This file is indexed.

/usr/lib/python2.7/dist-packages/tifffile.py is in python-tifffile 20170929-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
#! /usr/bin/python3
# -*- coding: utf-8 -*-
# tifffile.py
# Copyright (c) 2008-2017, Christoph Gohlke
# Copyright (c) 2008-2017, The Regents of the University of California
# Produced at the Laboratory for Fluorescence Dynamics
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright
#   notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
#   notice, this list of conditions and the following disclaimer in the
#   documentation and/or other materials provided with the distribution.
# * Neither the name of the copyright holders nor the names of any
#   contributors may be used to endorse or promote products derived
#   from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""Read image and meta data from (bio) TIFF® files. Save numpy arrays as TIFF.
Image and metadata can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, NIH,
SGI, ImageJ, MicroManager, FluoView, SEQ and GEL files.
Tifffile is not a general purpose TIFF library. Only a subset of the TIFF
specification is supported, mainly uncompressed and losslessly compressed
2**(0 to 6) bit integer, 16, 32 and 64-bit float, grayscale and RGB(A) images,
which are commonly used in bio-scientific imaging. Specifically, reading image
trees defined via SubIFDs, JPEG and CCITT compression, chroma subsampling,
or IPTC and XMP metadata are not implemented.
TIFF®, the tagged Image File Format, is a trademark and under control of
Adobe Systems Incorporated. BigTIFF allows for files greater than 4 GB.
STK, LSM, FluoView, SGI, SEQ, GEL, and OME-TIFF, are custom extensions
defined by Molecular Devices (Universal Imaging Corporation), Carl Zeiss
MicroImaging, Olympus, Silicon Graphics International, Media Cybernetics,
Molecular Dynamics, and the Open Microscopy Environment consortium
respectively.
For command line usage run C{python -m tifffile --help}
:Author:
  `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`_
:Organization:
  Laboratory for Fluorescence Dynamics, University of California, Irvine
:Version: 2017.09.29
Requirements
------------
* `CPython 3.6 64-bit <http://www.python.org>`_
* `Numpy 1.13 <http://www.numpy.org>`_
* `Matplotlib 2.0 <http://www.matplotlib.org>`_ (optional for plotting)
* `Tifffile.c 2017.01.10 <http://www.lfd.uci.edu/~gohlke/>`_
  (recommended for faster decoding of PackBits and LZW encoded strings)
Revisions
---------
2017.09.29 (tentative)
    Many backwards incompatible changes improving speed and resource usage:
    Pass 2268 tests.
    Add detail argument to __str__ function. Remove info functions.
    Fix potential issue correcting offsets of large LSM files with positions.
    Remove TiffFile iterator interface; use TiffFile.pages instead.
    Do not make tag values available as TiffPage attributes.
    Use str (not bytes) type for tag and metadata strings (WIP).
    Use documented standard tag and value names (WIP).
    Use enums for some documented TIFF tag values.
    Remove 'memmap' and 'tmpfile' options; use out='memmap' instead.
    Add option to specify output in asarray functions.
    Add option to concurrently decode image strips or tiles using threads.
    Add TiffPage.asrgb function (WIP).
    Do not apply colormap in asarray.
    Remove 'colormapped', 'rgbonly', and 'scale_mdgel' options from asarray.
    Consolidate metadata in TiffFile _metadata functions.
    Remove non-tag metadata properties from TiffPage.
    Add function to convert LSM to tiled BIN files.
    Align image data in file.
    Make TiffPage.dtype a numpy.dtype.
    Add 'ndim' and 'size' properties to TiffPage and TiffPageSeries.
    Allow imsave to write non-BigTIFF files up to ~4 GB.
    Only read one page for shaped series if possible.
    Add memmap function to create memory-mapped array stored in TIFF file.
    Add option to save empty arrays to TIFF files.
    Add option to save truncated TIFF files.
    Allow single tile images to be saved contiguously.
    Add optional movie mode for files with uniform pages.
    Lazy load pages.
    Use lightweight TiffFrame for IFDs sharing properties with key TiffPage.
    Move module constants to 'TIFF' namespace (speed up module import).
    Remove 'fastij' option from TiffFile.
    Remove 'pages' parameter from TiffFile.
    Remove TIFFfile alias.
    Deprecate Python 2.
    Require enum34 and futures packages on Python 2.7.
    Remove Record class and return all metadata as dict instead.
    Add functions to parse STK, MetaSeries, ScanImage, SVS, Pilatus metadata.
    Read tags from EXIF and GPS IFDs.
    Use pformat for tag and metadata values.
    Fix reading some UIC tags (bug fix).
    Do not modify input array in imshow (bug fix).
    Fix Python implementation of unpack_ints.
2017.05.23
    Pass 1961 tests.
    Write correct number of sample_format values (bug fix).
    Use Adobe deflate code to write ZIP compressed files.
    Add option to pass tag values as packed binary data for writing.
    Defer tag validation to attribute access.
    Use property instead of lazyattr decorator for simple expressions.
2017.03.17
    Write IFDs and tag values on word boundaries.
    Read ScanImage metadata.
    Remove is_rgb and is_indexed attributes from TiffFile.
    Create files used by doctests.
2017.01.12
    Read Zeiss SEM metadata.
    Read OME-TIFF with invalid references to external files.
    Rewrite C LZW decoder (5x faster).
    Read corrupted LSM files missing EOI code in LZW stream.
2017.01.01
    Add option to append images to existing TIFF files.
    Read files without pages.
    Read S-FEG and Helios NanoLab tags created by FEI software.
    Allow saving Color Filter Array (CFA) images.
    Add info functions returning more information about TiffFile and TiffPage.
    Add option to read specific pages only.
    Remove maxpages argument (backwards incompatible).
    Remove test_tifffile function.
2016.10.28
    Pass 1944 tests.
    Improve detection of ImageJ hyperstacks.
    Read TVIPS metadata created by EM-MENU (by Marco Oster).
    Add option to disable using OME-XML metadata.
    Allow non-integer range attributes in modulo tags (by Stuart Berg).
2016.06.21
    Do not always memmap contiguous data in page series.
2016.05.13
    Add option to specify resolution unit.
    Write grayscale images with extra samples when planarconfig is specified.
    Do not write RGB color images with 2 samples.
    Reorder TiffWriter.save keyword arguments (backwards incompatible).
2016.04.18
    Pass 1932 tests.
    TiffWriter, imread, and imsave accept open binary file streams.
2016.04.13
    Correctly handle reversed fill order in 2 and 4 bps images (bug fix).
    Implement reverse_bitorder in C.
2016.03.18
    Fix saving additional ImageJ metadata.
2016.02.22
    Pass 1920 tests.
    Write 8 bytes double tag values using offset if necessary (bug fix).
    Add option to disable writing second image description tag.
    Detect tags with incorrect counts.
    Disable color mapping for LSM.
2015.11.13
    Read LSM 6 mosaics.
    Add option to specify directory of memory-mapped files.
    Add command line options to specify vmin and vmax values for colormapping.
2015.10.06
    New helper function to apply colormaps.
    Renamed is_palette attributes to is_indexed (backwards incompatible).
    Color-mapped samples are now contiguous (backwards incompatible).
    Do not color-map ImageJ hyperstacks (backwards incompatible).
    Towards supporting Leica SCN.
2015.09.25
    Read images with reversed bit order (FillOrder is LSB2MSB).
2015.09.21
    Read RGB OME-TIFF.
    Warn about malformed OME-XML.
2015.09.16
    Detect some corrupted ImageJ metadata.
    Better axes labels for 'shaped' files.
    Do not create TiffTag for default values.
    Chroma subsampling is not supported.
    Memory-map data in TiffPageSeries if possible (optional).
2015.08.17
    Pass 1906 tests.
    Write ImageJ hyperstacks (optional).
    Read and write LZMA compressed data.
    Specify datetime when saving (optional).
    Save tiled and color-mapped images (optional).
    Ignore void bytecounts and offsets if possible.
    Ignore bogus image_depth tag created by ISS Vista software.
    Decode floating point horizontal differencing (not tiled).
    Save image data contiguously if possible.
    Only read first IFD from ImageJ files if possible.
    Read ImageJ 'raw' format (files larger than 4 GB).
    TiffPageSeries class for pages with compatible shape and data type.
    Try to read incomplete tiles.
    Open file dialog if no filename is passed on command line.
    Ignore errors when decoding OME-XML.
    Rename decoder functions (backwards incompatible).
2014.08.24
    TiffWriter class for incremental writing images.
    Simplify examples.
2014.08.19
    Add memmap function to FileHandle.
    Add function to determine if image data in TiffPage is memory-mappable.
    Do not close files if multifile_close parameter is False.
2014.08.10
    Pass 1730 tests.
    Return all extrasamples by default (backwards incompatible).
    Read data from series of pages into memory-mapped array (optional).
    Squeeze OME dimensions (backwards incompatible).
    Workaround missing EOI code in strips.
    Support image and tile depth tags (SGI extension).
    Better handling of STK/UIC tags (backwards incompatible).
    Disable color mapping for STK.
    Julian to datetime converter.
    TIFF ASCII type may be NULL separated.
    Unwrap strip offsets for LSM files greater than 4 GB.
    Correct strip byte counts in compressed LSM files.
    Skip missing files in OME series.
    Read embedded TIFF files.
2014.02.05
    Save rational numbers as type 5 (bug fix).
2013.12.20
    Keep other files in OME multi-file series closed.
    FileHandle class to abstract binary file handle.
    Disable color mapping for bad OME-TIFF produced by bio-formats.
    Read bad OME-XML produced by ImageJ when cropping.
2013.11.03
    Allow zlib compress data in imsave function (optional).
    Memory-map contiguous image data (optional).
2013.10.28
    Read MicroManager metadata and little endian ImageJ tag.
    Save extra tags in imsave function.
    Save tags in ascending order by code (bug fix).
2012.10.18
    Accept file like objects (read from OIB files).
2012.08.21
    Rename TIFFfile to TiffFile and TIFFpage to TiffPage.
    TiffSequence class for reading sequence of TIFF files.
    Read UltraQuant tags.
    Allow float numbers as resolution in imsave function.
2012.08.03
    Read MD GEL tags and NIH Image header.
2012.07.25
    Read ImageJ tags.
    ...
Notes
-----
The API is not stable yet and might change between revisions.
Tested on little-endian platforms only.
Other Python packages and modules for reading bio-scientific TIFF files:
*  `python-bioformats <https://github.com/CellProfiler/python-bioformats>`_
*  `Imread <https://github.com/luispedro/imread>`_
*  `PyLibTiff <https://github.com/pearu/pylibtiff>`_
*  `SimpleITK <http://www.simpleitk.org>`_
*  `PyLSM <https://launchpad.net/pylsm>`_
*  `PyMca.TiffIO.py <https://github.com/vasole/pymca>`_ (same as fabio.TiffIO)
*  `BioImageXD.Readers <http://www.bioimagexd.net/>`_
*  `Cellcognition.io <http://cellcognition.org/>`_
*  `pymimage <https://github.com/ardoi/pymimage>`_
Acknowledgements
----------------
*   Egor Zindy, University of Manchester, for lsm_scan_info specifics.
*   Wim Lewis for a bug fix and some LSM functions.
*   Hadrien Mary for help on reading MicroManager files.
*   Christian Kliche for help writing tiled and color-mapped files.
References
----------
1)  TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated.
    http://partners.adobe.com/public/developer/tiff/
2)  TIFF File Format FAQ. http://www.awaresystems.be/imaging/tiff/faq.html
3)  MetaMorph Stack (STK) Image File Format.
    http://support.meta.moleculardevices.com/docs/t10243.pdf
4)  Image File Format Description LSM 5/7 Release 6.0 (ZEN 2010).
    Carl Zeiss MicroImaging GmbH. BioSciences. May 10, 2011
5)  The OME-TIFF format.
    http://www.openmicroscopy.org/site/support/file-formats/ome-tiff
6)  UltraQuant(r) Version 6.0 for Windows Start-Up Guide.
    http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf
7)  Micro-Manager File Formats.
    http://www.micro-manager.org/wiki/Micro-Manager_File_Formats
8)  Tags for TIFF and Related Specifications. Digital Preservation.
    http://www.digitalpreservation.gov/formats/content/tiff_tags.shtml
9)  ScanImage BigTiff Specification - ScanImage 2016.
    http://scanimage.vidriotechnologies.com/display/SI2016/
    ScanImage+BigTiff+Specification
10) CIPA DC-008-2016: Exchangeable image file format for digital still cameras:
    Exif Version 2.31.
    http://www.cipa.jp/std/documents/e/DC-008-Translation-2016-E.pdf
Examples
--------
>>> # write and read numpy array
>>> data = numpy.random.rand(5, 301, 219)
>>> imsave('temp.tif', data)
>>> image = imread('temp.tif')
>>> numpy.testing.assert_array_equal(image, data)
>>> # iterate over pages and tags
>>> with TiffFile('temp.tif') as tif:
...     images = tif.asarray()
...     for page in tif.pages:
...         for tag in page.tags.values():
...             _ = tag.name, tag.value
...         image = page.asarray()
"""
from __future__ import division, print_function
import sys
import os
import io
import re
import glob
import math
import zlib
import time
import json
import enum
import struct
import warnings
import tempfile
import datetime
import threading
import collections
import multiprocessing
import concurrent.futures
# from fractions import Fraction  # delay import
# from xml.etree import cElementTree as etree  # delay import
import numpy
try:
    import lzma
except ImportError:
    try:
        import backports.lzma as lzma
    except ImportError:
        lzma = None
__version__ = '2017.09.29'
__docformat__ = 'restructuredtext en'
__all__ = (
    'imsave', 'imread', 'imshow', 'memmap',
    'TiffFile', 'TiffWriter', 'TiffSequence',
    # utility functions used by oiffile or czifile
    'FileHandle', 'lazyattr', 'natural_sorted', 'decode_lzw', 'stripnull',
    'create_output', 'repeat_nd', 'format_size', 'product')
def imread(files, **kwargs):
    """Return image data from TIFF file(s) as numpy array.
    Refer to the TiffFile class and member functions for documentation.
    Parameters
    ----------
    files : str, binary stream, or sequence
        File name, seekable binary stream, glob pattern, or sequence of
        file names.
    kwargs : dict
        Parameters 'multifile' and 'is_ome' are passed to the TiffFile class.
        The 'pattern' parameter is passed to the TiffSequence class.
        Other parameters are passed to the asarray functions.
        The first image series is returned if no arguments are provided.
    Examples
    --------
    >>> # get image from first page
    >>> imsave('temp.tif', numpy.random.rand(3, 4, 301, 219))
    >>> im = imread('temp.tif', key=0)
    >>> im.shape
    (4, 301, 219)
    >>> # get images from sequence of files
    >>> ims = imread(['temp.tif', 'temp.tif'])
    >>> ims.shape
    (2, 3, 4, 301, 219)
    """
    kwargs_file = parse_kwargs(kwargs, 'multifile', 'is_ome')
    kwargs_seq = parse_kwargs(kwargs, 'pattern')
    if isinstance(files, basestring) and any(i in files for i in '?*'):
        files = glob.glob(files)
    if not files:
        raise ValueError('no files found')
    if not hasattr(files, 'seek') and len(files) == 1:
        files = files[0]
    if isinstance(files, basestring) or hasattr(files, 'seek'):
        with TiffFile(files, **kwargs_file) as tif:
            return tif.asarray(**kwargs)
    else:
        with TiffSequence(files, **kwargs_seq) as imseq:
            return imseq.asarray(**kwargs)
def imsave(file, data=None, shape=None, dtype=None, bigsize=2**32-2**25,
           **kwargs):
    """Write numpy array to TIFF file.
    Refer to the TiffWriter class and member functions for documentation.
    Parameters
    ----------
    file : str or binary stream
        File name or writable binary stream, such as a open file or BytesIO.
    data : array_like
        Input image. The last dimensions are assumed to be image depth,
        height, width, and samples.
        If data is None, an empty array of the specified shape and dtype is
        saved to file.
    shape : tuple
        If data is None, shape of an empty array to save to the file.
    dtype : numpy.dtype
        If data is None, data-type of an empty array to save to the file.
    bigsize : int
        Create a BigTIFF file if the size of data in bytes is larger than
        this threshold and 'imagej' or 'truncate' are not enabled.
        By default, the threshold is 4 GB minus 32 MB reserved for metadata.
        Use the 'bigtiff' parameter to explicitly specify the type of
        file created.
    kwargs : dict
        Parameters 'append', 'byteorder', 'bigtiff', 'software', and 'imagej',
        are passed to TiffWriter().
        Other parameters are passed to TiffWriter.save().
    Returns
    -------
    If the image data are written contiguously, return offset and bytecount
    of image data in the file.
    Examples
    --------
    >>> # save a RGB image
    >>> data = numpy.random.randint(0, 255, (256, 256, 3), 'uint8')
    >>> imsave('temp.tif', data, photometric='rgb')
    >>> # save a random array and metadata, using compression
    >>> data = numpy.random.rand(2, 5, 3, 301, 219)
    >>> imsave('temp.tif', data, compress=6, metadata={'axes': 'TZCYX'})
    """
    tifargs = parse_kwargs(kwargs, 'append', 'bigtiff', 'byteorder',
                           'software', 'imagej')
    if data is None:
        size = product(shape) * numpy.dtype(dtype).itemsize
    else:
        try:
            size = data.nbytes
        except Exception:
            size = 0
    if size > bigsize and 'bigtiff' not in tifargs and not (
            tifargs.get('imagej', False) or tifargs.get('truncate', False)):
        tifargs['bigtiff'] = True
    with TiffWriter(file, **tifargs) as tif:
        return tif.save(data, shape, dtype, **kwargs)
def memmap(filename, shape=None, dtype=None, page=None, series=0, mode='r+',
           **kwargs):
    """Return memory-mapped numpy array stored in TIFF file.
    Memory-mapping requires data stored in native byte order, without tiling,
    compression, predictors, etc.
    If shape and dtype are provided, existing files will be overwritten or
    appended to depending on the 'append' parameter.
    Otherwise the image data of a specified page or series in an existing
    file will be memory-mapped. By default, the image data of the first page
    series is memory-mapped.
    Call flush() to write any changes in the array to the file.
    Raise ValueError if the image data in the file is not memory-mappable
    Parameters
    ----------
    filename : str
        Name of the TIFF file which stores the array.
    shape : tuple
        Shape of the empty array.
    dtype : numpy.dtype
        Data-type of the empty array.
    page : int
        Index of the page which image data to memory-map.
    series : int
        Index of the page series which image data to memory-map.
    mode : {'r+', 'r', 'c'}, optional
        The file open mode. Default is to open existing file for reading and
        writing ('r+').
    kwargs : dict
        Additional parameters passed to imsave() or TiffFile().
    Examples
    --------
    >>> # create an empty TIFF file and write to memory-mapped image
    >>> im = memmap('temp.tif', shape=(256, 256), dtype='float32')
    >>> im[255, 255] = 1.0
    >>> im.flush()
    >>> im.shape, im.dtype
    ((256, 256), dtype('float32'))
    >>> del im
    >>> # memory-map image data in a TIFF file
    >>> im = memmap('temp.tif', page=0)
    >>> im[255, 255]
    1.0
    """
    if shape is not None and dtype is not None:
        # create a new, empty array
        kwargs.update(data=None, shape=shape, dtype=dtype, returnoffset=True,
                      align=TIFF.ALLOCATIONGRANULARITY)
        result = imsave(filename, **kwargs)
        if result is None:
            # TODO: fail before creating file or writing data
            raise ValueError("image data is not memory-mappable")
        offset = result[0]
    else:
        # use existing file
        with TiffFile(filename, **kwargs) as tif:
            if page is not None:
                page = tif.pages[page]
                if not page.is_memmappable:
                    raise ValueError("image data is not memory-mappable")
                offset, _ = page.is_contiguous
                shape = page.shape
                dtype = page.dtype
            else:
                series = tif.series[series]
                if series.offset is None:
                    raise ValueError("image data is not memory-mappable")
                shape = series.shape
                dtype = series.dtype
                offset = series.offset
    return numpy.memmap(filename, dtype, mode, offset, shape, 'C')
class lazyattr(object):
    """Attribute whose value is computed on first access."""
