeling" (February 2008) by L. Bavoil, K. Myers.
 *
 * The pass occurs in several stages:
 *
 * 1. Copy the current (opaque geometry) depth buffer into a texture.
 * 2. Initialize the min-max depth buffer from the opaque depth texture and the
 *    translucent geometry.
 * 3. Peel the nearest and farthest fragments:
 * 3a. Blend fragments that match the nearest depth of the min-max depth buffer
 *     into the front buffer.
 * 3b. Write the far depth fragments into a temporary buffer.
 * 3c. Extract the next set of min/max depth values for the next peel.
 * 3d. Blend the temporary far fragment texture (3b) into an accumulation
 *     texture.
 * 3e. Go back to 3a and repeat until the maximum number of peels is met, or
 *     the desired occlusion ratio is satisfied.
 * 4. If the occlusion ratio != 0 (i.e. we hit the maximum number of peels
 *    before finishing), alpha blend the remaining fragments in-between the
 *    near and far accumulation textures.
 * 5. Blend all accumulation buffers over the opaque color buffer to produce the
 *    final image.
*/

#ifndef vtkDualDepthPeelingPass_h
#define vtkDualDepthPeelingPass_h

#include "vtkRenderingOpenGL2Module.h" // For export macro
#include "vtkDepthPeelingPass.h"

class vtkFrameBufferObject2;
class vtkOpenGLBufferObject;
class vtkOpenGLVertexArrayObject;
class vtkShaderProgram;
class vtkTextureObject;

class VTKRENDERINGOPENGL2_EXPORT vtkDualDepthPeelingPass:
    public vtkDepthPeelingPass
{
public:
  static vtkDualDepthPeelingPass* New();
  vtkTypeMacro(vtkDualDepthPeelingPass, vtkDepthPeelingPass)
  virtual void PrintSelf(ostream &os, vtkIndent indent);

  virtual void Render(const vtkRenderState *s);
  virtual void ReleaseGraphicsResources(vtkWindow *w);

  // vtkOpenGLRenderPass virtuals:
  virtual bool ReplaceShaderValues(std::string &vertexShader,
                                   std::string &geometryShader,
                                   std::string &fragmentShader,
                                   vtkAbstractMapper *mapper,
                                   vtkProp *prop);
  virtual bool SetShaderParameters(vtkShaderProgram *program,
                                   vtkAbstractMapper *mapper, vtkProp *prop);
  virtual vtkMTimeType GetShaderStageMTime();

protected:

  // Name the textures used by this render pass. These are indexes into
  // this->Textures
  enum TextureName
  {
    BackTemp = 0, // RGBA8 back-to-front peeling buffer
    Back, // RGBA8 back-to-front accumulation buffer
    FrontA, // RGBA8 front-to-back accumulation buffer
    FrontB, // RGBA8 front-to-back accumulation buffer
    DepthA, // RG32F min-max depth buffer
    DepthB, // RG32F min-max depth buffer
    OpaqueDepth, // Stores the depth map from the opaque passes

    NumberOfTextures
  };

  // The stages of this multipass render pass:
  enum ShaderStage
  {
    InitializingDepth,
    Peeling,
    AlphaBlending,

    NumberOfPasses,
    Inactive = -1,
  };

  vtkDualDepthPeelingPass();
  ~vtkDualDepthPeelingPass();

  void SetCurrentStage(ShaderStage stage);

  /**
   * Release all FBOs and textures.
   */
  void FreeGLObjects();

  /**
   * Render the translucent pass geometry, counting number of render calls.
   */
  void RenderTranslucentPass();

  /**
   * Allocate and configure FBOs and textures.
   */
  void Initialize(const vtkRenderState *s);

  //@{
  /**
   * Initialize helpers.
   */
  void InitColorTexture(vtkTextureObject *tex, const vtkRenderState *s);
  void InitDepthTexture(vtkTextureObject *tex, const vtkRenderState *s);
  void InitOpaqueDepthTexture(vtkTextureObject *tex, const vtkRenderState *s);
  void InitFramebuffer(const vtkRenderState *s);
  //@}

  //@{
  /**
   * Fill textures with initial values, bind the framebuffer.
   */
  void Prepare();
  void InitializeOcclusionQuery();
  void CopyOpaqueDepthBuffer();
  void InitializeDepth();
  //@}

  bool PeelingDone();

  /**
   * Render the scene to produce the next set of peels.
   */
  void Peel();

  void InitializeTargets();

  void PeelRender();

  void BlendBackBuffer();
  void StartOcclusionQuery();
  void EndOcclusionQuery();

  /**
   * Swap the src/dest render targets:
   */
  void SwapTargets();

  void Finalize();

  void AlphaBlendRender();

  void BlendFinalImage();
  void DeleteOcclusionQueryId();

  const vtkRenderState *RenderState;

  vtkShaderProgram *CopyDepthProgram;
  vtkOpenGLVertexArrayObject *CopyDepthVAO;
  vtkOpenGLBufferObject *CopyDepthVBO;

  vtkShaderProgram *BackBlendProgram;
  vtkOpenGLVertexArrayObject *BackBlendVAO;
  vtkOpenGLBufferObject *BackBlendVBO;

  vtkShaderProgram *BlendProgram;
  vtkOpenGLVertexArrayObject *BlendVAO;
  vtkOpenGLBufferObject *BlendVBO;

  vtkFrameBufferObject2 *Framebuffer;
  vtkTextureObject *Textures[NumberOfTextures];

  TextureName FrontSource; // The current front source buffer
  TextureName FrontDestination; // The current front destination buffer
  TextureName DepthSource; // The current depth source buffer
  TextureName DepthDestination; // The current depth destination buffer

  ShaderStage CurrentStage;
  vtkTimeStamp CurrentStageTimeStamp;

  int CurrentPeel;
  unsigned int OcclusionQueryId;
  unsigned int WrittenPixels;
  unsigned int OcclusionThreshold;

  int RenderCount; // Debug info, counts number of geometry passes.

private:
  vtkDualDepthPeelingPass(const vtkDualDepthPeelingPass&) VTK_DELETE_FUNCTION;
  void operator=(const vtkDualDepthPeelingPass&) VTK_DELETE_FUNCTION;
};

#endif // vtkDualDepthPeelingPass_h