This file is indexed.

/usr/include/vtk-7.1/vtkPointLoad.h is in libvtk7-dev 7.1.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkPointLoad.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkPointLoad
 * @brief   compute stress tensors given point load on semi-infinite domain
 *
 * vtkPointLoad is a source object that computes stress tensors on a volume.
 * The tensors are computed from the application of a point load on a
 * semi-infinite domain. (The analytical results are adapted from Saada - see
 * text.) It also is possible to compute effective stress scalars if desired.
 * This object serves as a specialized data generator for some of the examples
 * in the text.
 *
 * @sa
 * vtkTensorGlyph, vtkHyperStreamline
*/

#ifndef vtkPointLoad_h
#define vtkPointLoad_h

#include "vtkImagingHybridModule.h" // For export macro
#include "vtkImageAlgorithm.h"

class VTKIMAGINGHYBRID_EXPORT vtkPointLoad :  public vtkImageAlgorithm
{
public:
  vtkTypeMacro(vtkPointLoad,vtkImageAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent);

  /**
   * Construct with ModelBounds=(-1,1,-1,1,-1,1), SampleDimensions=(50,50,50),
   * and LoadValue = 1.
   */
  static vtkPointLoad *New();

  //@{
  /**
   * Set/Get value of applied load.
   */
  vtkSetMacro(LoadValue,double);
  vtkGetMacro(LoadValue,double);
  //@}

  /**
   * Specify the dimensions of the volume. A stress tensor will be computed for
   * each point in the volume.
   */
  void SetSampleDimensions(int i, int j, int k);

  //@{
  /**
   * Specify the dimensions of the volume. A stress tensor will be computed for
   * each point in the volume.
   */
  void SetSampleDimensions(int dim[3]);
  vtkGetVectorMacro(SampleDimensions,int,3);
  //@}

  //@{
  /**
   * Specify the region in space over which the tensors are computed. The point
   * load is assumed to be applied at top center of the volume.
   */
  vtkSetVector6Macro(ModelBounds,double);
  vtkGetVectorMacro(ModelBounds,double,6);
  //@}

  //@{
  /**
   * Set/Get Poisson's ratio.
   */
  vtkSetMacro(PoissonsRatio,double);
  vtkGetMacro(PoissonsRatio,double);
  //@}

  /**
   * Turn on/off computation of effective stress scalar. These methods do
   * nothing. The effective stress is always computed.
   */
  void SetComputeEffectiveStress(int) {}
  int GetComputeEffectiveStress() {return 1;};
  void ComputeEffectiveStressOn() {}
  void ComputeEffectiveStressOff() {}

protected:
  vtkPointLoad();
  ~vtkPointLoad() {}

  virtual int RequestInformation (vtkInformation *,
                                   vtkInformationVector **,
                                   vtkInformationVector *);
  virtual void ExecuteDataWithInformation(vtkDataObject *, vtkInformation *);

  double LoadValue;
  double PoissonsRatio;
  int SampleDimensions[3];
  double ModelBounds[6];

private:
  vtkPointLoad(const vtkPointLoad&) VTK_DELETE_FUNCTION;
  void operator=(const vtkPointLoad&) VTK_DELETE_FUNCTION;
};

#endif