    # TODO: help() doesn't work
    __slots__ = ('func',)
    def __init__(self, func):
        self.func = func
        # self.__name__ = func.__name__
        # self.__doc__ = func.__doc__
        # self.lock = threading.RLock()
    def __get__(self, instance, owner):
        # with self.lock:
        if instance is None:
            return self
        try:
            value = self.func(instance)
        except AttributeError as e:
            raise RuntimeError(e)
        if value is NotImplemented:
            return getattr(super(owner, instance), self.func.__name__)
        setattr(instance, self.func.__name__, value)
        return value
class TiffWriter(object):
    """Write numpy arrays to TIFF file.
    TiffWriter instances must be closed using the 'close' method, which is
    automatically called when using the 'with' context manager.
    TiffWriter's main purpose is saving nD numpy array's as TIFF,
    not to create any possible TIFF format. Specifically, JPEG compression,
    SubIFDs, ExifIFD, or GPSIFD tags are not supported.
    Examples
    --------
    >>> # successively append images to BigTIFF file
    >>> data = numpy.random.rand(2, 5, 3, 301, 219)
    >>> with TiffWriter('temp.tif', bigtiff=True) as tif:
    ...     for i in range(data.shape[0]):
    ...         tif.save(data[i], compress=6)
    """
    def __init__(self, file, bigtiff=False, byteorder=None,
                 software='tifffile.py', append=False, imagej=False):
        """Open a TIFF file for writing.
        An empty TIFF file is created if the file does not exist, else the
        file is overwritten with an empty empty TIFF file unless 'append'
        is true. Use bigtiff=True when creating files larger than 4 GB.
        Parameters
        ----------
        file : str, binary stream, or FileHandle
            File name or writable binary stream, such as a open file
            or BytesIO.
        bigtiff : bool
            If True, the BigTIFF format is used.
        byteorder : {'<', '>'}
            The endianness of the data in the file.
            By default, this is the system's native byte order.
        software : str
            Name of the software used to create the file.
            Saved with the first page in the file only.
            Must be 7-bit ASCII.
        append : bool
            If True and 'file' is an existing standard TIFF file, image data
            and tags are appended to the file.
            Appending data may corrupt specifically formatted TIFF files
            such as LSM, STK, ImageJ, NIH, or FluoView.
        imagej : bool
            If True, write an ImageJ hyperstack compatible file.
            This format can handle data types uint8, uint16, or float32 and
            data shapes up to 6 dimensions in TZCYXS order.
            RGB images (S=3 or S=4) must be uint8.
            ImageJ's default byte order is big endian but this implementation
            uses the system's native byte order by default.
            ImageJ does not support BigTIFF format or LZMA compression.
            The ImageJ file format is undocumented.
        """
        if append:
            # determine if file is an existing TIFF file that can be extended
            try:
                with FileHandle(file, mode='rb', size=0) as fh:
                    pos = fh.tell()
                    try:
                        with TiffFile(fh) as tif:
                            if (append != 'force' and
                                    any(getattr(tif, 'is_'+a) for a in (
                                        'lsm', 'stk', 'imagej', 'nih',
                                        'fluoview', 'micromanager'))):
                                raise ValueError("file contains metadata")
                            byteorder = tif.byteorder
                            bigtiff = tif.is_bigtiff
                            self._ifdoffset = tif.pages.next_page_offset
                            if tif.pages:
                                software = None
                    except Exception as e:
                        raise ValueError("can not append to file: %s" % str(e))
                    finally:
                        fh.seek(pos)
            except (IOError, FileNotFoundError):
                append = False
        if byteorder in (None, '='):
            byteorder = '<' if sys.byteorder == 'little' else '>'
        elif byteorder not in ('<', '>'):
            raise ValueError("invalid byteorder %s" % byteorder)
        if imagej and bigtiff:
            warnings.warn("writing incompatible BigTIFF ImageJ")
        self._byteorder = byteorder
        self._software = software
        self._imagej = bool(imagej)
        self._truncate = False
        self._metadata = None
        self._colormap = None
        self._descriptionoffset = 0
        self._descriptionlen = 0
        self._descriptionlenoffset = 0
        self._tags = None
        self._shape = None  # normalized shape of data in consecutive pages
        self._datashape = None  # shape of data in consecutive pages
        self._datadtype = None  # data type
        self._dataoffset = None  # offset to data
        self._databytecounts = None  # byte counts per plane
        self._tagoffsets = None  # strip or tile offset tag code
        if bigtiff:
            self._bigtiff = True
            self._offsetsize = 8
            self._tagsize = 20
            self._tagnoformat = 'Q'
            self._offsetformat = 'Q'
            self._valueformat = '8s'
        else:
            self._bigtiff = False
            self._offsetsize = 4
            self._tagsize = 12
            self._tagnoformat = 'H'
            self._offsetformat = 'I'
            self._valueformat = '4s'
        if append:
            self._fh = FileHandle(file, mode='r+b', size=0)
            self._fh.seek(0, 2)
        else:
            self._fh = FileHandle(file, mode='wb', size=0)
            self._fh.write({'<': b'II', '>': b'MM'}[byteorder])
            if bigtiff:
                self._fh.write(struct.pack(byteorder+'HHH', 43, 8, 0))
            else:
                self._fh.write(struct.pack(byteorder+'H', 42))
            # first IFD
            self._ifdoffset = self._fh.tell()
            self._fh.write(struct.pack(byteorder+self._offsetformat, 0))
    def save(self, data=None, shape=None, dtype=None, returnoffset=False,
             photometric=None, planarconfig=None, tile=None,
             contiguous=True, align=16, truncate=False, compress=0,
             colormap=None, description=None, datetime=None, resolution=None,
             metadata={}, extratags=()):
        """Write numpy array and tags to TIFF file.
        The data shape's last dimensions are assumed to be image depth,
        height (length), width, and samples.
        If a colormap is provided, the data's dtype must be uint8 or uint16
        and the data values are indices into the last dimension of the
        colormap.
        If shape and dtype are specified, an empty array is saved.
        This option can not be used with compression or multiple tiles.
        Image data are written in one stripe per plane by default.
        Dimensions larger than 2 to 4 (depending on photometric mode, planar
        configuration, and SGI mode) are flattened and saved as separate pages.
        The 'SampleFormat' and 'BitsPerSample' tags are derived from
        the data type.
        Parameters
        ----------
        data : numpy.ndarray or None
            Input image array.
        shape : tuple or None
            Shape of the empty array to save. Used only if data is None.
        dtype : numpy.dtype or None
            Data-type of the empty array to save. Used only if data is None.
        returnoffset : bool
            If True and the image data in the file is memory-mappable, return
            the offset and number of bytes of the image data in the file.
        photometric : {'MINISBLACK', 'MINISWHITE', 'RGB', 'PALETTE', 'CFA'}
            The color space of the image data.
            By default, this setting is inferred from the data shape and the
            value of colormap.
            For CFA images, DNG tags must be specified in extratags.
        planarconfig : {'CONTIG', 'SEPARATE'}
            Specifies if samples are stored contiguous or in separate planes.
            By default, this setting is inferred from the data shape.
            If this parameter is set, extra samples are used to store grayscale
            images.
            'CONTIG': last dimension contains samples.
            'SEPARATE': third last dimension contains samples.
        tile : tuple of int
            The shape (depth, length, width) of image tiles to write.
            If None (default), image data are written in one stripe per plane.
            The tile length and width must be a multiple of 16.
            If the tile depth is provided, the SGI ImageDepth and TileDepth
            tags are used to save volume data.
            Unless a single tile is used, tiles cannot be used to write
            contiguous files.
            Few software can read the SGI format, e.g. MeVisLab.
        contiguous : bool
            If True (default) and the data and parameters are compatible with
            previous ones, if any, the image data are stored contiguously after
            the previous one. Parameters 'photometric' and 'planarconfig'
            are ignored. Parameters 'description', datetime', and 'extratags'
            are written to the first page of a contiguous series only.
        align : int
            Byte boundary on which to align the image data in the file.
            Default 16. Use mmap.ALLOCATIONGRANULARITY for memory-mapped data.
            Following contiguous writes are not aligned.
        truncate : bool
            If True, only write the first page including shape metadata if
            possible (uncompressed, contiguous, not tiled).
            Other TIFF readers will only be able to read part of the data.
        compress : int or 'LZMA'
            Values from 0 to 9 controlling the level of zlib compression.
            If 0, data are written uncompressed (default).
            Compression cannot be used to write contiguous files.
            If 'LZMA', LZMA compression is used, which is not available on
            all platforms.
        colormap : numpy.ndarray
            RGB color values for the corresponding data value.
            Must be of shape (3, 2**(data.itemsize*8)) and dtype uint16.
        description : str
            The subject of the image. Must be 7-bit ASCII. Cannot be used with
            the ImageJ format. Saved with the first page only.
        datetime : datetime
            Date and time of image creation. If None (default), the current
            date and time is used. Saved with the first page only.
        resolution : (float, float[, str]) or ((int, int), (int, int)[, str])
            X and Y resolutions in pixels per resolution unit as float or
            rational numbers. A third, optional parameter specifies the
            resolution unit, which must be None (default for ImageJ),
            'INCH' (default), or 'CENTIMETER'.
        metadata : dict
            Additional meta data to be saved along with shape information
            in JSON or ImageJ formats in an ImageDescription tag.
            If None, do not write a second ImageDescription tag.
            Strings must be 7-bit ASCII. Saved with the first page only.
        extratags : sequence of tuples
            Additional tags as [(code, dtype, count, value, writeonce)].
            code : int
                The TIFF tag Id.
            dtype : str
                Data type of items in 'value' in Python struct format.
                One of B, s, H, I, 2I, b, h, i, 2i, f, d, Q, or q.
            count : int
                Number of data values. Not used for string or byte string
                values.
            value : sequence
                'Count' values compatible with 'dtype'.
                Byte strings must contain count values of dtype packed as
                binary data.
            writeonce : bool
                If True, the tag is written to the first page only.
        """
        # TODO: refactor this function
        fh = self._fh
        byteorder = self._byteorder
        if data is None:
            if compress:
                raise ValueError("can not save compressed empty file")
            datashape = shape
            datadtype = numpy.dtype(dtype).newbyteorder(byteorder)
            datadtypechar = datadtype.char
            data = None
        else:
            data = numpy.asarray(data, byteorder+data.dtype.char, 'C')
            if data.size == 0:
                raise ValueError("can not save empty array")
            datashape = data.shape
            datadtype = data.dtype
            datadtypechar = data.dtype.char
        returnoffset = returnoffset and datadtype.isnative
        datasize = product(datashape) * datadtype.itemsize
        # just append contiguous data if possible
        self._truncate = bool(truncate)
        if self._datashape:
            if (not contiguous
                    or self._datashape[1:] != datashape
                    or self._datadtype != datadtype
                    or (compress and self._tags)
                    or tile
                    or not numpy.array_equal(colormap, self._colormap)):
                # incompatible shape, dtype, compression mode, or colormap
                self._write_remaining_pages()
                self._write_image_description()
                self._truncate = False
                self._descriptionoffset = 0
                self._descriptionlenoffset = 0
                self._datashape = None
                self._colormap = None
                if self._imagej:
                    raise ValueError(
                        "ImageJ does not support non-contiguous data")
            else:
                # consecutive mode
                self._datashape = (self._datashape[0] + 1,) + datashape
                if not compress:
                    # write contiguous data, write ifds/tags later
                    offset = fh.tell()
                    if data is None:
                        fh.write_empty(datasize)
                    else:
                        fh.write_array(data)
                    if returnoffset:
                        return offset, datasize
                    return
        input_shape = datashape
        tagnoformat = self._tagnoformat
        valueformat = self._valueformat
        offsetformat = self._offsetformat
        offsetsize = self._offsetsize
        tagsize = self._tagsize
        MINISBLACK = TIFF.PHOTOMETRIC.MINISBLACK
        RGB = TIFF.PHOTOMETRIC.RGB
        CFA = TIFF.PHOTOMETRIC.CFA
        PALETTE = TIFF.PHOTOMETRIC.PALETTE
        CONTIG = TIFF.PLANARCONFIG.CONTIG
        SEPARATE = TIFF.PLANARCONFIG.SEPARATE
        if photometric is not None:
            photometric = enumarg(TIFF.PHOTOMETRIC, photometric)
        if planarconfig:
            planarconfig = enumarg(TIFF.PLANARCONFIG, planarconfig)
        # prepare compression
        if not compress:
            compress = False
            compresstag = 1
        elif compress == 'LZMA':
            compress = lzma.compress
            compresstag = 34925
            if self._imagej:
                raise ValueError("ImageJ can not handle LZMA compression")
        elif not 0 <= compress <= 9:
            raise ValueError("invalid compression level %s" % compress)
        elif compress:
            def compress(data, level=compress):
                return zlib.compress(data, level)
            compresstag = 8
        # prepare ImageJ format
        if self._imagej:
            if description:
                warnings.warn("not writing description to ImageJ file")
                description = None
            volume = False
            if datadtypechar not in 'BHhf':
                raise ValueError(
                    "ImageJ does not support data type '%s'" % datadtypechar)
            ijrgb = photometric == RGB if photometric else None
            if datadtypechar not in 'B':
                ijrgb = False
            ijshape = imagej_shape(datashape, ijrgb)
            if ijshape[-1] in (3, 4):
                photometric = RGB
                if datadtypechar not in 'B':
                    raise ValueError("ImageJ does not support data type '%s' "
                                     "for RGB" % datadtypechar)
            elif photometric is None:
                photometric = MINISBLACK
                planarconfig = None
            if planarconfig == SEPARATE:
                raise ValueError("ImageJ does not support planar images")
            else:
                planarconfig = CONTIG if ijrgb else None
        # verify colormap and indices
        if colormap is not None:
            if datadtypechar not in 'BH':
                raise ValueError("invalid data dtype for palette mode")
            colormap = numpy.asarray(colormap, dtype=byteorder+'H')
            if colormap.shape != (3, 2**(datadtype.itemsize * 8)):
                raise ValueError("invalid color map shape")
            self._colormap = colormap
        # verify tile shape
        if tile:
            tile = tuple(int(i) for i in tile[:3])
            volume = len(tile) == 3
            if (len(tile) < 2 or tile[-1] % 16 or tile[-2] % 16 or
                    any(i < 1 for i in tile)):
                raise ValueError("invalid tile shape")
        else:
            tile = ()
            volume = False
        # normalize data shape to 5D or 6D, depending on volume:
        #   (pages, planar_samples, [depth,] height, width, contig_samples)
        datashape = reshape_nd(datashape, 3 if photometric == RGB else 2)
        shape = datashape
        ndim = len(datashape)
        samplesperpixel = 1
        extrasamples = 0
        if volume and ndim < 3:
            volume = False
        if colormap is not None:
            photometric = PALETTE
            planarconfig = None
        if photometric is None:
            photometric = MINISBLACK
            if planarconfig == CONTIG:
                if ndim > 2 and shape[-1] in (3, 4):
                    photometric = RGB
            elif planarconfig == SEPARATE:
                if volume and ndim > 3 and shape[-4] in (3, 4):
                    photometric = RGB
                elif ndim > 2 and shape[-3] in (3, 4):
                    photometric = RGB
            elif ndim > 2 and shape[-1] in (3, 4):
                photometric = RGB
            elif self._imagej:
                photometric = MINISBLACK
            elif volume and ndim > 3 and shape[-4] in (3, 4):
                photometric = RGB
            elif ndim > 2 and shape[-3] in (3, 4):
                photometric = RGB
        if planarconfig and len(shape) <= (3 if volume else 2):
            planarconfig = None
            photometric = MINISBLACK
        if photometric == RGB:
            if len(shape) < 3:
                raise ValueError("not a RGB(A) image")
            if len(shape) < 4:
                volume = False
            if planarconfig is None:
                if shape[-1] in (3, 4):
                    planarconfig = CONTIG
                elif shape[-4 if volume else -3] in (3, 4):
                    planarconfig = SEPARATE
                elif shape[-1] > shape[-4 if volume else -3]:
                    planarconfig = SEPARATE
                else:
                    planarconfig = CONTIG
            if planarconfig == CONTIG:
                datashape = (-1, 1) + shape[(-4 if volume else -3):]
                samplesperpixel = datashape[-1]
            else:
                datashape = (-1,) + shape[(-4 if volume else -3):] + (1,)
                samplesperpixel = datashape[1]
            if samplesperpixel > 3:
                extrasamples = samplesperpixel - 3
        elif photometric == CFA:
            if len(shape) != 2:
                raise ValueError("invalid CFA image")
            volume = False
            planarconfig = None
            datashape = (-1, 1) + shape[-2:] + (1,)
            if 50706 not in (et[0] for et in extratags):
                raise ValueError("must specify DNG tags for CFA image")
        elif planarconfig and len(shape) > (3 if volume else 2):
            if planarconfig == CONTIG:
                datashape = (-1, 1) + shape[(-4 if volume else -3):]
                samplesperpixel = datashape[-1]
            else:
                datashape = (-1,) + shape[(-4 if volume else -3):] + (1,)
                samplesperpixel = datashape[1]
            extrasamples = samplesperpixel - 1
        else:
            planarconfig = None
            # remove trailing 1s
            while len(shape) > 2 and shape[-1] == 1:
                shape = shape[:-1]
            if len(shape) < 3:
                volume = False
            datashape = (-1, 1) + shape[(-3 if volume else -2):] + (1,)
        # normalize shape to 6D
        assert len(datashape) in (5, 6)
        if len(datashape) == 5:
            datashape = datashape[:2] + (1,) + datashape[2:]
        if datashape[0] == -1:
            s0 = product(input_shape) // product(datashape[1:])
            datashape = (s0,) + datashape[1:]
        shape = datashape
        if data is not None:
            data = data.reshape(shape)
        if tile and not volume:
            tile = (1, tile[-2], tile[-1])
        if photometric == PALETTE:
            if (samplesperpixel != 1 or extrasamples or
                    shape[1] != 1 or shape[-1] != 1):
                raise ValueError("invalid data shape for palette mode")
        if photometric == RGB and samplesperpixel == 2:
            raise ValueError("not a RGB image (samplesperpixel=2)")
        bytestr = bytes if sys.version[0] == '2' else (
            lambda x: bytes(x, 'ascii') if isinstance(x, str) else x)
        tags = []  # list of (code, ifdentry, ifdvalue, writeonce)
        strip_or_tile = 'Tile' if tile else 'Strip'
        tagbytecounts = TIFF.TAG_NAMES[strip_or_tile + 'ByteCounts']
        tag_offsets = TIFF.TAG_NAMES[strip_or_tile + 'Offsets']
        self._tagoffsets = tag_offsets
        def pack(fmt, *val):
            return struct.pack(byteorder+fmt, *val)
        def addtag(code, dtype, count, value, writeonce=False):
            # Compute ifdentry & ifdvalue bytes from code, dtype, count, value
            # Append (code, ifdentry, ifdvalue, writeonce) to tags list
            code = int(TIFF.TAG_NAMES.get(code, code))
            try:
                tifftype = TIFF.DATA_DTYPES[dtype]
            except KeyError:
                raise ValueError("unknown dtype %s" % dtype)
            rawcount = count
            if dtype == 's':
                # strings
                value = bytestr(value) + b'\0'
                count = rawcount = len(value)
                rawcount = value.find(b'\0\0')
                if rawcount < 0:
                    rawcount = count
                else:
                    rawcount += 1  # length of string without buffer
                value = (value,)
            elif isinstance(value, bytes):
                # packed binary data
                dtsize = struct.calcsize(dtype)
                if len(value) % dtsize:
                    raise ValueError('invalid packed binary data')
                count = len(value) // dtsize
            if len(dtype) > 1:
