This file is indexed.

/usr/share/octave/packages/interval-3.1.0/@infsup/gamma.m is in octave-interval 3.1.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
## Copyright 2015-2016 Oliver Heimlich
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @documentencoding UTF-8
## @defmethod {@@infsup} gamma (@var{X})
##
## Compute the gamma function.
##
## @tex
## $$
##  {\rm gamma} (x) = \int_0^\infty t^(x-1) \exp (-t) dt
## $$
## @end tex
## @ifnottex
## @group
## @verbatim
##              ∞
##             /
## gamma (x) = | t^(x - 1) * exp (-t) dt
##             /
##            0
## @end verbatim
## @end group
## @end ifnottex
##
## Accuracy: The result is a valid enclosure.  The result is tightest for
## @var{X} >= -10.
##
## @example
## @group
## gamma (infsup (1.5))
##   @result{} ans ⊂ [0.88622, 0.88623]
## @end group
## @end example
## @seealso{@@infsup/psi, @@infsup/gammaln, @@infsup/factorial}
## @end defmethod

## Author: Oliver Heimlich
## Keywords: interval
## Created: 2015-03-01

function result = gamma (x)

  if (nargin ~= 1)
    print_usage ();
    return
  endif

  ## Positive x ================================================================

  ## https://oeis.org/A030169
  persistent x_min_inf = 1.4616321449683623;
  persistent x_min_sup = 1.4616321449683624;

  ## Both gamma (infsup (x_min_inf)) and gamma (infsup (x_min_sup)) contain
  ## the exact minimum value of gamma. Thus we can simply split the function's
  ## domain in half and assume that each is strictly monotonic.

  l = inf (size (x.inf));
  u = -l;

  ## Monotonically decreasing for x1
  x1 = intersect (x, infsup (0, x_min_sup));
  select = not (isempty (x1)) & x1.sup > 0;
  if (any (select(:)))
    x1.inf(x1.inf == 0) = 0; # fix negative zero
    l(select) = mpfr_function_d ('gamma', -inf, x1.sup(select));
    u(select) = mpfr_function_d ('gamma', +inf, x1.inf(select));
  endif

  ## Monotonically increasing for x2
  x2 = intersect (x, infsup (x_min_inf, inf));
  select = not (isempty (x2));
  if (any (select(:)))
    l(select) = mpfr_function_d ('gamma', -inf, x2.inf(select));
    u(select) = max (u(select), ...
                     mpfr_function_d ('gamma', +inf, x2.sup(select)));
  endif

  pos = infsup ();
  pos.inf = l;
  pos.sup = u;

  ## Negative x ================================================================

  x = intersect (x, infsup (-inf, 0));

  u = inf (size (x.inf));
  l = -u;

  nosingularity = floor (x.inf) + 1 == ceil (x.sup);
  if (any (nosingularity(:)))
    negative_value = nosingularity & mod (ceil (x.sup), 2) == 0;
    positive_value = nosingularity & not (negative_value);

    x.sup(x.sup == 0) = -0; # fix negative zero

    psil = psiu = zeros (size (x.inf));
    psil(nosingularity) = mpfr_function_d ('psi', 0, x.inf(nosingularity));
    psil(isnan (psil)) = -inf;
    psiu(nosingularity) = mpfr_function_d ('psi', 0, x.sup(nosingularity));
    psiu(isnan (psiu)) = inf;

    encloses_extremum = false (size (x.inf));
    encloses_extremum(nosingularity) = ...
    psil(nosingularity) <= 0 & psiu(nosingularity) >= 0;
    encloses_extremum(x.sup == x.inf + 1) = true ();

    select = encloses_extremum & negative_value & ...
             fix (x.inf) ~= x.inf & fix (x.sup) ~= x.sup;
    if (any (select(:)))
      l(select) = min (mpfr_function_d ('gamma', -inf, x.inf(select)), ...
                       mpfr_function_d ('gamma', -inf, x.sup(select)));
    endif
    select = encloses_extremum & positive_value & ...
             fix (x.inf) ~= x.inf & fix (x.sup) ~= x.sup;
    if (any (select(:)))
      u(select) = max (mpfr_function_d ('gamma', +inf, x.inf(select)), ...
                       mpfr_function_d ('gamma', +inf, x.sup(select)));
    endif

    select = not (encloses_extremum) & negative_value;
    u(select) = -inf;
    select = not (encloses_extremum) & positive_value;
    l(select) = inf;

    select = nosingularity & not (encloses_extremum);
    if (any (select(:)))
      l(select) = min (l(select), ...
                       min (mpfr_function_d ('gamma', -inf, x.inf(select)), ...
                            mpfr_function_d ('gamma', -inf, x.sup(select))));
      u(select) = max (u(select), ...
                       max (mpfr_function_d ('gamma', +inf, x.inf(select)), ...
                            mpfr_function_d ('gamma', +inf, x.sup(select))));
    endif

    select = encloses_extremum & negative_value;
    if (any (select(:)))
      u(select) = find_extremum (x.inf(select), x.sup(select));
    endif
    select = encloses_extremum & positive_value;
    if (any (select(:)))
      l(select) = find_extremum (x.inf(select), x.sup(select));
    endif
  endif

  emptyresult = (x.inf == x.sup & fix (x.inf) == x.inf & x.inf <= 0) | ...
                x.inf > 0;
  l(emptyresult) = inf;
  u(emptyresult) = -inf;

  l(l == 0) = -0;

  neg = infsup ();
  neg.inf = l;
  neg.sup = u;

  ## ===========================================================================

  result = union (pos, neg);

endfunction

function y = find_extremum (l, u)
  ## Compute the extremum's value of gamma between l and u.  l and u
  ## are negative and lie between two subsequent integral numbers.

  y = zeros (size (l)); # inaccurate, but already correct

  ## Tightest values for l >= -10
  n = floor (l);
  y(n == -1) = -3.544643611155005;
  y(n == -2) = 2.3024072583396799;
  y(n == -3) = -.8881363584012418;
  y(n == -4) = .24512753983436624;
  y(n == -5) = -.052779639587319397;
  y(n == -6) = .009324594482614849;
  y(n == -7) = -.001397396608949767;
  y(n == -8) = 1.8187844490940416e-4;
  y(n == -9) = -2.0925290446526666e-5;
  y(n == -10) = 2.1574161045228504e-6;

  ## From Euler's reflection formula it follows:
  ## gamma (-x) = pi / ( sin (pi * (x + 1)) * gamma (x + 1) )
  ##
  ## The extremum is located at -x = n + epsilon,
  ## where epsilon < 0.3 for n <= -10. Thus, we can estimate
  ## abs (pi / sin (pi * (x + 1))) >= 3.88 for n <= -10.
  ## Also it holds gamma (x + 1) = gamma (-n - epsilon + 1) <= gamma  (-n + 1).
  ##
  ## Now, altogether we can estimate: abs (gamma (-x)) >= 3.88 / gamma (-n + 1)
  ## for n <= -10

  remaining_estimates = n < -10;
  if (any (remaining_estimates(:)))
    y(remaining_estimates) = ...
    (-1) .^ (rem (n(remaining_estimates), 2) == -1) * ...
    mpfr_function_d ('rdivide', -inf, 3.88, ...
                     mpfr_function_d ('gamma', +inf, ...
                                      -n(remaining_estimates) + 1));
  endif

endfunction

%!# from the documentation string
%!assert (gamma (infsup (1.5)) == "[0x1.C5BF891B4EF6Ap-1, 0x1.C5BF891B4EF6Bp-1]");