This file is indexed.

/usr/include/vtk-7.1/vtkParametricBohemianDome.h is in libvtk7-dev 7.1.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkParametricBohemianDome.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkParametricBohemianDome
 * @brief   Generate a Bohemian dome.
 *
 * vtkParametricBohemianDome generates a parametric Bohemian dome. The Bohemian
 * dome is a quartic surface, and is described in much better detail at
 * <a href="https://www.math.hmc.edu/math142-01/mellon/curves_and_surfaces/surfaces/bohdom.html">HMC page</a>.
 * @warning
 * I haven't set any restrictions on the A, B, or C values.
 * @par Thanks:
 * Tim Meehan
*/

#ifndef vtkParametricBohemianDome_h
#define vtkParametricBohemianDome_h

#include "vtkCommonComputationalGeometryModule.h" // For export macro
#include "vtkParametricFunction.h"

class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricBohemianDome : public vtkParametricFunction
{
public:

  vtkTypeMacro(vtkParametricBohemianDome,vtkParametricFunction);
  void PrintSelf(ostream& os, vtkIndent indent) VTK_OVERRIDE;

  //@{
  /**
   * Construct a Bohemian dome surface with the following parameters:
   */
  vtkGetMacro(A, double);
  vtkSetMacro(A, double);
  //@}

  vtkGetMacro(B, double);
  vtkSetMacro(B, double);

  vtkGetMacro(C, double);
  vtkSetMacro(C, double);

  // (MinimumU, MaximumU) = (-pi, pi),
  // (MinimumV, MaximumV) = (-pi, pi),
  // JoinU = 1, JoinV = 1,
  // TwistU = 0, TwistV = 0;
  // ClockwiseOrdering = 1,
  // DerivativesAvailable = 1,
  static vtkParametricBohemianDome *New();

  /**
   * Return the parametric dimension of the class.
   */
  int GetDimension() VTK_OVERRIDE {return 2;}

  /**
   * BohemianDome surface.

   * This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
   * as Pt. It also returns the partial derivatives Du and Dv.
   * \f$Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv)\f$ .
   * Then the normal is \f$N = D_u\vec{f} \times D_v\vec{f}\f$ .
   */
  void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) VTK_OVERRIDE;

  /**
   * Calculate a user defined scalar using one or all of uvw, Pt, Duvw.
   * This method simply returns 0.
   */
  double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) VTK_OVERRIDE;

protected:
  vtkParametricBohemianDome();
  ~vtkParametricBohemianDome() VTK_OVERRIDE;

  // Variables
  double A;
  double B;
  double C;

private:
  vtkParametricBohemianDome(const vtkParametricBohemianDome&) VTK_DELETE_FUNCTION;
  void operator=(const vtkParametricBohemianDome&) VTK_DELETE_FUNCTION;
};

#endif