This file is indexed.

/usr/share/octave/packages/interval-3.1.0/@infsup/dot.m is in octave-interval 3.1.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
## Copyright 2014-2016 Oliver Heimlich
## Copyright 2017 Joel Dahne
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @documentencoding UTF-8
## @defmethod {@@infsup} dot (@var{X}, @var{Y})
## @defmethodx {@@infsup} dot (@var{X}, @var{Y}, @var{DIM})
##
## Compute the dot product of two interval vectors.
##
## If @var{X} and @var{Y} are arrays, calculate the dot products along the
## first non-singleton dimension.  If the optional argument @var{DIM} is given,
## calculate the dot products along this dimension.
##
## Conceptually this is equivalent to @code{sum (@var{X} .* @var{Y})}
## but it is computed in such a way that no intermediate round-off
## errors are introduced.
##
## Broadcasting is performed along all dimensions except if @var{X}
## and @var{Y} are both vectors and @var{DIM} is not specified, in
## which case they are aligned along dimension 1.
##
## Accuracy: The result is a tight enclosure.
##
## @example
## @group
## dot ([infsup(1), 2, 3], [infsup(2), 3, 4])
##   @result{} ans = [20]
## @end group
## @group
## dot (infsup ([realmax; realmin; realmax]), [1; -1; -1], 1)
##   @result{} ans ⊂ [-2.2251e-308, -2.225e-308]
## @end group
## @end example
## @seealso{@@infsup/plus, @@infsup/sum, @@infsup/times, @@infsup/sumabs, @@infsup/sumsq}
## @end defmethod

## Author: Oliver Heimlich
## Keywords: interval
## Created: 2014-10-26

function x = dot (x, y, dim)

  if (nargin < 2 || nargin > 3)
    print_usage ();
    return
  endif

  if (not (isa (x, "infsup")))
    x = infsup (x);
  endif
  if (not (isa (y, "infsup")))
    y = infsup (y);
  endif
  if (nargin < 3)
    if (isvector (x.inf) && isvector (y.inf))
      ## Align vectors along common dimension
      dim = 1;
      x = vec (x, dim);
      y = vec (y, dim);
    else
      ## Try to find non-singleton dimension
      xsize = size (x.inf);
      ysize = size (y.inf);
      xsize(end+1:ndims (y)) = 1;
      ysize(end+1:ndims (x)) = 1;
      dim = find (and (xsize ~= 1, ysize ~= 1), 1);
      if (isempty (dim))
        dim = 1;
      endif
    endif
  endif

  [l u] = mpfr_vector_dot_d (x.inf, y.inf, x.sup, y.sup, dim);

  l(l == 0) = -0;

  x.inf = l;
  x.sup = u;

endfunction

%!# matrix × matrix
%!assert (dot (infsup (magic (3)), magic (3)) == [89, 107, 89]);
%!assert (dot (infsup (magic (3)), magic (3), 1) == [89, 107, 89]);
%!assert (dot (infsup (magic (3)), magic (3), 2) == [101; 83; 101]);

%!# matrix × vector
%!assert (dot (infsup (magic (3)), [1, 2, 3]) == [28; 34; 28]);
%!assert (dot (infsup (magic (3)), [1, 2, 3], 1) == [15, 30, 45]);
%!assert (dot (infsup (magic (3)), [1, 2, 3], 2) == [28; 34; 28]);
%!assert (dot (infsup (magic (3)), [1; 2; 3]) == [26, 38, 26]);
%!assert (dot (infsup (magic (3)), [1; 2; 3], 1) == [26, 38, 26]);
%!assert (dot (infsup (magic (3)), [1; 2; 3], 2) == [15; 30; 45]);

%!# matrix × scalar
%!assert (dot (infsup (magic (3)), 42) == [630, 630, 630]);
%!assert (dot (infsup (magic (3)), 42, 1) == [630, 630, 630]);
%!assert (dot (infsup (magic (3)), 42, 2) == [630; 630; 630]);

%!# vector x vector
%!assert (dot (infsup([1, 2, 3]), [4, 5, 6]) == 32);
%!assert (dot (infsup([1, 2, 3]), [4, 5, 6], 1) == [4, 10, 18]);
%!assert (dot (infsup([1, 2, 3]), [4, 5, 6], 2) == 32);
%!assert (dot (infsup([1; 2; 3]), [4; 5; 6]) == 32);
%!assert (dot (infsup([1; 2; 3]), [4; 5; 6], 1) == 32);
%!assert (dot (infsup([1; 2; 3]), [4; 5; 6], 2) == [4; 10; 18]);

%!# vector × scalar
%!assert (dot (infsup ([1, 2, 3]), 42) == 252);
%!assert (dot (infsup ([1, 2, 3]), 42, 1) == [42, 84, 126]);
%!assert (dot (infsup ([1, 2, 3]), 42, 2) == 252);
%!assert (dot (infsup ([1; 2; 3]), 42) == 252);
%!assert (dot (infsup ([1; 2; 3]), 42, 1) == 252);
%!assert (dot (infsup ([1; 2; 3]), 42, 2) == [42; 84; 126]);

%!# N-dimensional arrays
%!test
%!  x = infsup (reshape (1:24, 2, 3, 4));
%!  y = infsup (2.*ones (2, 3, 4));
%!  assert (dot (x, y, 3) == infsup ([80, 96, 112; 88, 104, 120]))
%!test
%!  x = infsup (ones (2, 2, 2, 2));
%!  y = infsup (1);
%!  assert (size (dot (x, y)), [1, 2, 2, 2]);
%!  assert (size (dot (x, y, 1)), [1, 2, 2, 2]);
%!  assert (size (dot (x, y, 2)), [2, 1, 2, 2]);
%!  assert (size (dot (x, y, 3)), [2, 2, 1, 2]);
%!  assert (size (dot (x, y, 4)), [2, 2, 2]);
%!  assert (size (dot (x, y, 5)), [2, 2, 2, 2]);


%!# from the documentation string
%!assert (dot ([infsup(1), 2, 3], [infsup(2), 3, 4]) == 20);
%!assert (dot (infsup ([realmax; realmin; realmax]), [1; -1; -1], 1) == -realmin);