This file is indexed.

/usr/include/vowpalwabbit/learner.h is in libvw-dev 8.5.0.dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/*
Copyright (c) by respective owners including Yahoo!, Microsoft, and
individual contributors. All rights reserved.  Released under a BSD
license as described in the file LICENSE.
 */
#pragma once
// This is the interface for a learning algorithm
#include<iostream>
#include "memory.h"
#include "cb.h"
#include "cost_sensitive.h"
#include "multiclass.h"
#include "simple_label.h"
#include "parser.h"

namespace prediction_type
{
enum prediction_type_t
{ scalar,
  scalars,
  action_scores,
  action_probs,
  multiclass,
  multilabels,
  prob,
  multiclassprobs
};

const char* to_string(prediction_type_t prediction_type);
}

namespace LEARNER
{
template<class T> struct learner;
typedef learner<char> base_learner;

struct func_data
{ void* data;
  base_learner* base;
  void (*func)(void* data);
};

inline func_data tuple_dbf(void* data, base_learner* base, void (*func)(void* data))
{ func_data foo;
  foo.data = data;
  foo.base = base;
  foo.func = func;
  return foo;
}

struct learn_data
{ void* data;
  base_learner* base;
  void (*learn_f)(void* data, base_learner& base, example&);
  void (*predict_f)(void* data, base_learner& base, example&);
  void (*update_f)(void* data, base_learner& base, example&);
  void (*multipredict_f)(void* data, base_learner& base, example&, size_t count, size_t step, polyprediction*pred, bool finalize_predictions);
};

struct sensitivity_data
{ void* data;
  float (*sensitivity_f)(void* data, base_learner& base, example&);
};

struct save_load_data
{ void* data;
  base_learner* base;
  void (*save_load_f)(void*, io_buf&, bool read, bool text);
};

struct finish_example_data
{ void* data;
  base_learner* base;
  void (*finish_example_f)(vw&, void* data, example&);
};

void generic_driver(vw& all);
void generic_driver(std::vector<vw*> alls);

inline void noop_sl(void*, io_buf&, bool, bool) {}
inline void noop(void*) {}
inline float noop_sensitivity(void*, base_learner&, example&) { return 0.; }

typedef void (*tlearn)(void* d, base_learner& base, example& ec);
typedef float (*tsensitivity)(void* d, base_learner& base, example& ec);
typedef void (*tmultipredict)(void* d, base_learner& base, example& ec, size_t, size_t, polyprediction*, bool);
typedef void (*tsl)(void* d, io_buf& io, bool read, bool text);
typedef void (*tfunc)(void*d);
typedef void (*tend_example)(vw& all, void* d, example& ec);

template<class T> learner<T>& init_learner(T*, void (*)(T&, base_learner&, example&), size_t, prediction_type::prediction_type_t pred = prediction_type::scalar);
template<class T>
learner<T>& init_learner(T*, base_learner*, void(*learn)(T&, base_learner&, example&),
                         void(*predict)(T&, base_learner&, example&), size_t ws = 1);
template<class T>
learner<T>& init_learner(T*, base_learner*, void (*learn)(T&, base_learner&, example&),
                         void (*predict)(T&, base_learner&, example&), size_t ws, prediction_type::prediction_type_t);

template<class T>
struct learner
{
private:
  func_data init_fd;
  learn_data learn_fd;
  sensitivity_data sensitivity_fd;
  finish_example_data finish_example_fd;
  save_load_data save_load_fd;
  func_data end_pass_fd;
  func_data end_examples_fd;
  func_data finisher_fd;

public:
  prediction_type::prediction_type_t pred_type;
  size_t weights; //this stores the number of "weight vectors" required by the learner.
  size_t increment;