                count *= int(dtype[:-1])
                dtype = dtype[-1]
            ifdentry = [pack('HH', code, tifftype),
                        pack(offsetformat, rawcount)]
            ifdvalue = None
            if struct.calcsize(dtype) * count <= offsetsize:
                # value(s) can be written directly
                if isinstance(value, bytes):
                    ifdentry.append(pack(valueformat, value))
                elif count == 1:
                    if isinstance(value, (tuple, list, numpy.ndarray)):
                        value = value[0]
                    ifdentry.append(pack(valueformat, pack(dtype, value)))
                else:
                    ifdentry.append(pack(valueformat,
                                         pack(str(count)+dtype, *value)))
            else:
                # use offset to value(s)
                ifdentry.append(pack(offsetformat, 0))
                if isinstance(value, bytes):
                    ifdvalue = value
                elif isinstance(value, numpy.ndarray):
                    assert value.size == count
                    assert value.dtype.char == dtype
                    ifdvalue = value.tostring()
                elif isinstance(value, (tuple, list)):
                    ifdvalue = pack(str(count)+dtype, *value)
                else:
                    ifdvalue = pack(dtype, value)
            tags.append((code, b''.join(ifdentry), ifdvalue, writeonce))
        def rational(arg, max_denominator=1000000):
            # return nominator and denominator from float or two integers
            from fractions import Fraction  # delayed import
            try:
                f = Fraction.from_float(arg)
            except TypeError:
                f = Fraction(arg[0], arg[1])
            f = f.limit_denominator(max_denominator)
            return f.numerator, f.denominator
        if description:
            # user provided description
            addtag('ImageDescription', 's', 0, description, writeonce=True)
        # write shape and metadata to ImageDescription
        self._metadata = {} if not metadata else metadata.copy()
        if self._imagej:
            description = imagej_description(
                input_shape, shape[-1] in (3, 4), self._colormap is not None,
                **self._metadata)
        elif metadata or metadata == {}:
            if self._truncate:
                self._metadata.update(truncated=True)
            description = json_description(input_shape, **self._metadata)
        else:
            description = None
        if description:
            # add 64 bytes buffer
            # the image description might be updated later with the final shape
            description = str2bytes(description, 'ascii')
            description += b'\0'*64
            self._descriptionlen = len(description)
            addtag('ImageDescription', 's', 0, description, writeonce=True)
        if self._software:
            addtag('Software', 's', 0, self._software, writeonce=True)
            self._software = None  # only save to first page in file
        if datetime is None:
            datetime = self._now()
        addtag('DateTime', 's', 0, datetime.strftime("%Y:%m:%d %H:%M:%S"),
               writeonce=True)
        addtag('Compression', 'H', 1, compresstag)
        addtag('ImageWidth', 'I', 1, shape[-2])
        addtag('ImageLength', 'I', 1, shape[-3])
        if tile:
            addtag('TileWidth', 'I', 1, tile[-1])
            addtag('TileLength', 'I', 1, tile[-2])
            if tile[0] > 1:
                addtag('ImageDepth', 'I', 1, shape[-4])
                addtag('TileDepth', 'I', 1, tile[0])
        addtag('NewSubfileType', 'I', 1, 0)
        sampleformat = {'u': 1, 'i': 2, 'f': 3, 'c': 6}[datadtype.kind]
        addtag('SampleFormat', 'H', samplesperpixel,
               (sampleformat,) * samplesperpixel)
        addtag('PhotometricInterpretation', 'H', 1, photometric.value)
        if colormap is not None:
            addtag('ColorMap', 'H', colormap.size, colormap)
        addtag('SamplesPerPixel', 'H', 1, samplesperpixel)
        if planarconfig and samplesperpixel > 1:
            addtag('PlanarConfiguration', 'H', 1, planarconfig.value)
            addtag('BitsPerSample', 'H', samplesperpixel,
                   (datadtype.itemsize * 8,) * samplesperpixel)
        else:
            addtag('BitsPerSample', 'H', 1, datadtype.itemsize * 8)
        if extrasamples:
            if photometric == RGB and extrasamples == 1:
                addtag('ExtraSamples', 'H', 1, 1)  # associated alpha channel
            else:
                addtag('ExtraSamples', 'H', extrasamples, (0,) * extrasamples)
        if resolution:
            addtag('XResolution', '2I', 1, rational(resolution[0]))
            addtag('YResolution', '2I', 1, rational(resolution[1]))
            if len(resolution) > 2:
                unit = resolution[2]
                if unit is not None:
                    unit = unit.upper()
                unit = {None: 1, 'INCH': 2, 'CM': 3, 'CENTIMETER': 3}[unit]
            elif self._imagej:
                unit = 1
            else:
                unit = 2
            addtag('ResolutionUnit', 'H', 1, unit)
        if not tile:
            addtag('RowsPerStrip', 'I', 1, shape[-3])  # * shape[-4]
        contiguous = not compress
        if tile:
            # use one chunk per tile per plane
            tiles = ((shape[2] + tile[0] - 1) // tile[0],
                     (shape[3] + tile[1] - 1) // tile[1],
                     (shape[4] + tile[2] - 1) // tile[2])
            numtiles = product(tiles) * shape[1]
            stripbytecounts = [
                product(tile) * shape[-1] * datadtype.itemsize] * numtiles
            addtag(tagbytecounts, offsetformat, numtiles, stripbytecounts)
            addtag(tag_offsets, offsetformat, numtiles, [0] * numtiles)
            contiguous = contiguous and product(tiles) == 1
            if not contiguous:
                # allocate tile buffer
                chunk = numpy.empty(tile + (shape[-1],), dtype=datadtype)
        else:
            # use one strip per plane
            stripbytecounts = [
                product(datashape[2:]) * datadtype.itemsize] * shape[1]
            addtag(tagbytecounts, offsetformat, shape[1], stripbytecounts)
            addtag(tag_offsets, offsetformat, shape[1], [0] * shape[1])
        if data is None and not contiguous:
            raise ValueError("can not write non-contiguous empty file")
        # add extra tags from user
        for t in extratags:
            addtag(*t)
        # TODO: check TIFFReadDirectoryCheckOrder warning in files containing
        #   multiple tags of same code
        # the entries in an IFD must be sorted in ascending order by tag code
        tags = sorted(tags, key=lambda x: x[0])
        if not (self._bigtiff or self._imagej) and (
                fh.tell() + datasize > 2**31-1):
            raise ValueError("data too large for standard TIFF file")
        # if not compressed or multi-tiled, write the first ifd and then
        # all data contiguously; else, write all ifds and data interleaved
        for pageindex in range(1 if contiguous else shape[0]):
            # update pointer at ifd_offset
            pos = fh.tell()
            if pos % 2:
                # location of IFD must begin on a word boundary
                fh.write(b'\0')
                pos += 1
            fh.seek(self._ifdoffset)
            fh.write(pack(offsetformat, pos))
            fh.seek(pos)
            # write ifdentries
            fh.write(pack(tagnoformat, len(tags)))
            tag_offset = fh.tell()
            fh.write(b''.join(t[1] for t in tags))
            self._ifdoffset = fh.tell()
            fh.write(pack(offsetformat, 0))  # offset to next IFD
            # write tag values and patch offsets in ifdentries, if necessary
            for tagindex, tag in enumerate(tags):
                if tag[2]:
                    pos = fh.tell()
                    if pos % 2:
                        # tag value is expected to begin on word boundary
                        fh.write(b'\0')
                        pos += 1
                    fh.seek(tag_offset + tagindex*tagsize + offsetsize + 4)
                    fh.write(pack(offsetformat, pos))
                    fh.seek(pos)
                    if tag[0] == tag_offsets:
                        stripoffsetsoffset = pos
                    elif tag[0] == tagbytecounts:
                        strip_bytecounts_offset = pos
                    elif tag[0] == 270 and tag[2].endswith(b'\0\0\0\0'):
                        # image description buffer
                        self._descriptionoffset = pos
                        self._descriptionlenoffset = (
                            tag_offset + tagindex * tagsize + 4)
                    fh.write(tag[2])
            # write image data
            data_offset = fh.tell()
            skip = align - data_offset % align
            fh.seek(skip, 1)
            data_offset += skip
            if compress:
                stripbytecounts = []
            if contiguous:
                if data is None:
                    fh.write_empty(datasize)
                else:
                    fh.write_array(data)
            elif tile:
                for plane in data[pageindex]:
                    for tz in range(tiles[0]):
                        for ty in range(tiles[1]):
                            for tx in range(tiles[2]):
                                c0 = min(tile[0], shape[2] - tz*tile[0])
                                c1 = min(tile[1], shape[3] - ty*tile[1])
                                c2 = min(tile[2], shape[4] - tx*tile[2])
                                chunk[c0:, c1:, c2:] = 0
                                chunk[:c0, :c1, :c2] = plane[
                                    tz*tile[0]:tz*tile[0]+c0,
                                    ty*tile[1]:ty*tile[1]+c1,
                                    tx*tile[2]:tx*tile[2]+c2]
                                if compress:
                                    t = compress(chunk)
                                    stripbytecounts.append(len(t))
                                    fh.write(t)
                                else:
                                    fh.write_array(chunk)
                                    fh.flush()
            elif compress:
                for plane in data[pageindex]:
                    plane = compress(plane)
                    stripbytecounts.append(len(plane))
                    fh.write(plane)
            # update strip/tile offsets and bytecounts if necessary
            pos = fh.tell()
            for tagindex, tag in enumerate(tags):
                if tag[0] == tag_offsets:  # strip/tile offsets
                    if tag[2]:
                        fh.seek(stripoffsetsoffset)
                        strip_offset = data_offset
                        for size in stripbytecounts:
                            fh.write(pack(offsetformat, strip_offset))
                            strip_offset += size
                    else:
                        fh.seek(tag_offset + tagindex*tagsize + offsetsize + 4)
                        fh.write(pack(offsetformat, data_offset))
                elif tag[0] == tagbytecounts:  # strip/tile bytecounts
                    if compress:
                        if tag[2]:
                            fh.seek(strip_bytecounts_offset)
                            for size in stripbytecounts:
                                fh.write(pack(offsetformat, size))
                        else:
                            fh.seek(tag_offset + tagindex*tagsize +
                                    offsetsize + 4)
                            fh.write(pack(offsetformat, stripbytecounts[0]))
                    break
            fh.seek(pos)
            fh.flush()
            # remove tags that should be written only once
            if pageindex == 0:
                tags = [tag for tag in tags if not tag[-1]]
        self._shape = shape
        self._datashape = (1,) + input_shape
        self._datadtype = datadtype
        self._dataoffset = data_offset
        self._databytecounts = stripbytecounts
        if contiguous:
            # write remaining ifds/tags later
            self._tags = tags
            # return offset and size of image data
            if returnoffset:
                return data_offset, sum(stripbytecounts)
    def _write_remaining_pages(self):
        """Write outstanding IFDs and tags to file."""
        if not self._tags or self._truncate:
            return
        fh = self._fh
        byteorder = self._byteorder
        offsetformat = self._offsetformat
        offsetsize = self._offsetsize
        tagnoformat = self._tagnoformat
        tagsize = self._tagsize
        dataoffset = self._dataoffset
        pagedatasize = sum(self._databytecounts)
        pageno = self._shape[0] * self._datashape[0] - 1
        def pack(fmt, *val):
            return struct.pack(byteorder+fmt, *val)
        # construct template IFD in memory
        # need to patch offsets to next IFD and data before writing to disk
        ifd = io.BytesIO()
        ifd.write(pack(tagnoformat, len(self._tags)))
        tagoffset = ifd.tell()
        ifd.write(b''.join(t[1] for t in self._tags))
        ifdoffset = ifd.tell()
        ifd.write(pack(offsetformat, 0))  # offset to next IFD
        # tag values
        for tagindex, tag in enumerate(self._tags):
            offset2value = tagoffset + tagindex*tagsize + offsetsize + 4
            if tag[2]:
                pos = ifd.tell()
                if pos % 2:  # tag value is expected to begin on word boundary
                    ifd.write(b'\0')
                    pos += 1
                ifd.seek(offset2value)
                ifd.write(pack(offsetformat, pos + fh.tell()))
                ifd.seek(pos)
                ifd.write(tag[2])
                if tag[0] == self._tagoffsets:
                    # save strip/tile offsets for later updates
                    stripoffset2offset = offset2value
                    stripoffset2value = pos
            elif tag[0] == self._tagoffsets:
                # save strip/tile offsets for later updates
                stripoffset2offset = None
                stripoffset2value = offset2value
        # size to word boundary
        if ifd.tell() % 2:
            ifd.write(b'\0')
        # check if all IFDs fit in file
        pos = fh.tell()
        if not self._bigtiff and pos + ifd.tell() * pageno > 2**32 - 256:
            if self._imagej:
                warnings.warn("truncating ImageJ file")
                return
            raise ValueError("data too large for non-BigTIFF file")
        for _ in range(pageno):
            # update pointer at IFD offset
            pos = fh.tell()
            fh.seek(self._ifdoffset)
            fh.write(pack(offsetformat, pos))
            fh.seek(pos)
            self._ifdoffset = pos + ifdoffset
            # update strip/tile offsets in IFD
            dataoffset += pagedatasize  # offset to image data
            if stripoffset2offset is None:
                ifd.seek(stripoffset2value)
                ifd.write(pack(offsetformat, dataoffset))
            else:
                ifd.seek(stripoffset2offset)
                ifd.write(pack(offsetformat, pos + stripoffset2value))
                ifd.seek(stripoffset2value)
                stripoffset = dataoffset
                for size in self._databytecounts:
                    ifd.write(pack(offsetformat, stripoffset))
                    stripoffset += size
            # write ifd entry
            fh.write(ifd.getvalue())
        self._tags = None
        self._datadtype = None
        self._dataoffset = None
        self._databytecounts = None
        # do not reset _shape or _data_shape
    def _write_image_description(self):
        """Write meta data to ImageDescription tag."""
        if (not self._datashape or self._datashape[0] == 1 or
                self._descriptionoffset <= 0):
            return
        colormapped = self._colormap is not None
        if self._imagej:
            isrgb = self._shape[-1] in (3, 4)
            description = imagej_description(
                self._datashape, isrgb, colormapped, **self._metadata)
        else:
            description = json_description(self._datashape, **self._metadata)
        # rewrite description and its length to file
        description = description.encode('utf-8')
        description = description[:self._descriptionlen-1]
        pos = self._fh.tell()
        self._fh.seek(self._descriptionoffset)
        self._fh.write(description)
        self._fh.seek(self._descriptionlenoffset)
        self._fh.write(struct.pack(self._byteorder+self._offsetformat,
                                   len(description)+1))
        self._fh.seek(pos)
        self._descriptionoffset = 0
        self._descriptionlenoffset = 0
        self._descriptionlen = 0
    def _now(self):
        """Return current date and time."""
        return datetime.datetime.now()
    def close(self):
        """Write remaining pages and close file handle."""
        if not self._truncate:
            self._write_remaining_pages()
        self._write_image_description()
        self._fh.close()
    def __enter__(self):
        return self
    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
class TiffFile(object):
    """Read image and metadata from TIFF file.
    TiffFile instances must be closed using the 'close' method, which is
    automatically called when using the 'with' context manager.
    Attributes
    ----------
    pages : TiffPages
        Sequence of TIFF pages in file.
    series : list of TiffPageSeries
        Sequences of closely related TIFF pages. These are computed
        from OME, LSM, ImageJ, etc. metadata or based on similarity
        of page properties such as shape, dtype, compression, etc.
    byteorder : '>', '<'
        The endianness of data in the file.
        '>': big-endian (Motorola).
        '>': little-endian (Intel).
    is_flag : bool
        If True, file is of a certain format.
        Flags are: bigtiff, movie, shaped, ome, imagej, stk, lsm, fluoview,
        nih, vista, 'micromanager, metaseries, mdgel, mediacy, tvips, fei,
        sem, scn, svs, scanimage, andor, epics, pilatus.
    All attributes are read-only.
    Examples
    --------
    >>> # read image array from TIFF file
    >>> imsave('temp.tif', numpy.random.rand(5, 301, 219))
    >>> with TiffFile('temp.tif') as tif:
    ...     data = tif.asarray()
    >>> data.shape
    (5, 301, 219)
    """
    def __init__(self, arg, name=None, offset=None, size=None,
                 multifile=True, movie=None, **kwargs):
        """Initialize instance from file.
        Parameters
        ----------
        arg : str or open file
            Name of file or open file object.
            The file objects are closed in TiffFile.close().
        name : str
            Optional name of file in case 'arg' is a file handle.
        offset : int
            Optional start position of embedded file. By default, this is
            the current file position.
        size : int
            Optional size of embedded file. By default, this is the number
            of bytes from the 'offset' to the end of the file.
        multifile : bool
            If True (default), series may include pages from multiple files.
            Currently applies to OME-TIFF only.
        movie : bool
            If True, assume that later pages differ from first page only by
            data offsets and bytecounts. Significantly increases speed and
            reduces memory usage when reading movies with thousands of pages.
            Enabling this for non-movie files will result in data corruption
            or crashes. Python 3 only.
        kwargs : bool
            'is_ome': If False, disable processing of OME-XML metadata.
        """
        if 'fastij' in kwargs:
            del kwargs['fastij']
            raise DeprecationWarning("The fastij option will be removed.")
        for key, value in kwargs.items():
            if key[:3] == 'is_' and key[3:] in TIFF.FILE_FLAGS:
                if value is not None and not value:
                    setattr(self, key, bool(value))
            else:
                raise TypeError(
                    "got an unexpected keyword argument '%s'" % key)
        fh = FileHandle(arg, mode='rb', name=name, offset=offset, size=size)
        self._fh = fh
        self._multifile = bool(multifile)
        self._files = {fh.name: self}  # cache of TiffFiles
        try:
            fh.seek(0)
            try:
                byteorder = {b'II': '<', b'MM': '>'}[fh.read(2)]
            except KeyError:
                raise ValueError("invalid TIFF file")
            sys_byteorder = {'big': '>', 'little': '<'}[sys.byteorder]
            self.is_native = byteorder == sys_byteorder
            version = struct.unpack(byteorder+'H', fh.read(2))[0]
            if version == 43:
                # BigTiff
                self.is_bigtiff = True
                offsetsize, zero = struct.unpack(byteorder+'HH', fh.read(4))
                if zero or offsetsize != 8:
                    raise ValueError("invalid BigTIFF file")
                self.byteorder = byteorder
                self.offsetsize = 8
                self.offsetformat = byteorder+'Q'
                self.tagnosize = 8
                self.tagnoformat = byteorder+'Q'
                self.tagsize = 20
                self.tagformat1 = byteorder+'HH'
                self.tagformat2 = byteorder+'Q8s'
            elif version == 42:
                self.is_bigtiff = False
                self.byteorder = byteorder
                self.offsetsize = 4
                self.offsetformat = byteorder+'I'
                self.tagnosize = 2
                self.tagnoformat = byteorder+'H'
                self.tagsize = 12
                self.tagformat1 = byteorder+'HH'
                self.tagformat2 = byteorder+'I4s'
            else:
                raise ValueError("not a TIFF file")
            # file handle is at offset to offset to first page
            self.pages = TiffPages(self)
            if self.is_lsm and (self.filehandle.size >= 2**32 or
                                self.pages[0].compression != 1 or
                                self.pages[1].compression != 1):
                self._lsm_load_pages()
                self._lsm_fix_strip_offsets()
                self._lsm_fix_strip_bytecounts()
            elif movie:
                self.pages.useframes = True
        except Exception:
            fh.close()
            raise
    @property
    def filehandle(self):
        """Return file handle."""
        return self._fh
    @property
    def filename(self):
        """Return name of file handle."""
        return self._fh.name
    @lazyattr
    def fstat(self):
        """Return status of file handle as stat_result object."""
        try:
            return os.fstat(self._fh.fileno())
        except Exception:  # io.UnsupportedOperation
            return None
    def close(self):
        """Close open file handle(s)."""
        for tif in self._files.values():
            tif.filehandle.close()
        self._files = {}
    def asarray(self, key=None, series=None, out=None, maxworkers=1):
        """Return image data from multiple TIFF pages as numpy array.
