/usr/include/vtk-7.1/vtkQuadraticEdge.h is in libvtk7-dev 7.1.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkQuadraticEdge.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkQuadraticEdge
* @brief cell represents a parabolic, isoparametric edge
*
* vtkQuadraticEdge is a concrete implementation of vtkNonLinearCell to
* represent a one-dimensional, 3-nodes, isoparametric parabolic line. The
* interpolation is the standard finite element, quadratic isoparametric
* shape function. The cell includes a mid-edge node. The ordering of the
* three points defining the cell is point ids (0,1,2) where id #2 is the
* midedge node.
*
* @sa
* vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticWedge
* vtkQuadraticQuad vtkQuadraticHexahedron vtkQuadraticPyramid
*/
#ifndef vtkQuadraticEdge_h
#define vtkQuadraticEdge_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"
class vtkLine;
class vtkDoubleArray;
class VTKCOMMONDATAMODEL_EXPORT vtkQuadraticEdge : public vtkNonLinearCell
{
public:
static vtkQuadraticEdge *New();
vtkTypeMacro(vtkQuadraticEdge,vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent) VTK_OVERRIDE;
/**
* Implement the vtkCell API. See the vtkCell API for descriptions
* of these methods.
*/
int GetCellType() VTK_OVERRIDE {return VTK_QUADRATIC_EDGE;};
int GetCellDimension() VTK_OVERRIDE {return 1;}
int GetNumberOfEdges() VTK_OVERRIDE {return 0;}
int GetNumberOfFaces() VTK_OVERRIDE {return 0;}
vtkCell *GetEdge(int) VTK_OVERRIDE {return 0;}
vtkCell *GetFace(int) VTK_OVERRIDE {return 0;}
int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) VTK_OVERRIDE;
void Contour(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) VTK_OVERRIDE;
int EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights) VTK_OVERRIDE;
void EvaluateLocation(int& subId, double pcoords[3], double x[3],
double *weights) VTK_OVERRIDE;
int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) VTK_OVERRIDE;
void Derivatives(int subId, double pcoords[3], double *values,
int dim, double *derivs) VTK_OVERRIDE;
double *GetParametricCoords() VTK_OVERRIDE;
/**
* Clip this edge using scalar value provided. Like contouring, except
* that it cuts the edge to produce linear line segments.
*/
void Clip(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *lines,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
int insideOut) VTK_OVERRIDE;
/**
* Line-edge intersection. Intersection has to occur within [0,1] parametric
* coordinates and with specified tolerance.
*/
int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
double x[3], double pcoords[3], int& subId) VTK_OVERRIDE;
/**
* Return the center of the quadratic tetra in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) VTK_OVERRIDE;
/**
* @deprecated Replaced by vtkQuadraticEdge::InterpolateFunctions as of VTK 5.2
*/
static void InterpolationFunctions(double pcoords[3], double weights[3]);
/**
* @deprecated Replaced by vtkQuadraticEdge::InterpolateDerivs as of VTK 5.2
*/
static void InterpolationDerivs(double pcoords[3], double derivs[3]);
//@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(double pcoords[3], double weights[3]) VTK_OVERRIDE
{
vtkQuadraticEdge::InterpolationFunctions(pcoords,weights);
}
void InterpolateDerivs(double pcoords[3], double derivs[3]) VTK_OVERRIDE
{
vtkQuadraticEdge::InterpolationDerivs(pcoords,derivs);
}
//@}
protected:
vtkQuadraticEdge();
~vtkQuadraticEdge() VTK_OVERRIDE;
vtkLine *Line;
vtkDoubleArray *Scalars; //used to avoid New/Delete in contouring/clipping
private:
vtkQuadraticEdge(const vtkQuadraticEdge&) VTK_DELETE_FUNCTION;
void operator=(const vtkQuadraticEdge&) VTK_DELETE_FUNCTION;
};
//----------------------------------------------------------------------------
inline int vtkQuadraticEdge::GetParametricCenter(double pcoords[3])
{
pcoords[0] = 0.5;
pcoords[1] = pcoords[2] = 0.;
return 0;
}
#endif
|