  //called once for each example.  Must work under reduction.
  inline void learn(example& ec, size_t i=0)
  { ec.ft_offset += (uint32_t)(increment*i);
    learn_fd.learn_f(learn_fd.data, *learn_fd.base, ec);
    ec.ft_offset -= (uint32_t)(increment*i);
  }
  inline void predict(example& ec, size_t i=0)
  { ec.ft_offset += (uint32_t)(increment*i);
    learn_fd.predict_f(learn_fd.data, *learn_fd.base, ec);
    ec.ft_offset -= (uint32_t)(increment*i);
  }
  inline void multipredict(example& ec, size_t lo, size_t count, polyprediction* pred, bool finalize_predictions)
  { if (learn_fd.multipredict_f == NULL)
    { ec.ft_offset += (uint32_t)(increment*lo);
      for (size_t c=0; c<count; c++)
      { learn_fd.predict_f(learn_fd.data, *learn_fd.base, ec);
        if (finalize_predictions) pred[c] = ec.pred; // TODO: this breaks for complex labels because = doesn't do deep copy!
        else                      pred[c].scalar = ec.partial_prediction;
        //pred[c].scalar = finalize_prediction ec.partial_prediction; // TODO: this breaks for complex labels because = doesn't do deep copy! // note works if ec.partial_prediction, but only if finalize_prediction is run????
        ec.ft_offset += (uint32_t)increment;
      }
      ec.ft_offset -= (uint32_t)(increment*(lo+count));
    }
    else
    { ec.ft_offset += (uint32_t)(increment*lo);
      learn_fd.multipredict_f(learn_fd.data, *learn_fd.base, ec, count, increment, pred, finalize_predictions);
      ec.ft_offset -= (uint32_t)(increment*lo);
    }
  }
  inline void set_predict(void (*u)(T& data, base_learner& base, example&)) { learn_fd.predict_f = (tlearn)u; }
  inline void set_learn(void (*u)(T&, base_learner&, example&)) { learn_fd.learn_f = (tlearn)u; }
  inline void set_multipredict(void (*u)(T&, base_learner&, example&, size_t, size_t, polyprediction*, bool)) { learn_fd.multipredict_f = (tmultipredict)u; }

  inline void update(example& ec, size_t i=0)
  { ec.ft_offset += (uint32_t)(increment*i);
    learn_fd.update_f(learn_fd.data, *learn_fd.base, ec);
    ec.ft_offset -= (uint32_t)(increment*i);
  }
  inline void set_update(void (*u)(T& data, base_learner& base, example&))
  { learn_fd.update_f = (tlearn)u; }

  //used for active learning and confidence to determine how easily predictions are changed
  inline void set_sensitivity(float (*u)(T& data, base_learner& base, example&))
  { sensitivity_fd.data = learn_fd.data;
    sensitivity_fd.sensitivity_f = (tsensitivity)u;
  }
  inline float sensitivity(example& ec, size_t i=0)
  { ec.ft_offset += (uint32_t)(increment*i);
    float ret = sensitivity_fd.sensitivity_f(sensitivity_fd.data, *learn_fd.base, ec);
    ec.ft_offset -= (uint32_t)(increment*i);
    return ret;
  }

  //called anytime saving or loading needs to happen. Autorecursive.
  inline void save_load(io_buf& io, bool read, bool text)
  { save_load_fd.save_load_f(save_load_fd.data, io, read, text);
    if (save_load_fd.base) save_load_fd.base->save_load(io, read, text);
  }
  inline void set_save_load(void (*sl)(T&, io_buf&, bool, bool))
  { save_load_fd.save_load_f = (tsl)sl;
    save_load_fd.data = learn_fd.data;
    save_load_fd.base = learn_fd.base;
  }

  //called to clean up state.  Autorecursive.
  void set_finish(void (*f)(T&))
  { finisher_fd = tuple_dbf(learn_fd.data,learn_fd.base, (tfunc)f); }
  inline void finish()
  { if (finisher_fd.data)
    {finisher_fd.func(finisher_fd.data); free(finisher_fd.data); }
    if (finisher_fd.base)
    { finisher_fd.base->finish();
      free(finisher_fd.base);
    }
  }

  void end_pass()
  { end_pass_fd.func(end_pass_fd.data);
    if (end_pass_fd.base) end_pass_fd.base->end_pass();
  }//autorecursive
  void set_end_pass(void (*f)(T&))
  {end_pass_fd = tuple_dbf(learn_fd.data, learn_fd.base, (tfunc)f);}

  //called after parsing of examples is complete.  Autorecursive.
  void end_examples()
  { end_examples_fd.func(end_examples_fd.data);
    if (end_examples_fd.base) end_examples_fd.base->end_examples();
  }
  void set_end_examples(void (*f)(T&))
  {end_examples_fd = tuple_dbf(learn_fd.data,learn_fd.base, (tfunc)f);}