        By default, the data from the first series is returned.
        Parameters
        ----------
        key : int, slice, or sequence of page indices
            Defines which pages to return as array.
        series : int or TiffPageSeries
            Defines which series of pages to return as array.
        out : numpy.ndarray, str, or file-like object; optional
            Buffer where image data will be saved.
            If numpy.ndarray, a writable array of compatible dtype and shape.
            If str or open file, the file name or file object used to
            create a memory-map to an array stored in a binary file on disk.
        maxworkers : int
            Maximum number of threads to concurrently get data from pages.
            Default is 1. If None, up to half the CPU cores are used.
            Reading data from file is limited to a single thread.
            Using multiple threads can significantly speed up this function
            if the bottleneck is decoding compressed data.
            If the bottleneck is I/O or pure Python code, using multiple
            threads might be detrimental.
        """
        if not self.pages:
            return numpy.array([])
        if key is None and series is None:
            series = 0
        if series is not None:
            try:
                series = self.series[series]
            except (KeyError, TypeError):
                pass
            pages = series.pages
        else:
            pages = self.pages
        if key is None:
            pass
        elif isinstance(key, inttypes):
            pages = [pages[key]]
        elif isinstance(key, slice):
            pages = pages[key]
        elif isinstance(key, collections.Iterable):
            pages = [pages[k] for k in key]
        else:
            raise TypeError("key must be an int, slice, or sequence")
        if not pages:
            raise ValueError("no pages selected")
        if self.is_nih:
            result = stack_pages(pages, out=out, maxworkers=maxworkers,
                                 squeeze=False)
        elif key is None and series and series.offset:
            if out == 'memmap' and pages[0].is_memmappable:
                result = self.filehandle.memmap_array(
                    series.dtype, series.shape, series.offset)
            else:
                if out is not None:
                    out = create_output(out, series.shape, series.dtype)
                self.filehandle.seek(series.offset)
                i = product(series.shape)
                result = self.filehandle.read_array(series.dtype, i, out=out)
                if not self.is_native:
                    result.byteswap(True)
        elif len(pages) == 1:
            result = pages[0].asarray(out=out)
        else:
            result = stack_pages(pages, out=out, maxworkers=maxworkers)
        if result is None:
            return
        if key is None:
            try:
                result.shape = series.shape
            except ValueError:
                try:
                    warnings.warn("failed to reshape %s to %s" % (
                        result.shape, series.shape))
                    # try series of expected shapes
                    result.shape = (-1,) + series.shape
                except ValueError:
                    # revert to generic shape
                    result.shape = (-1,) + pages[0].shape
        elif len(pages) == 1:
            result.shape = pages[0].shape
        else:
            result.shape = (-1,) + pages[0].shape
        return result
    @lazyattr
    def series(self):
        """Return related pages as TiffPageSeries.
        Side effect: after calling this function, TiffFile.pages might contain
        TiffPage and TiffFrame instances.
        """
        if not self.pages:
            return []
        useframes = self.pages.useframes
        keyframe = self.pages.keyframe
        series = []
        for name in 'ome imagej lsm fluoview nih mdgel shaped'.split():
            if getattr(self, 'is_' + name, False):
                series = getattr(self, '_%s_series' % name)()
                break
        if not series:
            self.pages.useframes = useframes
            self.pages.keyframe = keyframe
            series = self._generic_series()
        # remove empty series, e.g. in MD Gel files
        series = [s for s in series if sum(s.shape) > 0]
        for i, s in enumerate(series):
            s.index = i
        return series
    def _generic_series(self):
        """Return image series in file."""
        if self.pages.useframes:
            # movie mode
            page = self.pages[0]
            shape = page.shape
            axes = page.axes
            if len(self.pages) > 1:
                shape = (len(self.pages),) + shape
                axes = 'I' + axes
            return [TiffPageSeries(self.pages[:], shape, page.dtype, axes,
                                   stype='movie')]
        self.pages.clear(False)
        self.pages.load()
        result = []
        keys = []
        series = {}
        compressions = TIFF.DECOMPESSORS
        for page in self.pages:
            if not page.shape:
                continue
            key = page.shape + (page.axes, page.compression in compressions)
            if key in series:
                series[key].append(page)
            else:
                keys.append(key)
                series[key] = [page]
        for key in keys:
            pages = series[key]
            page = pages[0]
            shape = page.shape
            axes = page.axes
            if len(pages) > 1:
                shape = (len(pages),) + shape
                axes = 'I' + axes
            result.append(TiffPageSeries(pages, shape, page.dtype, axes,
                                         stype='Generic'))
        return result
    def _shaped_series(self):
        """Return image series in "shaped" file."""
        pages = self.pages
        pages.useframes = True
        lenpages = len(pages)
        def append_series(series, pages, axes, shape, reshape, name):
            page = pages[0]
            if not axes:
                shape = page.shape
                axes = page.axes
                if len(pages) > 1:
                    shape = (len(pages),) + shape
                    axes = 'Q' + axes
            size = product(shape)
            resize = product(reshape)
            if page.is_contiguous and resize > size and resize % size == 0:
                # truncated file
                axes = 'Q' + axes
                shape = (resize // size,) + shape
            try:
                axes = reshape_axes(axes, shape, reshape)
                shape = reshape
            except ValueError as e:
                warnings.warn(str(e))
            series.append(TiffPageSeries(pages, shape, page.dtype, axes,
                                         name=name, stype='Shaped'))
        keyframe = axes = shape = reshape = name = None
        series = []
        index = 0
        while True:
            if index >= lenpages:
                break
            # new keyframe; start of new series
            pages.keyframe = index
            keyframe = pages[index]
            if not keyframe.is_shaped:
                warnings.warn("invalid shape metadata or corrupted file")
                return
            # read metadata
            axes = None
            shape = None
            metadata = json_description_metadata(keyframe.is_shaped)
            name = metadata.get('name', '')
            reshape = metadata['shape']
            truncated = metadata.get('truncated', False)
            if 'axes' in metadata:
                axes = metadata['axes']
                if len(axes) == len(reshape):
                    shape = reshape
                else:
                    axes = ''
                    warnings.warn("axes do not match shape")
            # skip pages if possible
            spages = [keyframe]
            size = product(reshape)
            npages, mod = divmod(size, product(keyframe.shape))
            if mod:
                warnings.warn("series shape not matching page shape")
                return
            if 1 < npages <= lenpages - index:
                size *= keyframe._dtype.itemsize
                if truncated:
                    npages = 1
                elif not (keyframe.is_final and
                          keyframe.offset + size < pages[index+1].offset):
                    # need to read all pages for series
                    for j in range(index+1, index+npages):
                        page = pages[j]
                        page.keyframe = keyframe
                        spages.append(page)
            append_series(series, spages, axes, shape, reshape, name)
            index += npages
        return series
    def _imagej_series(self):
        """Return image series in ImageJ file."""
        # ImageJ's dimension order is always TZCYXS
        # TODO: fix loading of color, composite or palette images
        self.pages.useframes = True
        self.pages.keyframe = 0
        ij = self.imagej_metadata
        pages = self.pages
        page = pages[0]
        def is_hyperstack():
            # ImageJ hyperstack store all image metadata in the first page and
            # image data is stored contiguously before the second page, if any.
            if not page.is_final:
                return False
            images = ij.get('images', 0)
            if images <= 1:
                return False
            offset, count = page.is_contiguous
            if (count != product(page.shape) * page.bitspersample // 8
                    or offset + count*images > self.filehandle.size):
                raise ValueError()
            # check that next page is stored after data
            if len(pages) > 1 and offset + count*images > pages[1].offset:
                return False
            return True
        try:
            hyperstack = is_hyperstack()
        except ValueError:
            warnings.warn("invalid ImageJ metadata or corrupted file")
            return
        if hyperstack:
            # no need to read other pages
            pages = [page]
        else:
            self.pages.load()
        shape = []
        axes = []
        if 'frames' in ij:
            shape.append(ij['frames'])
            axes.append('T')
        if 'slices' in ij:
            shape.append(ij['slices'])
            axes.append('Z')
        if 'channels' in ij and not (page.photometric == 2 and not
                                     ij.get('hyperstack', False)):
            shape.append(ij['channels'])
            axes.append('C')
        remain = ij.get('images', len(pages))//(product(shape) if shape else 1)
        if remain > 1:
            shape.append(remain)
            axes.append('I')
        if page.axes[0] == 'I':
            # contiguous multiple images
            shape.extend(page.shape[1:])
            axes.extend(page.axes[1:])
        elif page.axes[:2] == 'SI':
            # color-mapped contiguous multiple images
            shape = page.shape[0:1] + tuple(shape) + page.shape[2:]
            axes = list(page.axes[0]) + axes + list(page.axes[2:])
        else:
            shape.extend(page.shape)
            axes.extend(page.axes)
        return [TiffPageSeries(pages, shape, page.dtype, axes, stype='ImageJ')]
    def _fluoview_series(self):
        """Return image series in FluoView file."""
        self.pages.useframes = True
        self.pages.keyframe = 0
        self.pages.load()
        mm = self.fluoview_metadata
        mmhd = list(reversed(mm['Dimensions']))
        axes = ''.join(TIFF.MM_DIMENSIONS.get(i[0].upper(), 'Q')
                       for i in mmhd if i[1] > 1)
        shape = tuple(int(i[1]) for i in mmhd if i[1] > 1)
        return [TiffPageSeries(self.pages, shape, self.pages[0].dtype, axes,
                               name=mm['ImageName'], stype='FluoView')]
    def _mdgel_series(self):
        """Return image series in MD Gel file."""
        # only a single page, scaled according to metadata in second page
        self.pages.useframes = False
        self.pages.keyframe = 0
        self.pages.load()
        md = self.mdgel_metadata
        if md['FileTag'] in (2, 128):
            dtype = numpy.dtype('float32')
            scale = md['ScalePixel']
            scale = scale[0] / scale[1]  # rational
            if md['FileTag'] == 2:
                # squary root data format
                def transform(a):
                    return a.astype('float32')**2 * scale
            else:
                def transform(a):
                    return a.astype('float32') * scale
        else:
            transform = None
        page = self.pages[0]
        return [TiffPageSeries([page], page.shape, dtype, page.axes,
                               transform=transform, stype='MDGel')]
    def _nih_series(self):
        """Return image series in NIH file."""
        self.pages.useframes = True
        self.pages.keyframe = 0
        self.pages.load()
        page0 = self.pages[0]
        if len(self.pages) == 1:
            shape = page0.shape
            axes = page0.axes
        else:
            shape = (len(self.pages),) + page0.shape
            axes = 'I' + page0.axes
        return [
            TiffPageSeries(self.pages, shape, page0.dtype, axes, stype='NIH')]
    def _ome_series(self):
        """Return image series in OME-TIFF file(s)."""
        from xml.etree import cElementTree as etree  # delayed import
        omexml = self.pages[0].description
        try:
            root = etree.fromstring(omexml)
        except etree.ParseError as e:
            # TODO: test badly encoded ome-xml
            warnings.warn("ome-xml: %s" % e)
            try:
                # might work on Python 2
                omexml = omexml.decode('utf-8', 'ignore').encode('utf-8')
                root = etree.fromstring(omexml)
            except Exception:
                return
        self.pages.useframes = True
        self.pages.keyframe = 0
        self.pages.load()
        uuid = root.attrib.get('UUID', None)
        self._files = {uuid: self}
        dirname = self._fh.dirname
        modulo = {}
        series = []
        for element in root:
            if element.tag.endswith('BinaryOnly'):
                warnings.warn("ome-xml: not an ome-tiff master file")
                break
            if element.tag.endswith('StructuredAnnotations'):
                for annot in element:
                    if not annot.attrib.get('Namespace',
                                            '').endswith('modulo'):
                        continue
                    for value in annot:
                        for modul in value:
                            for along in modul:
                                if not along.tag[:-1].endswith('Along'):
                                    continue
                                axis = along.tag[-1]
                                newaxis = along.attrib.get('Type', 'other')
                                newaxis = TIFF.AXES_LABELS[newaxis]
                                if 'Start' in along.attrib:
                                    step = float(along.attrib.get('Step', 1))
                                    start = float(along.attrib['Start'])
                                    stop = float(along.attrib['End']) + step
                                    labels = numpy.arange(start, stop, step)
                                else:
                                    labels = [label.text for label in along
                                              if label.tag.endswith('Label')]
                                modulo[axis] = (newaxis, labels)
            if not element.tag.endswith('Image'):
                continue
            attr = element.attrib
            name = attr.get('Name', None)
            for pixels in element:
                if not pixels.tag.endswith('Pixels'):
                    continue
                attr = pixels.attrib
                dtype = attr.get('PixelType', None)
                axes = ''.join(reversed(attr['DimensionOrder']))
                shape = list(int(attr['Size'+ax]) for ax in axes)
                size = product(shape[:-2])
                ifds = None
                spp = 1  # samples per pixel
                for data in pixels:
                    if data.tag.endswith('Channel'):
                        attr = data.attrib
                        if ifds is None:
                            spp = int(attr.get('SamplesPerPixel', spp))
                            ifds = [None] * (size // spp)
                        elif int(attr.get('SamplesPerPixel', 1)) != spp:
                            raise ValueError(
                                "Can't handle differing SamplesPerPixel")
                        continue
                    if ifds is None:
                        ifds = [None] * (size // spp)
                    if not data.tag.endswith('TiffData'):
                        continue
                    attr = data.attrib
                    ifd = int(attr.get('IFD', 0))
                    num = int(attr.get('NumPlanes', 1 if 'IFD' in attr else 0))
                    num = int(attr.get('PlaneCount', num))
                    idx = [int(attr.get('First'+ax, 0)) for ax in axes[:-2]]
                    try:
                        idx = numpy.ravel_multi_index(idx, shape[:-2])
                    except ValueError:
                        # ImageJ produces invalid ome-xml when cropping
                        warnings.warn("ome-xml: invalid TiffData index")
                        continue
                    for uuid in data:
                        if not uuid.tag.endswith('UUID'):
                            continue
                        if uuid.text not in self._files:
                            if not self._multifile:
                                # abort reading multifile OME series
                                # and fall back to generic series
                                return []
                            fname = uuid.attrib['FileName']
                            try:
                                tif = TiffFile(os.path.join(dirname, fname))
                                tif.pages.useframes = True
                                tif.pages.keyframe = 0
                                tif.pages.load()
                            except (IOError, FileNotFoundError, ValueError):
                                warnings.warn(
                                    "ome-xml: failed to read '%s'" % fname)
                                break
                            self._files[uuid.text] = tif
                            tif.close()
                        pages = self._files[uuid.text].pages
                        try:
                            for i in range(num if num else len(pages)):
                                ifds[idx + i] = pages[ifd + i]
                        except IndexError:
                            warnings.warn("ome-xml: index out of range")
                        # only process first uuid
                        break
                    else:
                        pages = self.pages
                        try:
                            for i in range(num if num else len(pages)):
                                ifds[idx + i] = pages[ifd + i]
                        except IndexError:
                            warnings.warn("ome-xml: index out of range")
                if all(i is None for i in ifds):
                    # skip images without data
                    continue
                # set a keyframe on all ifds
                keyframe = None
                for i in ifds:
                    # try find a TiffPage
                    if i and i == i.keyframe:
                        keyframe = i
                        break
                if not keyframe:
                    # reload a TiffPage from file
                    for i, keyframe in enumerate(ifds):
                        if keyframe:
                            keyframe.parent.pages.keyframe = keyframe.index
                            keyframe = keyframe.parent.pages[keyframe.index]
                            ifds[i] = keyframe
                            break
                for i in ifds:
                    if i is not None:
                        i.keyframe = keyframe
                dtype = keyframe.dtype
                series.append(
                    TiffPageSeries(ifds, shape, dtype, axes, parent=self,
                                   name=name, stype='OME'))
        for serie in series:
            shape = list(serie.shape)
            for axis, (newaxis, labels) in modulo.items():
                i = serie.axes.index(axis)
                size = len(labels)
                if shape[i] == size:
                    serie.axes = serie.axes.replace(axis, newaxis, 1)
                else:
                    shape[i] //= size
                    shape.insert(i+1, size)
                    serie.axes = serie.axes.replace(axis, axis+newaxis, 1)
            serie.shape = tuple(shape)
        # squeeze dimensions
        for serie in series:
            serie.shape, serie.axes = squeeze_axes(serie.shape, serie.axes)
        return series
    def _lsm_series(self):
        """Return main image series in LSM file. Skip thumbnails."""
        lsmi = self.lsm_metadata
        axes = TIFF.CZ_LSMINFO_SCANTYPE[lsmi['ScanType']]
        if self.pages[0].photometric == 2:  # RGB; more than one channel
            axes = axes.replace('C', '').replace('XY', 'XYC')
        if lsmi.get('DimensionP', 0) > 1:
            axes += 'P'
        if lsmi.get('DimensionM', 0) > 1:
            axes += 'M'
        axes = axes[::-1]
        shape = tuple(int(lsmi[TIFF.CZ_LSMINFO_DIMENSIONS[i]]) for i in axes)
        name = lsmi.get('Name', '')
        self.pages.keyframe = 0
        pages = self.pages[::2]
        dtype = pages[0].dtype
        series = [TiffPageSeries(pages, shape, dtype, axes, name=name,
                                 stype='LSM')]
        if self.pages[1].is_reduced:
            self.pages.keyframe = 1
            pages = self.pages[1::2]
            dtype = pages[0].dtype
            cp, i = 1, 0
            while cp < len(pages) and i < len(shape)-2:
                cp *= shape[i]
                i += 1
            shape = shape[:i] + pages[0].shape
            axes = axes[:i] + 'CYX'
            series.append(TiffPageSeries(pages, shape, dtype, axes, name=name,
                                         stype='LSMreduced'))
        return series
    def _lsm_load_pages(self):
        """Load all pages from LSM file."""
        self.pages.cache = True
        self.pages.useframes = True
        # second series: thumbnails
        self.pages.keyframe = 1
        keyframe = self.pages[1]
        for page in self.pages[1::2]:
            page.keyframe = keyframe
        # first series: data
        self.pages.keyframe = 0
        keyframe = self.pages[0]
        for page in self.pages[::2]:
            page.keyframe = keyframe
    def _lsm_fix_strip_offsets(self):
        """Unwrap strip offsets for LSM files greater than 4 GB.
        Each series and position require separate unwrapping (undocumented).
        """
        if self.filehandle.size < 2**32:
            return
        pages = self.pages
        npages = len(pages)
        series = self.series[0]
        axes = series.axes
        # find positions
        positions = 1
        for i in 0, 1:
            if series.axes[i] in 'PM':
                positions *= series.shape[i]
        # make time axis first
        if positions > 1:
            ntimes = 0
            for i in 1, 2:
                if axes[i] == 'T':
                    ntimes = series.shape[i]
                    break
            if ntimes:
                div, mod = divmod(npages, 2*positions*ntimes)
                assert mod == 0
                shape = (positions, ntimes, div, 2)
                indices = numpy.arange(product(shape)).reshape(shape)
                indices = numpy.moveaxis(indices, 1, 0)
        else:
            indices = numpy.arange(npages).reshape(-1, 2)
        # images of reduced page might be stored first
        if pages[0].dataoffsets[0] > pages[1].dataoffsets[0]:
            indices = indices[..., ::-1]
        # unwrap offsets
        wrap = 0
        previousoffset = 0
        for i in indices.flat:
            page = pages[i]
            dataoffsets = []
            for currentoffset in page.dataoffsets:
                if currentoffset < previousoffset:
                    wrap += 2**32
                dataoffsets.append(currentoffset + wrap)
                previousoffset = currentoffset
            page.dataoffsets = tuple(dataoffsets)
    def _lsm_fix_strip_bytecounts(self):
        """Set databytecounts to size of compressed data.
        The StripByteCounts tag in LSM files contains the number of bytes
        for the uncompressed data.
        """
        pages = self.pages
        if pages[0].compression == 1:
            return
        # sort pages by first strip offset
        pages = sorted(pages, key=lambda p: p.dataoffsets[0])
        npages = len(pages) - 1
        for i, page in enumerate(pages):
            if page.index % 2:
                continue
            offsets = page.dataoffsets
            bytecounts = page.databytecounts
            if i < npages:
                lastoffset = pages[i+1].dataoffsets[0]
            else:
                # LZW compressed strips might be longer than uncompressed
                lastoffset = min(offsets[-1] + 2*bytecounts[-1], self._fh.size)
            offsets = offsets + (lastoffset,)
            page.databytecounts = tuple(offsets[j+1] - offsets[j]
                                        for j in range(len(bytecounts)))
    def __getattr__(self, name):
        """Return 'is_flag' attributes from first page."""
        if name[3:] in TIFF.FILE_FLAGS:
            if not self.pages:
                return False
            value = bool(getattr(self.pages[0], name))
            setattr(self, name, value)
            return value
        raise AttributeError("'%s' object has no attribute '%s'" %
                             (self.__class__.__name__, name))
    def __enter__(self):
        return self
    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
    def __str__(self, detail=0):
        """Return string containing information about file.
        The detail parameter specifies the level of detail returned:
        0: file only.
        1: all series, first page of series and its tags.
        2: large tag values and file metadata.
        3: all pages.
        """
        info = [
            "TiffFile '%s'" % snipstr(self._fh.name, 32),
            format_size(self._fh.size),
            {'<': 'LittleEndian', '>': 'BigEndian'}[self.byteorder]]
        if self.is_bigtiff:
            info.append('BigTiff')
        info.append('|'.join(f.upper() for f in self.flags))
        if len(self.pages) > 1:
            info.append('%i Pages' % len(self.pages))
        if len(self.series) > 1:
            info.append('%i Series' % len(self.series))
        if len(self._files) > 1:
            info.append('%i Files' % (len(self._files)))
        info = '  '.join(info)
        if detail <= 0:
            return info
        info = [info]
        info.append('\n'.join(str(s) for s in self.series))
        if detail >= 3:
            info.extend((TiffPage.__str__(p, detail=detail)
                         for p in self.pages
                         if p is not None))
        else:
            info.extend((TiffPage.__str__(s.pages[0], detail=detail)
                         for s in self.series
                         if s.pages[0] is not None))
        if detail >= 2:
            for name in sorted(self.flags):
                if hasattr(self, name + '_metadata'):
                    m = getattr(self, name + '_metadata')
                    if m:
                        info.append(
                            "%s_METADATA\n%s" % (name.upper(), pformat(m)))
        return '\n\n'.join(info).replace('\n\n\n', '\n\n')
    @lazyattr
    def flags(self):
        """Return set of file flags."""
        return set(name.lower() for name in sorted(TIFF.FILE_FLAGS)
                   if getattr(self, 'is_' + name))
    @lazyattr
    def is_mdgel(self):
        """File has MD Gel format."""
        try:
            return self.pages[0].is_mdgel or self.pages[1].is_mdgel
        except IndexError:
            return False
    @property
    def is_movie(self):
        """Return if file is a movie."""
        return self.pages.useframes
    @lazyattr
    def shaped_metadata(self):
        """Return Tifffile metadata from JSON descriptions as dicts."""
        if not self.is_shaped:
            return
        return tuple(json_description_metadata(s.pages[0].is_shaped)
                     for s in self.series if s.stype.lower() == 'shaped')
    @lazyattr
    def ome_metadata(self):
        """Return OME XML as dict."""
        if not self.is_ome:
            return
        return xml2dict(self.pages[0].description)
    @lazyattr
    def lsm_metadata(self):
        """Return LSM metadata from CZ_LSMINFO tag as dict."""
        if not self.is_lsm:
            return
        return self.pages[0].tags['CZ_LSMINFO'].value
    @lazyattr
    def stk_metadata(self):
        """Return STK metadata from UIC tags as dict."""
        if not self.is_stk:
            return
        page = self.pages[0]
        tags = page.tags
        result = {}
        result['NumberPlanes'] = tags['UIC2tag'].count
        if page.description:
            result['PlaneDescriptions'] = page.description.split('\0')
            # result['plane_descriptions'] = stk_description_metadata(
            #    page.image_description)
        if 'UIC1tag' in tags:
            result.update(tags['UIC1tag'].value)
        if 'UIC3tag' in tags:
            result.update(tags['UIC3tag'].value)  # wavelengths
        if 'UIC4tag' in tags:
            result.update(tags['UIC4tag'].value)  # override uic1 tags
        uic2tag = tags['UIC2tag'].value
        result['ZDistance'] = uic2tag['ZDistance']
        result['TimeCreated'] = uic2tag['TimeCreated']
        result['TimeModified'] = uic2tag['TimeModified']
        try:
            result['DatetimeCreated'] = numpy.array(
                [julian_datetime(*dt) for dt in
                 zip(uic2tag['DateCreated'], uic2tag['TimeCreated'])],
                dtype='datetime64[ns]')
            result['DatetimeModified'] = numpy.array(
                [julian_datetime(*dt) for dt in
                 zip(uic2tag['DateModified'], uic2tag['TimeModified'])],
                dtype='datetime64[ns]')
        except ValueError as e:
            warnings.warn("stk_metadata: %s" % e)
        return result
    @lazyattr
    def imagej_metadata(self):
        """Return consolidated ImageJ metadata as dict."""
        if not self.is_imagej:
            return
        page = self.pages[0]
        result = imagej_description_metadata(page.is_imagej)
        if 'IJMetadata' in page.tags:
            try:
                result.update(page.tags['IJMetadata'].value)
            except Exception:
                pass
        return result
    @lazyattr
    def fluoview_metadata(self):
        """Return consolidated FluoView metadata as dict."""
        if not self.is_fluoview:
            return
        result = {}
        page = self.pages[0]
        result.update(page.tags['MM_Header'].value)
        # TODO: read stamps from all pages
        result['Stamp'] = page.tags['MM_Stamp'].value
        # skip parsing image description; not reliable
        # try:
        #     t = fluoview_description_metadata(page.image_description)
        #     if t is not None:
        #         result['ImageDescription'] = t
        # except Exception as e:
        #     warnings.warn(
        #         "failed to read FluoView image description: %s" % e)
        return result
    @lazyattr
    def nih_metadata(self):
        """Return NIH Image metadata from NIHImageHeader tag as dict."""
        if not self.is_nih:
            return
        return self.pages[0].tags['NIHImageHeader'].value
    @lazyattr
    def fei_metadata(self):
        """Return FEI metadata from SFEG or HELIOS tags as dict."""
        if not self.is_fei:
            return
        tags = self.pages[0].tags
        if 'FEI_SFEG' in tags:
            return tags['FEI_SFEG'].value
        if 'FEI_HELIOS' in tags:
            return tags['FEI_HELIOS'].value
    @lazyattr
    def sem_metadata(self):
        """Return SEM metadata from CZ_SEM tag as dict."""
        if not self.is_sem:
            return
        return self.pages[0].tags['CZ_SEM'].value
    @lazyattr
    def mdgel_metadata(self):
        """Return consolidated metadata from MD GEL tags as dict."""
        for page in self.pages[:2]:
            if 'MDFileTag' in page.tags:
                tags = page.tags
                break
        else:
            return
        result = {}
        for code in range(33445, 33453):
            name = TIFF.TAGS[code]
            if name not in tags:
                continue
            result[name[2:]] = tags[name].value
        return result
    @lazyattr
    def andor_metadata(self):
        """Return Andor tags as dict."""
        return self.pages[0].andor_tags
    @lazyattr
    def epics_metadata(self):
        """Return EPICS areaDetector tags as dict."""
        return self.pages[0].epics_tags
    @lazyattr
    def tvips_metadata(self):
        """Return TVIPS tag as dict."""
        if not self.is_tvips:
            return
        return self.pages[0].tags['TVIPS'].value
    @lazyattr
    def metaseries_metadata(self):
        """Return MetaSeries metadata from image description as dict."""
        if not self.is_metaseries:
            return
        return metaseries_description_metadata(self.pages[0].description)
    @lazyattr
    def pilatus_metadata(self):
        """Return Pilatus metadata from image description as dict."""
        if not self.is_pilatus:
            return
        return pilatus_description_metadata(self.pages[0].description)
    @lazyattr
    def micromanager_metadata(self):
        """Return consolidated MicroManager metadata as dict."""
        if not self.is_micromanager:
            return
        # from file header
        result = read_micromanager_metadata(self._fh)
        # from tag
        result.update(self.pages[0].tags['MicroManagerMetadata'].value)
        return result
    @lazyattr
    def scanimage_metadata(self):
        """Return ScanImage non-varying frame and ROI metadata as dict."""
        if not self.is_scanimage:
            return
        result = {}
        try:
            framedata, roidata = read_scanimage_metadata(self._fh)
            result['FrameData'] = framedata
            result.update(roidata)
        except ValueError:
            pass
        # TODO: scanimage_artist_metadata
        try:
            result['Description'] = scanimage_description_metadata(
                self.pages[0].description)
        except Exception as e:
            warnings.warn("scanimage_description_metadata failed: %s" % e)
        return result
class TiffPages(object):
    """Sequence of TIFF image file directories."""
    def __init__(self, parent):
        """Initialize instance from file. Read first TiffPage from file.
        The file position must be at an offset to an offset to a TiffPage.
        """
        self.parent = parent
        self.pages = []  # cache of TiffPages, TiffFrames, or their offsets
        self.complete = False  # True if offsets to all pages were read
        self._tiffpage = TiffPage  # class for reading tiff pages
        self._keyframe = None
        self._cache = True
        # read offset to first page
        fh = parent.filehandle
        self._nextpageoffset = fh.tell()
        offset = struct.unpack(parent.offsetformat,
                               fh.read(parent.offsetsize))[0]
        if offset == 0:
            # warnings.warn("file contains no pages")
            self.complete = True
            return
        if offset >= fh.size:
            warnings.warn("invalid page offset (%i)" % offset)
            self.complete = True
            return
        # always read and cache first page
        fh.seek(offset)
        page = TiffPage(parent, index=0)
        self.pages.append(page)
        self._keyframe = page
    @property
    def cache(self):
        """Return if pages/frames are currenly being cached."""
        return self._cache
    @cache.setter
    def cache(self, value):
        """Enable or disable caching of pages/frames. Clear cache if False."""
        value = bool(value)
        if self._cache and not value:
            self.clear()
        self._cache = value
    @property
    def useframes(self):
        """Return if currently using TiffFrame (True) or TiffPage (False)."""
        return self._tiffpage == TiffFrame and TiffFrame is not TiffPage
    @useframes.setter
    def useframes(self, value):
        """Set to use TiffFrame (True) or TiffPage (False)."""
        self._tiffpage = TiffFrame if value else TiffPage
    @property
    def keyframe(self):
        """Return index of current keyframe."""
        return self._keyframe.index
    @keyframe.setter
    def keyframe(self, index):
        """Set current keyframe. Load TiffPage from file if necessary."""
        if self.complete or 0 <= index < len(self.pages):
            page = self.pages[index]
            if isinstance(page, TiffPage):
                self._keyframe = page
                return
            elif isinstance(page, TiffFrame):
                # remove existing frame
                self.pages[index] = page.offset
        # load TiffPage from file
        useframes = self.useframes
        self._tiffpage = TiffPage
        self._keyframe = self[index]
        self.useframes = useframes
    @property
    def next_page_offset(self):
        """Return offset where offset to a new page can be stored."""
        if not self.complete:
            self._seek(-1)
        return self._nextpageoffset
    def load(self):
        """Read all remaining pages from file."""
        fh = self.parent.filehandle
        keyframe = self._keyframe
        pages = self.pages
        if not self.complete:
            self._seek(-1)
        for i, page in enumerate(pages):
            if isinstance(page, inttypes):
                fh.seek(page)
                page = self._tiffpage(self.parent, index=i, keyframe=keyframe)
                pages[i] = page
    def clear(self, fully=True):
        """Delete all but first page from cache. Set keyframe to first page."""
        pages = self.pages
        if not self._cache or len(pages) < 1:
            return
        self._keyframe = pages[0]
        if fully:
            # delete all but first TiffPage/TiffFrame
            for i, page in enumerate(pages[1:]):
                if not isinstance(page, inttypes):
                    pages[i+1] = page.offset
        elif TiffFrame is not TiffPage:
            # delete only TiffFrames
            for i, page in enumerate(pages):
                if isinstance(page, TiffFrame):
                    pages[i] = page.offset
    def _seek(self, index):
        """Seek file to offset of specified page."""
        pages = self.pages
        if not pages:
            return
        fh = self.parent.filehandle
        if fh.closed:
            raise RuntimeError("FileHandle is closed")
        if self.complete or 0 <= index < len(pages):
            page = pages[index]
            offset = page if isinstance(page, inttypes) else page.offset
            fh.seek(offset)
            return
        offsetformat = self.parent.offsetformat
        offsetsize = self.parent.offsetsize
        tagnoformat = self.parent.tagnoformat
        tagnosize = self.parent.tagnosize
        tagsize = self.parent.tagsize
        unpack = struct.unpack
        page = pages[-1]
        offset = page if isinstance(page, inttypes) else page.offset
        while True:
            # read offsets to pages from file until index is reached
            fh.seek(offset)
            # skip tags
            try:
                tagno = unpack(tagnoformat, fh.read(tagnosize))[0]
                if tagno > 4096:
                    raise ValueError("suspicious number of tags")
            except Exception:
                warnings.warn("corrupted tag list at offset %i" % offset)
                del pages[-1]
                self.complete = True
                break
            self._nextpageoffset = offset + tagnosize + tagno * tagsize
            fh.seek(self._nextpageoffset)
            # read offset to next page
            offset = unpack(offsetformat, fh.read(offsetsize))[0]
            if offset == 0:
                self.complete = True
                break
            if offset >= fh.size:
                warnings.warn("invalid page offset (%i)" % offset)
                self.complete = True
                break
            pages.append(offset)
            if 0 <= index < len(pages):
                break
        if index >= len(pages):
            raise IndexError('list index out of range')
        page = pages[index]
        fh.seek(page if isinstance(page, inttypes) else page.offset)
    def __bool__(self):
        """Return True if file contains any pages."""
        return len(self.pages) > 0
    def __len__(self):
        """Return number of pages in file."""
        if not self.complete:
            self._seek(-1)
        return len(self.pages)
    def __getitem__(self, key):
        """Return specified page(s) from cache or file."""
        pages = self.pages
        if not pages:
            raise IndexError('list index out of range')
        if key is 0:
            return pages[key]
        if isinstance(key, slice):
            start, stop, _ = key.indices(2**31)
            if not self.complete and max(stop, start) > len(pages):
                self._seek(-1)
            return [self[i] for i in range(*key.indices(len(pages)))]
        if self.complete and key >= len(pages):
            raise IndexError('list index out of range')
        try:
            page = pages[key]
        except IndexError:
            page = 0
        if not isinstance(page, inttypes):
            return page
        self._seek(key)
        page = self._tiffpage(self.parent, index=key, keyframe=self._keyframe)
        if self._cache:
            pages[key] = page
        return page
    def __iter__(self):
        """Return iterator over all pages."""
        i = 0
        while True:
            try:
                yield self[i]
                i += 1
            except IndexError:
                break
class TiffPage(object):
    """TIFF image file directory (IFD).
    Attributes
    ----------
    index : int
        Index of page in file.
    dtype : numpy.dtype or None
        Data type of the image in IFD.
    shape : tuple
        Dimensions of the image in IFD.
    axes : str
        Axes label codes:
        'X' width, 'Y' height, 'S' sample, 'I' image series|page|plane,
        'Z' depth, 'C' color|em-wavelength|channel, 'E' ex-wavelength|lambda,
        'T' time, 'R' region|tile, 'A' angle, 'P' phase, 'H' lifetime,
        'L' exposure, 'V' event, 'Q' unknown, '_' missing
    tags : dict
        Dictionary of tags in IFD. {tag.name: TiffTag}
    colormap : numpy.ndarray
        Color look up table, if exists.
    All attributes are read-only.
    Notes
    -----
    The internal, normalized '_shape' attribute is 6 dimensional:
    0 : number planes/images  (stk, ij).
    1 : planar samplesperpixel.
    2 : imagedepth Z  (sgi).
    3 : imagelength Y.
    4 : imagewidth X.
    5 : contig samplesperpixel.
    """
    # default properties; will be updated from tags
    imagewidth = 0
    imagelength = 0
    imagedepth = 1
    tilewidth = 0
    tilelength = 0
    tiledepth = 1
    bitspersample = 1
    samplesperpixel = 1
    sampleformat = 1
    rowsperstrip = 2**32-1
    compression = 1
    planarconfig = 1
    fillorder = 1
    photometric = 0
    predictor = 1
    extrasamples = 1
    colormap = None
    software = ''
    description = ''
    description1 = ''
    def __init__(self, parent, index, keyframe=None):
        """Initialize instance from file.
        The file handle position must be at offset to a valid IFD.