  //Called at the beginning by the driver.  Explicitly not recursive.
  void init_driver() { init_fd.func(init_fd.data);}
  void set_init_driver(void (*f)(T&))
  { init_fd = tuple_dbf(learn_fd.data,learn_fd.base, (tfunc)f); }

  //called after learn example for each example.  Explicitly not recursive.
  inline void finish_example(vw& all, example& ec)
  { finish_example_fd.finish_example_f(all, finish_example_fd.data, ec);}
  void set_finish_example(void (*f)(vw& all, T&, example&))
  { finish_example_fd.data = learn_fd.data;
    finish_example_fd.finish_example_f = (tend_example)f;
  }

  friend learner<T>& init_learner<>(T*, base_learner*, void(*l)(T&, base_learner&, example&),
                                    void(*pred)(T&, base_learner&, example&), size_t);

  friend learner<T>& init_learner<>(T*, void (*learn)(T&, base_learner&, example&), size_t, prediction_type::prediction_type_t);
  friend learner<T>& init_learner<>(T*, base_learner*, void (*l)(T&, base_learner&, example&),
                                    void (*pred)(T&, base_learner&, example&), size_t, prediction_type::prediction_type_t);
};

template<class T>
learner<T>& init_learner(T* dat, void (*learn)(T&, base_learner&, example&),
                         size_t params_per_weight, prediction_type::prediction_type_t pred_type)
{ // the constructor for all learning algorithms.
  learner<T>& ret = calloc_or_throw<learner<T> >();
  ret.weights = 1;
  ret.increment = params_per_weight;
  ret.end_pass_fd.func = noop;
  ret.end_examples_fd.func = noop;
  ret.init_fd.func = noop;
  ret.save_load_fd.save_load_f = noop_sl;
  ret.finisher_fd.data = dat;
  ret.finisher_fd.func = noop;

  ret.learn_fd.data = dat;
  ret.learn_fd.learn_f = (tlearn)learn;
  ret.learn_fd.update_f = (tlearn)learn;
  ret.learn_fd.predict_f = (tlearn)learn;
  ret.learn_fd.multipredict_f = nullptr;
  ret.sensitivity_fd.sensitivity_f = (tsensitivity)noop_sensitivity;
  ret.finish_example_fd.data = dat;
  ret.finish_example_fd.finish_example_f = return_simple_example;
  ret.pred_type = pred_type;

  return ret;
}

template<class T>
learner<T>& init_learner(T* dat, base_learner* base,
                         void(*learn)(T&, base_learner&, example&),
                         void(*predict)(T&, base_learner&, example&), size_t ws)
{ return init_learner<T>(dat, base, learn, predict, ws, base->pred_type);
}

template<class T>
learner<T>& init_learner(T* dat, base_learner* base,
                         void (*learn)(T&, base_learner&, example&),
                         void (*predict)(T&, base_learner&, example&), size_t ws,
                         prediction_type::prediction_type_t pred_type)
{ //the reduction constructor, with separate learn and predict functions
  learner<T>& ret = calloc_or_throw<learner<T> >();
  ret = *(learner<T>*)base;

  ret.learn_fd.data = dat;
  ret.learn_fd.learn_f = (tlearn)learn;
  ret.learn_fd.update_f = (tlearn)learn;
  ret.learn_fd.predict_f = (tlearn)predict;
  ret.learn_fd.multipredict_f = nullptr;
  ret.learn_fd.base = base;

  ret.finisher_fd.data = dat;
  ret.finisher_fd.base = base;
  ret.finisher_fd.func = noop;
  ret.pred_type = pred_type;

  ret.weights = ws;
  ret.increment = base->increment * ret.weights;
  return ret;
}

template<class T> learner<T>&
init_multiclass_learner(T* dat, base_learner* base,
                        void (*learn)(T&, base_learner&, example&),
                        void (*predict)(T&, base_learner&, example&), parser* p, size_t ws,
                        prediction_type::prediction_type_t pred_type = prediction_type::multiclass)
{ learner<T>& l = init_learner(dat,base,learn,predict,ws,pred_type);
  l.set_finish_example(MULTICLASS::finish_example<T>);
  p->lp = MULTICLASS::mc_label;
  return l;
}

template<class T> base_learner* make_base(learner<T>& base) { return (base_learner*)&base; }
}