        """
        self.parent = parent
        self.index = index
        self.shape = ()
        self._shape = ()
        self.dtype = None
        self._dtype = None
        self.axes = ""
        self.tags = {}
        self.dataoffsets = ()
        self.databytecounts = ()
        # read TIFF IFD structure and its tags from file
        fh = parent.filehandle
        self.offset = fh.tell()  # offset to this IDF
        try:
            tagno = struct.unpack(parent.tagnoformat,
                                  fh.read(parent.tagnosize))[0]
            if tagno > 4096:
                raise ValueError("suspicious number of tags")
        except Exception:
            raise ValueError("corrupted tag list at offset %i" % self.offset)
        tagsize = parent.tagsize
        data = fh.read(tagsize * tagno)
        tags = self.tags
        index = -tagsize
        for _ in range(tagno):
            index += tagsize
            try:
                tag = TiffTag(self.parent, data[index:index+tagsize])
            except TiffTag.Error as e:
                warnings.warn(str(e))
                continue
            tagname = tag.name
            if tagname not in tags:
                name = tagname
                tags[name] = tag
            else:
                # some files contain multiple tags with same code
                # e.g. MicroManager files contain two ImageDescription tags
                i = 1
                while True:
                    name = "%s%i" % (tagname, i)
                    if name not in tags:
                        tags[name] = tag
                        break
            name = TIFF.TAG_ATTRIBUTES.get(name, '')
            if name:
                setattr(self, name, tag.value)
        if not tags:
            return  # found in FIBICS
        # consolidate private tags; remove them from self.tags
        if self.is_andor:
            self.andor_tags
        elif self.is_epics:
            self.epics_tags
        if self.is_lsm or (self.index and self.parent.is_lsm):
            # correct non standard LSM bitspersample tags
            self.tags['BitsPerSample']._fix_lsm_bitspersample(self)
        if self.is_vista or (self.index and self.parent.is_vista):
            # ISS Vista writes wrong ImageDepth tag
            self.imagedepth = 1
        if self.is_stk and 'UIC1tag' in tags and not tags['UIC1tag'].value:
            # read UIC1tag now that plane count is known
            uic1tag = tags['UIC1tag']
            fh.seek(uic1tag.valueoffset)
            tags['UIC1tag'].value = read_uic1tag(
                fh, self.parent.byteorder, uic1tag.dtype,
                uic1tag.count, None, tags['UIC2tag'].count)
        if 'IJMetadata' in tags:
            # decode IJMetadata tag
            try:
                tags['IJMetadata'].value = imagej_metadata(
                    tags['IJMetadata'].value,
                    tags['IJMetadataByteCounts'].value,
                    self.parent.byteorder)
            except Exception as e:
                warnings.warn(str(e))
        if 'BitsPerSample' in tags:
            tag = tags['BitsPerSample']
            if tag.count == 1:
                self.bitspersample = tag.value
            else:
                # LSM might list more items than samples_per_pixel
                value = tag.value[:self.samplesperpixel]
                if any((v-value[0] for v in value)):
                    self.bitspersample = value
                else:
                    self.bitspersample = value[0]
        if 'SampleFormat' in tags:
            tag = tags['SampleFormat']
            if tag.count == 1:
                self.sampleformat = tag.value
            else:
                value = tag.value[:self.samplesperpixel]
                if any((v-value[0] for v in value)):
                    self.sampleformat = value
                else:
                    self.sampleformat = value[0]
        if 'ImageLength' in tags:
            if 'RowsPerStrip' not in tags or tags['RowsPerStrip'].count > 1:
                self.rowsperstrip = self.imagelength
            # self.stripsperimage = int(math.floor(
            #    float(self.imagelength + self.rowsperstrip - 1) /
            #    self.rowsperstrip))
        # determine dtype
        dtype = self.sampleformat, self.bitspersample
        dtype = TIFF.SAMPLE_DTYPES.get(dtype, None)
        if dtype is not None:
            dtype = numpy.dtype(dtype)
        self.dtype = self._dtype = dtype
        # determine shape of data
        imagelength = self.imagelength
        imagewidth = self.imagewidth
        imagedepth = self.imagedepth
        samplesperpixel = self.samplesperpixel
        if self.is_stk:
            assert self.imagedepth == 1
            uictag = tags['UIC2tag'].value
            planes = tags['UIC2tag'].count
            if self.planarconfig == 1:
                self._shape = (
                    planes, 1, 1, imagelength, imagewidth, samplesperpixel)
                if samplesperpixel == 1:
                    self.shape = (planes, imagelength, imagewidth)
                    self.axes = 'YX'
                else:
                    self.shape = (
                        planes, imagelength, imagewidth, samplesperpixel)
                    self.axes = 'YXS'
            else:
                self._shape = (
                    planes, samplesperpixel, 1, imagelength, imagewidth, 1)
                if samplesperpixel == 1:
                    self.shape = (planes, imagelength, imagewidth)
                    self.axes = 'YX'
                else:
                    self.shape = (
                        planes, samplesperpixel, imagelength, imagewidth)
                    self.axes = 'SYX'
            # detect type of series
            if planes == 1:
                self.shape = self.shape[1:]
            elif numpy.all(uictag['ZDistance'] != 0):
                self.axes = 'Z' + self.axes
            elif numpy.all(numpy.diff(uictag['TimeCreated']) != 0):
                self.axes = 'T' + self.axes
            else:
                self.axes = 'I' + self.axes
        elif self.photometric == 2 or samplesperpixel > 1:  # PHOTOMETRIC.RGB
            if self.planarconfig == 1:
                self._shape = (
                    1, 1, imagedepth, imagelength, imagewidth, samplesperpixel)
                if imagedepth == 1:
                    self.shape = (imagelength, imagewidth, samplesperpixel)
                    self.axes = 'YXS'
                else:
                    self.shape = (
                        imagedepth, imagelength, imagewidth, samplesperpixel)
                    self.axes = 'ZYXS'
            else:
                self._shape = (1, samplesperpixel, imagedepth,
                               imagelength, imagewidth, 1)
                if imagedepth == 1:
                    self.shape = (samplesperpixel, imagelength, imagewidth)
                    self.axes = 'SYX'
                else:
                    self.shape = (
                        samplesperpixel, imagedepth, imagelength, imagewidth)
                    self.axes = 'SZYX'
        else:
            self._shape = (1, 1, imagedepth, imagelength, imagewidth, 1)
            if imagedepth == 1:
                self.shape = (imagelength, imagewidth)
                self.axes = 'YX'
            else:
                self.shape = (imagedepth, imagelength, imagewidth)
                self.axes = 'ZYX'
        # dataoffsets and databytecounts
        if 'TileOffsets' in tags:
            self.dataoffsets = tags['TileOffsets'].value
        elif 'StripOffsets' in tags:
            self.dataoffsets = tags['StripOffsets'].value
        else:
            self.dataoffsets = (0,)
        if 'TileByteCounts' in tags:
            self.databytecounts = tags['TileByteCounts'].value
        elif 'StripByteCounts' in tags:
            self.databytecounts = tags['StripByteCounts'].value
        elif self.compression == 1:
            self.databytecounts = (
                product(self.shape) * (self.bitspersample // 8),)
        else:
            raise ValueError("ByteCounts not found")
        assert len(self.shape) == len(self.axes)
    def asarray(self, out=None, squeeze=True, lock=None, reopen=True,
                maxsize=64*2**30, validate=True):
        """Read image data from file and return as numpy array.
        Raise ValueError if format is unsupported.
        Parameters
        ----------
        out : numpy.ndarray, str, or file-like object; optional
            Buffer where image data will be saved.
            If numpy.ndarray, a writable array of compatible dtype and shape.
            If str or open file, the file name or file object used to
            create a memory-map to an array stored in a binary file on disk.
        squeeze : bool
            If True, all length-1 dimensions (except X and Y) are
            squeezed out from the array.
            If False, the shape of the returned array might be different from
            the page.shape.
        lock : {RLock, NullContext}
            A reentrant lock used to syncronize reads from file.
            If None (default), the lock of the parent's filehandle is used.
        reopen : bool
            If True (default) and the parent file handle is closed, the file
            is temporarily re-opened and closed if no exception occurs.
        maxsize: int or None
            Maximum size of data before a ValueError is raised.
            Can be used to catch DOS. Default: 64 GB.
        validate : bool
            If True (default), validate various parameters.
            If None, only validate parameters and return None.
        """
        self_ = self
        self = self.keyframe  # self or keyframe
        if not self._shape or product(self._shape) == 0:
            return
        tags = self.tags
        if validate or validate is None:
            if maxsize and product(self._shape) > maxsize:
                raise ValueError("data is too large %s" % str(self._shape))
            if self.dtype is None:
                raise ValueError("data type not supported: %s%i" % (
                    self.sampleformat, self.bitspersample))
            if self.compression not in TIFF.DECOMPESSORS:
                raise ValueError(
                    "can not decompress %s" % self.compression.name)
            if 'SampleFormat' in tags:
                tag = tags['SampleFormat']
                if tag.count != 1 and any((i-tag.value[0] for i in tag.value)):
                    raise ValueError(
                        "sample formats do not match %s" % tag.value)
            if self.is_chroma_subsampled:
                # TODO: implement chroma subsampling
                raise NotImplementedError("chroma subsampling not supported")
            if validate is None:
                return
        fh = self_.parent.filehandle
        lock = fh.lock if lock is None else lock
        with lock:
            closed = fh.closed
            if closed:
                if reopen:
                    fh.open()
                else:
                    raise IOError("file handle is closed")
        dtype = self._dtype
        shape = self._shape
        imagewidth = self.imagewidth
        imagelength = self.imagelength
        imagedepth = self.imagedepth
        bitspersample = self.bitspersample
        typecode = self.parent.byteorder + dtype.char
        lsb2msb = self.fillorder == 2
        offsets, bytecounts = self_.offsets_bytecounts
        istiled = self.is_tiled
        if istiled:
            tilewidth = self.tilewidth
            tilelength = self.tilelength
            tiledepth = self.tiledepth
            tw = (imagewidth + tilewidth - 1) // tilewidth
            tl = (imagelength + tilelength - 1) // tilelength
            td = (imagedepth + tiledepth - 1) // tiledepth
            shape = (shape[0], shape[1],
                     td*tiledepth, tl*tilelength, tw*tilewidth, shape[-1])
            tileshape = (tiledepth, tilelength, tilewidth, shape[-1])
            runlen = tilewidth
        else:
            runlen = imagewidth
        if out == 'memmap' and self.is_memmappable:
            with lock:
                result = fh.memmap_array(typecode, shape, offset=offsets[0])
        elif self.is_contiguous:
            isnative = self.parent.is_native
            if out is not None:
                isnative = True
                out = create_output(out, shape, dtype)
            with lock:
                fh.seek(offsets[0])
                result = fh.read_array(typecode, product(shape), out=out)
            if not isnative:
                result = result.astype('=' + dtype.char)
            if lsb2msb:
                reverse_bitorder(result)
        else:
            result = create_output(out, shape, dtype)
            if self.planarconfig == 1:
                runlen *= self.samplesperpixel
            if bitspersample in (8, 16, 32, 64, 128):
                if (bitspersample * runlen) % 8:
                    raise ValueError("data and sample size mismatch")
                def unpack(x, typecode=typecode):
                    if self.predictor == 3:  # PREDICTOR.FLOATINGPOINT
                        # the floating point horizontal differencing decoder
                        # needs the raw byte order
                        typecode = dtype.char
                    try:
                        return numpy.fromstring(x, typecode)
                    except ValueError as e:
                        # strips may be missing EOI
                        # warnings.warn("unpack: %s" % e)
                        xlen = ((len(x) // (bitspersample // 8)) *
                                (bitspersample // 8))
                        return numpy.fromstring(x[:xlen], typecode)
            elif isinstance(bitspersample, tuple):
                def unpack(x):
                    return unpack_rgb(x, typecode, bitspersample)
            else:
                def unpack(x):
                    return unpack_ints(x, typecode, bitspersample, runlen)
            decompress = TIFF.DECOMPESSORS[self.compression]
            if self.compression == 7:  # COMPRESSION.JPEG
                if 'JPEGTables' in tags:
                    table = tags['JPEGTables'].value
                else:
                    table = b''
                def decompress(x):
                    return decode_jpeg(x, table, self.photometric)
            if istiled:
                tw, tl, td, pl = 0, 0, 0, 0
                for tile in buffered_read(fh, lock, offsets, bytecounts):
                    if lsb2msb:
                        tile = reverse_bitorder(tile)
                    tile = decompress(tile)
                    tile = unpack(tile)
                    try:
                        tile.shape = tileshape
                    except ValueError:
                        # incomplete tiles; see gdal issue #1179
                        warnings.warn("invalid tile data")
                        t = numpy.zeros(tileshape, dtype).reshape(-1)
                        s = min(tile.size, t.size)
                        t[:s] = tile[:s]
                        tile = t.reshape(tileshape)
                    if self.predictor == 2:  # PREDICTOR.HORIZONTAL
                        numpy.cumsum(tile, axis=-2, dtype=dtype, out=tile)
                    elif self.predictor == 3:  # PREDICTOR.FLOATINGPOINT
                        raise NotImplementedError()
                    result[0, pl, td:td+tiledepth,
                           tl:tl+tilelength, tw:tw+tilewidth, :] = tile
                    del tile
                    tw += tilewidth
                    if tw >= shape[4]:
                        tw, tl = 0, tl + tilelength
                        if tl >= shape[3]:
                            tl, td = 0, td + tiledepth
                            if td >= shape[2]:
                                td, pl = 0, pl + 1
                result = result[...,
                                :imagedepth, :imagelength, :imagewidth, :]
            else:
                strip_size = self.rowsperstrip * self.imagewidth
                if self.planarconfig == 1:
                    strip_size *= self.samplesperpixel
                result = result.reshape(-1)
                index = 0
                for strip in buffered_read(fh, lock, offsets, bytecounts):
                    if lsb2msb:
                        strip = reverse_bitorder(strip)
                    strip = decompress(strip)
                    strip = unpack(strip)
                    size = min(result.size, strip.size, strip_size,
                               result.size - index)
                    result[index:index+size] = strip[:size]
                    del strip
                    index += size
        result.shape = self._shape
        if self.predictor != 1 and not (istiled and not self.is_contiguous):
            if self.parent.is_lsm and self.compression == 1:
                pass  # work around bug in LSM510 software
            elif self.predictor == 2:  # PREDICTOR.HORIZONTAL
                numpy.cumsum(result, axis=-2, dtype=dtype, out=result)
            elif self.predictor == 3:  # PREDICTOR.FLOATINGPOINT
                result = decode_floats(result)
        if squeeze:
            try:
                result.shape = self.shape
            except ValueError:
                warnings.warn("failed to reshape from %s to %s" % (
                    str(result.shape), str(self.shape)))
        if closed:
            # TODO: file should remain open if an exception occurred above
            fh.close()
        return result
    def asrgb(self, uint8=False, alpha=None, colormap=None,
              dmin=None, dmax=None, *args, **kwargs):
        """Return image data as RGB(A).
        Work in progress.
        """
        data = self.asarray(*args, **kwargs)
        self = self.keyframe  # self or keyframe
        photometric = self.photometric
        PHOTOMETRIC = TIFF.PHOTOMETRIC
        if photometric == PHOTOMETRIC.PALETTE:
            colormap = self.colormap
            if (colormap.shape[1] < 2**self.bitspersample or
                    self.dtype.char not in 'BH'):
                raise ValueError("can not apply colormap")
            if uint8:
                if colormap.max() > 255:
                    colormap >>= 8
                colormap = colormap.astype('uint8')
            if 'S' in self.axes:
                data = data[..., 0] if self.planarconfig == 1 else data[0]
            data = apply_colormap(data, colormap)
        elif photometric == PHOTOMETRIC.RGB:
            if 'ExtraSamples' in self.tags:
                if alpha is None:
                    alpha = TIFF.EXTRASAMPLE
                extrasamples = self.extrasamples
                if self.tags['ExtraSamples'].count == 1:
                    extrasamples = (extrasamples,)
                for i, exs in enumerate(extrasamples):
                    if exs in alpha:
                        if self.planarconfig == 1:
                            data = data[..., [0, 1, 2, 3+i]]
                        else:
                            data = data[:, [0, 1, 2, 3+i]]
                        break
            else:
                if self.planarconfig == 1:
                    data = data[..., :3]
                else:
                    data = data[:, :3]
            # TODO: convert to uint8
        elif photometric == PHOTOMETRIC.MINISBLACK:
            raise NotImplementedError()
        elif photometric == PHOTOMETRIC.MINISWHITE:
            raise NotImplementedError()
        elif photometric == PHOTOMETRIC.SEPARATED:
            raise NotImplementedError()
        else:
            raise NotImplementedError()
        return data
    def aspage(self):
        return self
    @property
    def keyframe(self):
        return self
    @keyframe.setter
    def keyframe(self, index):
        return
    @lazyattr
    def offsets_bytecounts(self):
        """Return simplified offsets and bytecounts."""
        if self.is_contiguous:
            offset, byte_count = self.is_contiguous
            return [offset], [byte_count]
        return clean_offsets_counts(self.dataoffsets, self.databytecounts)
    @lazyattr
    def is_contiguous(self):
        """Return offset and size of contiguous data, else None.
        Excludes prediction and fill_order.
        """
        if (self.compression != 1
                or self.bitspersample not in (8, 16, 32, 64)):
            return
        if 'TileWidth' in self.tags:
            if (self.imagewidth != self.tilewidth or
                    self.imagelength % self.tilelength or
                    self.tilewidth % 16 or self.tilelength % 16):
                return
            if ('ImageDepth' in self.tags and 'TileDepth' in self.tags and
                    (self.imagelength != self.tilelength or
                     self.imagedepth % self.tiledepth)):
                return
        offsets = self.dataoffsets
        bytecounts = self.databytecounts
        if len(offsets) == 1:
            return offsets[0], bytecounts[0]
        if self.is_stk or all((offsets[i] + bytecounts[i] == offsets[i+1] or
                               bytecounts[i+1] == 0)  # no data/ignore offset
                              for i in range(len(offsets)-1)):
            return offsets[0], sum(bytecounts)
    @lazyattr
    def is_final(self):
        """Return if page's image data is stored in final form.
        Excludes byte-swapping.
        """
        return (self.is_contiguous and self.fillorder == 1 and
                self.predictor == 1 and not self.is_chroma_subsampled)
    @lazyattr
    def is_memmappable(self):
        """Return if page's image data in file can be memory-mapped."""
        return (self.parent.filehandle.is_file and self.is_final and
                (self.bitspersample == 8 or self.parent.is_native) and
                self.is_contiguous[0] % self.dtype.itemsize == 0)
    def __str__(self, detail=0):
        """Return string containing information about page."""
        if self.keyframe != self:
            return TiffFrame.__str__(self, detail)
        attr = ''
        for name in ('memmappable', 'final', 'contiguous'):
            attr = getattr(self, 'is_'+name)
            if attr:
                attr = name.upper()
                break
        info = '  '.join(s for s in (
            'x'.join(str(i) for i in self.shape),
            '%s%s' % (TIFF.SAMPLEFORMAT(self.sampleformat).name,
                      self.bitspersample),
            '|'.join(i for i in (
                TIFF.PHOTOMETRIC(self.photometric).name,
                'TILED' if self.is_tiled else '',
                self.compression.name if self.compression != 1 else '',
                self.planarconfig.name if self.planarconfig != 1 else '',
                self.predictor.name if self.predictor != 1 else '',
                self.fillorder.name if self.fillorder != 1 else '')
                     if i),
            attr,
            '|'.join((f.upper() for f in self.flags))
            ) if s)
        info = "TiffPage %i @%i  %s" % (self.index, self.offset, info)
        if detail <= 0:
            return info
        info = [info]
        tags = self.tags
        tlines = []
        vlines = []
        for tag in sorted(tags.values(), key=lambda x: x.code):
            value = tag.__str__()
            tlines.append(value[:TIFF.PRINT_LINE_WIDTH].lstrip())
            if detail > 1 and len(value) > TIFF.PRINT_LINE_WIDTH:
                vlines.append("%s\n%s" % (tag.name.upper(),
                                          pformat(tag.value)))
        info.append('\n'.join(tlines))
        if detail > 1:
            info.append('\n\n'.join(vlines))
        return '\n\n'.join(info)
    @lazyattr
    def flags(self):
        """Return set of flags."""
        return set((name.lower() for name in sorted(TIFF.FILE_FLAGS)
                    if getattr(self, 'is_' + name)))
    @property
    def ndim(self):
        """Return number of array dimensions."""
        return len(self.shape)
    @property
    def size(self):
        """Return number of elements in array."""
        return product(self.shape)
    @lazyattr
    def andor_tags(self):
        """Return consolidated metadata from Andor tags as dict.
        Remove Andor tags from self.tags.
        """
        if not self.is_andor:
            return
        tags = self.tags
        result = {'Id': tags['AndorId'].value}
        for tag in list(self.tags.values()):
            code = tag.code
            if not 4864 < code < 5031:
                continue
            value = tag.value
            name = tag.name[5:] if len(tag.name) > 5 else tag.name
            result[name] = value
            del tags[tag.name]
        return result
    @lazyattr
    def epics_tags(self):
        """Return consolidated metadata from EPICS areaDetector tags as dict.
        Remove areaDetector tags from self.tags.
        """
        # TODO: obtain test file
        if not self.is_epics:
            return
        result = {}
        tags = self.tags
        for tag in list(self.tags.values()):
            code = tag.code
            if not 65000 < code < 65500:
                continue
            value = tag.value
            if code == 65000:
                result['timeStamp'] = float(value)
            elif code == 65001:
                result['uniqueID'] = int(value)
            elif code == 65002:
                result['epicsTS'] = int(value)
            elif code == 65003:
                result['epicsTS'] = int(value)
            else:
                key, value = value.split(':')
                result[key] = astype(value)
            del tags[tag.name]
        return result
    @property
    def is_tiled(self):
        """Page contains tiled image."""
        return 'TileWidth' in self.tags
    @property
    def is_reduced(self):
        """Page is reduced image of another image."""
        return ('NewSubfileType' in self.tags and
                self.tags['NewSubfileType'].value & 1)
    @property
    def is_chroma_subsampled(self):
        """Page contains chroma subsampled image."""
        return ('YCbCrSubSampling' in self.tags and
                self.tags['YCbCrSubSampling'].value != (1, 1))
    @lazyattr
    def is_imagej(self):
        """Return ImageJ description if exists, else None."""
        for description in (self.description, self.description1):
            if not description:
                return
            if description[:7] == 'ImageJ=':
                return description
    @lazyattr
    def is_shaped(self):
        """Return description containing array shape if exists, else None."""
        for description in (self.description, self.description1):
            if not description:
                return
            if description[:1] == '{' and '"shape":' in description:
                return description
            if description[:6] == 'shape=':
                return description
    @property
    def is_mdgel(self):
        """Page contains MDFileTag tag."""
        return 'MDFileTag' in self.tags
    @property
    def is_mediacy(self):
        """Page contains Media Cybernetics Id tag."""
        return ('MC_Id' in self.tags and
                self.tags['MC_Id'].value[:7] == b'MC TIFF')
    @property
    def is_stk(self):
        """Page contains UIC2Tag tag."""
        return 'UIC2tag' in self.tags
    @property
    def is_lsm(self):
        """Page contains CZ_LSMINFO tag."""
        return 'CZ_LSMINFO' in self.tags
    @property
    def is_fluoview(self):
        """Page contains FluoView MM_STAMP tag."""
        return 'MM_Stamp' in self.tags
    @property
    def is_nih(self):
        """Page contains NIH image header."""
        return 'NIHImageHeader' in self.tags
    @property
    def is_sgi(self):
        """Page contains SGI image and tile depth tags."""
        return 'ImageDepth' in self.tags and 'TileDepth' in self.tags
    @property
    def is_vista(self):
        """Software tag is 'ISS Vista'."""
        return self.software == 'ISS Vista'
    @property
    def is_metaseries(self):
        """Page contains MDS MetaSeries metadata in ImageDescription tag."""
        if self.index > 1 or self.software != 'MetaSeries':
            return False
        d = self.description
        return d.startswith('<MetaData>') and d.endswith('</MetaData>')
    @property
    def is_ome(self):
        """Page contains OME-XML in ImageDescription tag."""
        if self.index > 1 or not self.description:
            return False
        d = self.description
        return d[:14] == '<?xml version=' and d[-6:] == '</OME>'
    @property
    def is_scn(self):
        """Page contains Leica SCN XML in ImageDescription tag."""
        if self.index > 1 or not self.description:
            return False
        d = self.description
        return d[:14] == '<?xml version=' and d[-6:] == '</scn>'
    @property
    def is_micromanager(self):
        """Page contains Micro-Manager metadata."""
        return 'MicroManagerMetadata' in self.tags
    @property
    def is_andor(self):
        """Page contains Andor Technology tags."""
        return 'AndorId' in self.tags
    @property
    def is_pilatus(self):
        """Page contains Pilatus tags."""
        return (self.software[:8] == 'TVX TIFF' and
                self.description[:2] == '# ')
    @property
    def is_epics(self):
        """Page contains EPICS areaDetector tags."""
        return self.description == 'EPICS areaDetector'
    @property
    def is_tvips(self):
        """Page contains TVIPS metadata."""
        return 'TVIPS' in self.tags
    @property
    def is_fei(self):
        """Page contains SFEG or HELIOS metadata."""
        return 'FEI_SFEG' in self.tags or 'FEI_HELIOS' in self.tags
    @property
    def is_sem(self):
        """Page contains Zeiss SEM metadata."""
        return 'CZ_SEM' in self.tags
    @property
    def is_svs(self):
        """Page contains Aperio metadata."""
        return self.description[:20] == 'Aperio Image Library'
    @property
    def is_scanimage(self):
        """Page contains ScanImage metadata."""
        return (self.description[:12] == 'state.config' or
                self.software[:22] == 'SI.LINE_FORMAT_VERSION')
class TiffFrame(object):
    """Lightweight TIFF image file directory (IFD).
    Only a limited number of tag values are read from file, e.g. StripOffsets,
    and StripByteCounts. Other tag values are assumed to be identical with a
    specified TiffPage instance, the keyframe.
    This is intended to reduce resource usage and speed up reading data from
    file, not for introspection of metadata.
    Not compatible with Python 2.
    """
    __slots__ = ('keyframe', 'parent', 'index', 'offset',
                 'dataoffsets', 'databytecounts')
    is_mdgel = False
    tags = {}
    def __init__(self, parent, index, keyframe):
        """Read specified tags from file.
        The file handle position must be at the offset to a valid IFD.
        """
        self.keyframe = keyframe
        self.parent = parent
        self.index = index
        unpack = struct.unpack
        fh = parent.filehandle
        self.offset = fh.tell()
        try:
            tagno = unpack(parent.tagnoformat, fh.read(parent.tagnosize))[0]
            if tagno > 4096:
                raise ValueError("suspicious number of tags")
        except Exception:
            raise ValueError("corrupted page list at offset %i" % self.offset)
        # tags = {}
        tagcodes = {273, 279, 324, 325}  # TIFF.FRAME_TAGS
        tagsize = parent.tagsize
        codeformat = parent.tagformat1[:2]
        data = fh.read(tagsize * tagno)
        index = -tagsize
        for _ in range(tagno):
            index += tagsize
            code = unpack(codeformat, data[index:index+2])[0]
            if code not in tagcodes:
                continue
            try:
                tag = TiffTag(parent, data[index:index+tagsize])
            except TiffTag.Error as e:
                warnings.warn(str(e))
                continue
            if code == 273 or code == 324:
                setattr(self, 'dataoffsets', tag.value)
            elif code == 279 or code == 325:
                setattr(self, 'databytecounts', tag.value)
            # elif code == 270:
            #     tagname = tag.name
            #     if tagname not in tags:
            #         tags[tagname] = bytes2str(tag.value)
            #     elif 'ImageDescription1' not in tags:
            #         tags['ImageDescription1'] = bytes2str(tag.value)
            # else:
            #     tags[tag.name] = tag.value
    def aspage(self):
        """Return TiffPage from file."""
        self.parent.filehandle.seek(self.offset)
        return TiffPage(self.parent, index=self.index, keyframe=None)
    def asarray(self, *args, **kwargs):
        """Read image data from file and return as numpy array."""
        # TODO: fix TypeError on Python 2
        #   "TypeError: unbound method asarray() must be called with TiffPage
        #   instance as first argument (got TiffFrame instance instead)"
        kwargs['validate'] = False
        return TiffPage.asarray(self, *args, **kwargs)
    def asrgb(self, *args, **kwargs):
        """Read image data from file and return RGB image as numpy array."""
        kwargs['validate'] = False
        return TiffPage.asrgb(self, *args, **kwargs)
    @property
    def offsets_bytecounts(self):
        """Return simplified offsets and bytecounts."""
        if self.keyframe.is_contiguous:
            return self.dataoffsets[:1], self.keyframe.is_contiguous[1:]
        return clean_offsets_counts(self.dataoffsets, self.databytecounts)
    @property
    def is_contiguous(self):
        """Return offset and size of contiguous data, else None."""
        if self.keyframe.is_contiguous:
            return self.dataoffsets[0], self.keyframe.is_contiguous[1]
    @property
    def is_memmappable(self):
        """Return if page's image data in file can be memory-mapped."""
        return self.keyframe.is_memmappable
    def __getattr__(self, name):
        """Return attribute from keyframe."""
        if name in TIFF.FRAME_ATTRS:
            return getattr(self.keyframe, name)
        raise AttributeError("'%s' object has no attribute '%s'" %
                             (self.__class__.__name__, name))
    def __str__(self, detail=0):
        """Return string containing information about frame."""
        info = '  '.join(s for s in (
            'x'.join(str(i) for i in self.shape),
            str(self.dtype)))
        return "TiffFrame %i @%i  %s" % (self.index, self.offset, info)
class TiffTag(object):
    """TIFF tag structure.
    Attributes
    ----------
    name : string
        Name of tag.
    code : int
        Decimal code of tag.
    dtype : str
        Datatype of tag data. One of TIFF DATA_FORMATS.
    count : int
        Number of values.
    value : various types
        Tag data as Python object.
    valueoffset : int
        Location of value in file.
    All attributes are read-only.
    """
    __slots__ = ('code', 'count', 'dtype', 'value', 'valueoffset')
    class Error(Exception):
        pass
    def __init__(self, parent, tagheader, **kwargs):
        """Initialize instance from tag header."""
        fh = parent.filehandle
        byteorder = parent.byteorder
        unpack = struct.unpack
        offsetsize = parent.offsetsize
        self.valueoffset = fh.tell() + offsetsize + 4
        code, dtype = unpack(parent.tagformat1, tagheader[:4])
        count, value = unpack(parent.tagformat2, tagheader[4:])
        try:
            dtype = TIFF.DATA_FORMATS[dtype]
        except KeyError:
            raise TiffTag.Error("unknown tag data type %i" % dtype)
        fmt = '%s%i%s' % (byteorder, count * int(dtype[0]), dtype[1])
        size = struct.calcsize(fmt)
        if size > offsetsize or code in TIFF.TAG_READERS:
            self.valueoffset = offset = unpack(parent.offsetformat, value)[0]
            if offset < 8 or offset > fh.size - size:
                raise TiffTag.Error("invalid tag value offset")
            # if offset % 2:
            #     warnings.warn("tag value does not begin on word boundary")
            fh.seek(offset)
            if code in TIFF.TAG_READERS:
                readfunc = TIFF.TAG_READERS[code]
                value = readfunc(fh, byteorder, dtype, count, offsetsize)
            elif code in TIFF.TAGS or dtype[-1] == 's':
                value = unpack(fmt, fh.read(size))
            else:
                value = read_numpy(fh, byteorder, dtype, count, offsetsize)
        else:
            value = unpack(fmt, value[:size])
        process = code not in TIFF.TAG_READERS and code not in TIFF.TAG_TUPLE
        if process and dtype[-1] == 's' and isinstance(value[0], bytes):
            # TIFF ASCII fields can contain multiple strings,
            #   each terminated with a NUL
            value = bytes2str(stripascii(value[0]).strip())
        else:
            if code in TIFF.TAG_ENUM:
                t = TIFF.TAG_ENUM[code]
                try:
                    value = tuple(t(v) for v in value)
                except ValueError as e:
                    warnings.warn(str(e))
            if process:
                if len(value) == 1:
                    value = value[0]
        self.code = code
        self.dtype = dtype
        self.count = count
        self.value = value
    @property
    def name(self):
        return TIFF.TAGS.get(self.code, str(self.code))
    def _fix_lsm_bitspersample(self, parent):
        """Correct LSM bitspersample tag.
        Old LSM writers may use a separate region for two 16-bit values,
        although they fit into the tag value element of the tag.
        """
        if self.code == 258 and self.count == 2:
            # TODO: test this case; need example file
            warnings.warn("correcting LSM bitspersample tag")
            tof = parent.offsetformat[parent.offsetsize]
            self.valueoffset = struct.unpack(tof, self._value)[0]
            parent.filehandle.seek(self.valueoffset)
            self.value = struct.unpack("<HH", parent.filehandle.read(4))
    def __str__(self):
        """Return string containing information about tag."""
        if self.code in TIFF.TAG_ENUM:
            if self.count == 1:
                value = TIFF.TAG_ENUM[self.code](self.value).name
            else:
                value = tuple(v.name for v in self.value)
        elif isinstance(self.value, unicode):
                value = pformat(self.value)
                value = value.replace(u'\n', u'\\n').replace(u'\r', u'')
                value = u'"%s"' % value
        else:
            value = pformat(self.value, linewidth=False, maxlines=2)
            value = str(value).split('\n', 1)[0]
        tcode = "%i%s" % (self.count * int(self.dtype[0]), self.dtype[1])
        line = "TiffTag %i %s  %s @%i  %s" % (
            self.code, self.name, tcode, self.valueoffset, value)
        return line
class TiffPageSeries(object):
    """Series of TIFF pages with compatible shape and data type.
    Attributes
    ----------
    pages : list of TiffPage
        Sequence of TiffPages in series.
    dtype : numpy.dtype or str
        Data type of the image array in series.
    shape : tuple
        Dimensions of the image array in series.
    axes : str
        Labels of axes in shape. See TiffPage.axes.
    offset : int or None
        Position of image data in file if memory-mappable, else None.
    """
    def __init__(self, pages, shape, dtype, axes,
                 parent=None, name=None, transform=None, stype=None):
        """Initialize instance."""
        self.index = 0
        self.pages = pages
        self.shape = tuple(shape)
        self.axes = ''.join(axes)
        self.dtype = numpy.dtype(dtype)
        self.stype = stype if stype else ''
        self.name = name if name else ''
        self.transform = transform
        if parent:
            self.parent = parent
        elif pages:
            self.parent = pages[0].parent
        else:
            self.parent = None
    def asarray(self, out=None):
        """Return image data from series of TIFF pages as numpy array."""
        if self.parent:
            result = self.parent.asarray(series=self, out=out)
            if self.transform is not None:
                result = self.transform(result)
            return result
    @lazyattr
    def offset(self):
        """Return offset to series data in file, if any."""
        if not self.pages:
            return
        pos = 0
        for page in self.pages:
            if page is None:
                return
            if not page.is_final:
                return
            if not pos:
                pos = page.is_contiguous[0] + page.is_contiguous[1]
                continue
            if pos != page.is_contiguous[0]:
                return
            pos += page.is_contiguous[1]
        page = self.pages[0]
        offset = page.is_contiguous[0]
        if (page.is_imagej or page.is_shaped) and len(self.pages) == 1:
            # truncated files
            return offset
        if pos == offset + product(self.shape) * self.dtype.itemsize:
            return offset
    @property
    def ndim(self):
        """Return number of array dimensions."""
        return len(self.shape)
    @property
    def size(self):
        """Return number of elements in array."""
        return int(product(self.shape))
    def __len__(self):
        """Return number of TiffPages in series."""
        return len(self.pages)
    def __getitem__(self, key):
        """Return specified TiffPage."""
        return self.pages[key]
    def __iter__(self):
        """Return iterator over TiffPages in series."""
        return iter(self.pages)
    def __str__(self):
        """Return string with information about series."""
        s = '  '.join(s for s in (
            snipstr("'%s'" % self.name, 20) if self.name else '',
            'x'.join(str(i) for i in self.shape),
            str(self.dtype),
            self.axes,
            self.stype,
            '%i Pages' % len(self.pages),
            ('Offset=%i' % self.offset) if self.offset else '') if s)
        return 'TiffPageSeries %i  %s' % (self.index, s)
class TiffSequence(object):
    """Sequence of TIFF files.
    The image data in all files must match shape, dtype, etc.
    Attributes
    ----------
    files : list
        List of file names.
    shape : tuple
        Shape of image sequence. Excludes shape of image array.
    axes : str
        Labels of axes in shape.
    Examples
    --------
    >>> # read image stack from sequence of TIFF files
    >>> imsave('temp_C001T001.tif', numpy.random.rand(64, 64))
    >>> imsave('temp_C001T002.tif', numpy.random.rand(64, 64))
    >>> tifs = TiffSequence("temp_C001*.tif")
    >>> tifs.shape
    (1, 2)
    >>> tifs.axes
    'CT'
    >>> data = tifs.asarray()
    >>> data.shape
    (1, 2, 64, 64)
    """
    _patterns = {
        'axes': r"""
            # matches Olympus OIF and Leica TIFF series
            _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))
            _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
            _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
            _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
            _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
            _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
            _?(?:(q|l|p|a|c|t|x|y|z|ch|tp)(\d{1,4}))?
            """}
    class ParseError(Exception):
        pass
    def __init__(self, files, imread=TiffFile, pattern='axes',
                 *args, **kwargs):
        """Initialize instance from multiple files.
        Parameters
        ----------
        files : str, or sequence of str
            Glob pattern or sequence of file names.
            Binary streams are not supported.
        imread : function or class
            Image read function or class with asarray function returning numpy
            array from single file.
        pattern : str
            Regular expression pattern that matches axes names and sequence
            indices in file names.
            By default, this matches Olympus OIF and Leica TIFF series.
        """
        if isinstance(files, basestring):
            files = natural_sorted(glob.glob(files))
        files = list(files)
        if not files:
            raise ValueError("no files found")
        if not isinstance(files[0], basestring):
            raise ValueError("not a file name")
        self.files = files
        if hasattr(imread, 'asarray'):
            # redefine imread
            _imread = imread
            def imread(fname, *args, **kwargs):
                with _imread(fname) as im:
                    return im.asarray(*args, **kwargs)
        self.imread = imread
        self.pattern = self._patterns.get(pattern, pattern)
        try:
            self._parse()
            if not self.axes:
                self.axes = 'I'
        except self.ParseError:
            self.axes = 'I'
            self.shape = (len(files),)
            self._startindex = (0,)
            self._indices = tuple((i,) for i in range(len(files)))
    def __str__(self):
        """Return string with information about image sequence."""
        return "\n".join([
            self.files[0],
            ' size: %i' % len(self.files),
            ' axes: %s' % self.axes,
            ' shape: %s' % str(self.shape)])
    def __len__(self):
        return len(self.files)
    def __enter__(self):
        return self
    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
    def close(self):
        pass
    def asarray(self, out=None, *args, **kwargs):
        """Read image data from all files and return as numpy array.
        The args and kwargs parameters are passed to the imread function.
        Raise IndexError or ValueError if image shapes do not match.
        """
        im = self.imread(self.files[0], *args, **kwargs)
        shape = self.shape + im.shape
        result = create_output(out, shape, dtype=im.dtype)
        result = result.reshape(-1, *im.shape)
        for index, fname in zip(self._indices, self.files):
            index = [i-j for i, j in zip(index, self._startindex)]
            index = numpy.ravel_multi_index(index, self.shape)
            im = self.imread(fname, *args, **kwargs)
            result[index] = im
        result.shape = shape
        return result
    def _parse(self):
        """Get axes and shape from file names."""
        if not self.pattern:
            raise self.ParseError("invalid pattern")
        pattern = re.compile(self.pattern, re.IGNORECASE | re.VERBOSE)
        matches = pattern.findall(self.files[0])
        if not matches:
            raise self.ParseError("pattern does not match file names")
        matches = matches[-1]
        if len(matches) % 2:
            raise self.ParseError("pattern does not match axis name and index")
        axes = ''.join(m for m in matches[::2] if m)
        if not axes:
            raise self.ParseError("pattern does not match file names")
        indices = []
        for fname in self.files:
            matches = pattern.findall(fname)[-1]
            if axes != ''.join(m for m in matches[::2] if m):
                raise ValueError("axes do not match within the image sequence")
            indices.append([int(m) for m in matches[1::2] if m])
        shape = tuple(numpy.max(indices, axis=0))
        startindex = tuple(numpy.min(indices, axis=0))
        shape = tuple(i-j+1 for i, j in zip(shape, startindex))
        if product(shape) != len(self.files):
            warnings.warn("files are missing. Missing data are zeroed")
        self.axes = axes.upper()
        self.shape = shape
        self._indices = indices
        self._startindex = startindex
class FileHandle(object):
    """Binary file handle.
    A limited, special purpose file handler that can:
    * handle embedded files (for CZI within CZI files)
    * re-open closed files (for multi file formats, such as OME-TIFF)
    * read and write numpy arrays and records from file like objects
    Only 'rb' and 'wb' modes are supported. Concurrently reading and writing
    of the same stream is untested.
    When initialized from another file handle, do not use it unless this
    FileHandle is closed.
    Attributes
    ----------
    name : str
        Name of the file.
    path : str
        Absolute path to file.
    size : int
        Size of file in bytes.
    is_file : bool
        If True, file has a filno and can be memory-mapped.
    All attributes are read-only.
    """
    __slots__ = ('_fh', '_file', '_mode', '_name', '_dir', '_lock',
                 '_offset', '_size', '_close', 'is_file')
    def __init__(self, file, mode='rb', name=None, offset=None, size=None):
        """Initialize file handle from file name or another file handle.
        Parameters
        ----------
        file : str, binary stream, or FileHandle
            File name or seekable binary stream, such as a open file
            or BytesIO.
        mode : str
            File open mode in case 'file' is a file name. Must be 'rb' or 'wb'.
        name : str
            Optional name of file in case 'file' is a binary stream.
        offset : int
            Optional start position of embedded file. By default, this is
            the current file position.
        size : int
            Optional size of embedded file. By default, this is the number
            of bytes from the 'offset' to the end of the file.
        """
        self._fh = None
        self._file = file
        self._mode = mode
        self._name = name
        self._dir = ''
        self._offset = offset
        self._size = size
        self._close = True
        self.is_file = False
        self._lock = NullContext()
        self.open()
    def open(self):
        """Open or re-open file."""
        if self._fh:
            return  # file is open
        if isinstance(self._file, basestring):
            # file name
            self._file = os.path.realpath(self._file)
            self._dir, self._name = os.path.split(self._file)
            self._fh = open(self._file, self._mode)
            self._close = True
            if self._offset is None:
                self._offset = 0
        elif isinstance(self._file, FileHandle):
            # FileHandle
            self._fh = self._file._fh
            if self._offset is None:
                self._offset = 0
            self._offset += self._file._offset
            self._close = False
            if not self._name:
                if self._offset:
                    name, ext = os.path.splitext(self._file._name)
                    self._name = "%s@%i%s" % (name, self._offset, ext)
                else:
                    self._name = self._file._name
            if self._mode and self._mode != self._file._mode:
                raise ValueError('FileHandle has wrong mode')
            self._mode = self._file._mode
            self._dir = self._file._dir
        elif hasattr(self._file, 'seek'):
            # binary stream: open file, BytesIO
            try:
                self._file.tell()
            except Exception:
                raise ValueError("binary stream is not seekable")
            self._fh = self._file
            if self._offset is None:
                self._offset = self._file.tell()
            self._close = False
            if not self._name:
                try:
                    self._dir, self._name = os.path.split(self._fh.name)
                except AttributeError:
                    self._name = "Unnamed binary stream"
            try:
                self._mode = self._fh.mode
            except AttributeError:
                pass
        else:
            raise ValueError("The first parameter must be a file name, "
                             "seekable binary stream, or FileHandle")
        if self._offset:
            self._fh.seek(self._offset)
        if self._size is None:
            pos = self._fh.tell()
            self._fh.seek(self._offset, 2)
            self._size = self._fh.tell()
            self._fh.seek(pos)
        try:
            self._fh.fileno()
            self.is_file = True
        except Exception:
            self.is_file = False
    def read(self, size=-1):
        """Read 'size' bytes from file, or until EOF is reached."""
        if size < 0 and self._offset:
            size = self._size
        return self._fh.read(size)
    def write(self, bytestring):
        """Write bytestring to file."""
        return self._fh.write(bytestring)
    def flush(self):
        """Flush write buffers if applicable."""
        return self._fh.flush()
    def memmap_array(self, dtype, shape, offset=0, mode='r', order='C'):
        """Return numpy.memmap of data stored in file."""
        if not self.is_file:
            raise ValueError("Can not memory-map file without fileno")
        return numpy.memmap(self._fh, dtype=dtype, mode=mode,
                            offset=self._offset + offset,
                            shape=shape, order=order)
    def read_array(self, dtype, count=-1, sep="", chunksize=2**25, out=None):
        """Return numpy array from file.
        Work around numpy issue #2230, "numpy.fromfile does not accept
        StringIO object" https://github.com/numpy/numpy/issues/2230.
        """
        fh = self._fh
        dtype = numpy.dtype(dtype)
        size = self._size if count < 0 else count * dtype.itemsize
        if out is None:
            try:
                return numpy.fromfile(fh, dtype, count, sep)
            except IOError:
                # ByteIO
                data = fh.read(size)
                return numpy.fromstring(data, dtype, count, sep)
        # Read data from file in chunks and copy to output array
        shape = out.shape
        size = min(out.nbytes, size)
        out = out.reshape(-1)
        index = 0
        while size > 0:
            data = fh.read(min(chunksize, size))
            datasize = len(data)
            if datasize == 0:
                break
            size -= datasize
            data = numpy.fromstring(data, dtype)
            out[index:index+data.size] = data
            index += data.size
        if hasattr(out, 'flush'):
            out.flush()
        return out.reshape(shape)
    def read_record(self, dtype, shape=1, byteorder=None):
        """Return numpy record from file."""
        rec = numpy.rec
        try:
            record = rec.fromfile(self._fh, dtype, shape, byteorder=byteorder)
        except Exception:
            dtype = numpy.dtype(dtype)
            if shape is None:
                shape = self._size // dtype.itemsize
            size = product(sequence(shape)) * dtype.itemsize
            data = self._fh.read(size)
            record = rec.fromstring(data, dtype, shape, byteorder=byteorder)
        return record[0] if shape == 1 else record
    def write_empty(self, size):
        """Append size bytes to file. Position must be at end of file."""
        if size < 1:
            return
        self._fh.seek(size-1, 1)
        self._fh.write(b'\x00')
    def write_array(self, data):
        """Write numpy array to binary file."""
        try:
            data.tofile(self._fh)
        except Exception:
            # BytesIO
            self._fh.write(data.tostring())
    def tell(self):
        """Return file's current position."""
        return self._fh.tell() - self._offset
    def seek(self, offset, whence=0):
        """Set file's current position."""
        if self._offset:
            if whence == 0:
                self._fh.seek(self._offset + offset, whence)
                return
            elif whence == 2 and self._size > 0:
                self._fh.seek(self._offset + self._size + offset, 0)
                return
        self._fh.seek(offset, whence)
    def close(self):
        """Close file."""
        if self._close and self._fh:
            self._fh.close()
            self._fh = None
    def __enter__(self):
        return self
    def __exit__(self, exc_type, exc_value, traceback):
        self.close()
    def __getattr__(self, name):
        """Return attribute from underlying file object."""
        if self._offset:
            warnings.warn(
                "FileHandle: '%s' not implemented for embedded files" % name)
        return getattr(self._fh, name)
    @property
    def name(self):
        return self._name
    @property
    def dirname(self):
        return self._dir
    @property
    def path(self):
        return os.path.join(self._dir, self._name)
    @property
    def size(self):
        return self._size
    @property
    def closed(self):
        return self._fh is None
    @property
    def lock(self):
        return self._lock
    @lock.setter
    def lock(self, value):
        self._lock = threading.RLock() if value else NullContext()
class NullContext(object):
    """Null context manager.
    >>> with NullContext():
    ...     pass
    """
    def __enter__(self):
        return self
    def __exit__(self, exc_type, exc_value, traceback):
        pass
class OpenFileCache(object):
    """Keep files open."""
    __slots__ = ('files', 'past', 'lock', 'size')
    def __init__(self, size, lock=None):
        """Initialize open file cache."""
        self.past = []  # FIFO of opened files
        self.files = {}  # refcounts of opened files
        self.lock = NullContext() if lock is None else lock
        self.size = int(size)
    def open(self, filehandle):
        """Re-open file if necessary."""
        with self.lock:
            if filehandle in self.files:
                self.files[filehandle] += 1
            elif filehandle.closed:
                filehandle.open()
                self.files[filehandle] = 1
                self.past.append(filehandle)
    def close(self, filehandle):
        """Close openend file if no longer used."""
        with self.lock:
            if filehandle in self.files:
                self.files[filehandle] -= 1
                # trim the file cache
                index = 0
                size = len(self.past)
                while size > self.size and index < size:
                    filehandle = self.past[index]
                    if self.files[filehandle] == 0:
                        filehandle.close()
                        del self.files[filehandle]
                        del self.past[index]
                        size -= 1
                    else:
                        index += 1
    def clear(self):
        """Close all opened files if not in use."""
        with self.lock:
            for filehandle, refcount in list(self.files.items()):
                if refcount == 0:
                    filehandle.close()
                    del self.files[filehandle]
                    del self.past[self.past.index(filehandle)]
class LazyConst(object):
    """Class whose attributes are computed on first access from its methods."""
    def __init__(self, cls):
        self._cls = cls
        self.__doc__ = getattr(cls, '__doc__')
    def __getattr__(self, name):
        func = getattr(self._cls, name)
        if not callable(func):
            return func
        try:
            value = func()
        except TypeError:
            # Python 2 unbound method
            value = func.__func__()
        setattr(self, name, value)
        return value
@LazyConst
class TIFF(object):
    """Namespace for module constants."""
    def TAGS():
        # TIFF tag codes and names
        return {
            254: 'NewSubfileType',
            255: 'SubfileType',
            256: 'ImageWidth',
            257: 'ImageLength',
            258: 'BitsPerSample',
            259: 'Compression',
            262: 'PhotometricInterpretation',
            263: 'Threshholding',
            264: 'CellWidth',
            265: 'CellLength',
            266: 'FillOrder',
            269: 'DocumentName',
            270: 'ImageDescription',
            271: 'Make',
            272: 'Model',
            273: 'StripOffsets',
            274: 'Orientation',
            277: 'SamplesPerPixel',
            278: 'RowsPerStrip',
            279: 'StripByteCounts',
            280: 'MinSampleValue',
            281: 'MaxSampleValue',
            282: 'XResolution',
            283: 'YResolution',
            284: 'PlanarConfiguration',
            285: 'PageName',
            286: 'XPosition',
            287: 'YPosition',
            288: 'FreeOffsets',
            289: 'FreeByteCounts',
            290: 'GrayResponseUnit',
            291: 'GrayResponseCurve',
            292: 'T4Options',
            293: 'T6Options',
            296: 'ResolutionUnit',
            297: 'PageNumber',
            300: 'ColorResponseUnit',
            301: 'TransferFunction',
            305: 'Software',
            306: 'DateTime',
            315: 'Artist',
            316: 'HostComputer',
            317: 'Predictor',
            318: 'WhitePoint',
            319: 'PrimaryChromaticities',
            320: 'ColorMap',
            321: 'HalftoneHints',
            322: 'TileWidth',
            323: 'TileLength',
            324: 'TileOffsets',
            325: 'TileByteCounts',
            326: 'BadFaxLines',
            327: 'CleanFaxData',
            328: 'ConsecutiveBadFaxLines',
            330: 'SubIFDs',
            332: 'InkSet',
            333: 'InkNames',
            334: 'NumberOfInks',
            336: 'DotRange',
            337: 'TargetPrinter',
            338: 'ExtraSamples',
            339: 'SampleFormat',
            340: 'SMinSampleValue',
            341: 'SMaxSampleValue',
            342: 'TransferRange',
            343: 'ClipPath',
            344: 'XClipPathUnits',
            345: 'YClipPathUnits',
            346: 'Indexed',
            347: 'JPEGTables',
            351: 'OPIProxy',
            400: 'GlobalParametersIFD',
            401: 'ProfileType',
            402: 'FaxProfile',
            403: 'CodingMethods',
            404: 'VersionYear',
            405: 'ModeNumber',
            433: 'Decode',
            434: 'DefaultImageColor',
            435: 'T82Options',
            512: 'JPEGProc',
            513: 'JPEGInterchangeFormat',
            514: 'JPEGInterchangeFormatLength',
            515: 'JPEGRestartInterval',
            517: 'JPEGLosslessPredictors',
            518: 'JPEGPointTransforms',
            519: 'JPEGQTables',
            520: 'JPEGDCTables',
            521: 'JPEGACTables',
            529: 'YCbCrCoefficients',
            530: 'YCbCrSubSampling',
            531: 'YCbCrPositioning',
            532: 'ReferenceBlackWhite',
            559: 'StripRowCounts',
            700: 'XMP',
            4864: 'AndorId',  # TODO: Andor Technology 4864 - 5030
            4869: 'AndorTemperature',
            4876: 'AndorExposureTime',
            4878: 'AndorKineticCycleTime',
            4879: 'AndorAccumulations',
            4881: 'AndorAcquisitionCycleTime',
            4882: 'AndorReadoutTime',
            4884: 'AndorPhotonCounting',
            4885: 'AndorEmDacLevel',
            4890: 'AndorFrames',
            4896: 'AndorHorizontalFlip',
            4897: 'AndorVerticalFlip',
            4898: 'AndorClockwise',
            4899: 'AndorCounterClockwise',
            4904: 'AndorVerticalClockVoltage',
            4905: 'AndorVerticalShiftSpeed',
            4907: 'AndorPreAmpSetting',
            4908: 'AndorCameraSerial',
            4911: 'AndorActualTemperature',
            4912: 'AndorBaselineClamp',
            4913: 'AndorPrescans',
            4914: 'AndorModel',
            4915: 'AndorChipSizeX',
            4916: 'AndorChipSizeY',
            4944: 'AndorBaselineOffset',
            4966: 'AndorSoftwareVersion',
            # Private tags
            32781: 'ImageID',
            32932: 'WangAnnotation',
            32995: 'Matteing',
            32996: 'DataType',
            32997: 'ImageDepth',
            32998: 'TileDepth',
            33300: 'ImageFullWidth',
            33301: 'ImageFullLength',
            33302: 'TextureFormat',
            33303: 'TextureWrapModes',
            33304: 'FieldOfViewCotangent',
            33305: 'MatrixWorldToScreen',
            33306: 'MatrixWorldToCamera',
            33421: 'CFARepeatPatternDim',
            33422: 'CFAPattern',
            33432: 'Copyright',
            33445: 'MDFileTag',
            33446: 'MDScalePixel',
            33447: 'MDColorTable',
            33448: 'MDLabName',
            33449: 'MDSampleInfo',
            33450: 'MDPrepDate',
            33451: 'MDPrepTime',
            33452: 'MDFileUnits',
            33550: 'ModelPixelScaleTag',
            33628: 'UIC1tag',  # Metamorph  Universal Imaging Corp STK
            33629: 'UIC2tag',
            33630: 'UIC3tag',
            33631: 'UIC4tag',
            33723: 'IPTC',
            33918: 'INGRPacketDataTag',
            33919: 'INGRFlagRegisters',
            33920: 'IrasBTransformationMatrix',
            33922: 'ModelTiepointTag',
            34118: 'CZ_SEM',  # Zeiss SEM
            34122: 'IPLAB',  # number of images
            34264: 'ModelTransformationTag',
            34361: 'MM_Header',
            34362: 'MM_Stamp',
            34363: 'MM_Unknown',
            34377: 'Photoshop',
            34386: 'MM_UserBlock',
            34412: 'CZ_LSMINFO',
            34665: 'ExifIFD',
            34675: 'ICCProfile',
            34680: 'FEI_SFEG',  #
            34682: 'FEI_HELIOS',  #
            34683: 'FEI_TITAN',  #
            34732: 'ImageLayer',
            34735: 'GeoKeyDirectoryTag',
            34736: 'GeoDoubleParamsTag',
            34737: 'GeoAsciiParamsTag',
            34853: 'GPSIFD',
            34908: 'HylaFAXFaxRecvParams',
            34909: 'HylaFAXFaxSubAddress',
            34910: 'HylaFAXFaxRecvTime',
            34911: 'FaxDcs',
            37439: 'StoNits',
            37679: 'MODI_TXT',  # Microsoft Office Document Imaging
            37681: 'MODI_POS',
            37680: 'MODI_OLE',
            37706: 'TVIPS',  # offset to TemData structure
            37707: 'TVIPS1',
            37708: 'TVIPS2',  # same TemData structure as undefined
            37724: 'ImageSourceData',
            40001: 'MC_IpWinScal',  # Media Cybernetics
            40100: 'MC_IdOld',
            40965: 'InteroperabilityIFD',
            42112: 'GDAL_METADATA',
            42113: 'GDAL_NODATA',
            43314: 'NIHImageHeader',
            50215: 'OceScanjobDescription',
            50216: 'OceApplicationSelector',
            50217: 'OceIdentificationNumber',
            50218: 'OceImageLogicCharacteristics',
            50288: 'MC_Id',  # Media Cybernetics
            50289: 'MC_XYPosition',
            50290: 'MC_ZPosition',
            50291: 'MC_XYCalibration',
            50292: 'MC_LensCharacteristics',
            50293: 'MC_ChannelName',
            50294: 'MC_ExcitationWavelength',
            50295: 'MC_TimeStamp',
            50296: 'MC_FrameProperties',
            50706: 'DNGVersion',
            50707: 'DNGBackwardVersion',
            50708: 'UniqueCameraModel',
            50709: 'LocalizedCameraModel',
            50710: 'CFAPlaneColor',
            50711: 'CFALayout',
            50712: 'LinearizationTable',
            50713: 'BlackLevelRepeatDim',
            50714: 'BlackLevel',
            50715: 'BlackLevelDeltaH',
            50716: 'BlackLevelDeltaV',
            50717: 'WhiteLevel',
            50718: 'DefaultScale',
            50719: 'DefaultCropOrigin',
            50720: 'DefaultCropSize',
            50721: 'ColorMatrix1',
            50722: 'ColorMatrix2',
            50723: 'CameraCalibration1',
            50724: 'CameraCalibration2',
            50725: 'ReductionMatrix1',
            50726: 'ReductionMatrix2',
            50727: 'AnalogBalance',
            50728: 'AsShotNeutral',
            50729: 'AsShotWhiteXY',
            50730: 'BaselineExposure',
            50731: 'BaselineNoise',
            50732: 'BaselineSharpness',
            50733: 'BayerGreenSplit',
            50734: 'LinearResponseLimit',
            50735: 'CameraSerialNumber',
            50736: 'LensInfo',
            50737: 'ChromaBlurRadius',
            50738: 'AntiAliasStrength',
            50739: 'ShadowScale',
            50740: 'DNGPrivateData',
            50741: 'MakerNoteSafety',
            50778: 'CalibrationIlluminant1',
            50779: 'CalibrationIlluminant2',
            50780: 'BestQualityScale',
            50781: 'RawDataUniqueID',
            50784: 'AliasLayerMetadata',
            50827: 'OriginalRawFileName',
            50828: 'OriginalRawFileData',
            50829: 'ActiveArea',
            50830: 'MaskedAreas',
            50831: 'AsShotICCProfile',
            50832: 'AsShotPreProfileMatrix',
            50833: 'CurrentICCProfile',
            50834: 'CurrentPreProfileMatrix',
            50838: 'IJMetadataByteCounts',
            50839: 'IJMetadata',
            51023: 'FibicsXML',  #
            51123: 'MicroManagerMetadata',
            65200: 'FlexXML',  #
            65563: 'PerSample',
        }
    def TAG_NAMES():
        return {v: c for c, v in TIFF.TAGS.items()}
    def TAG_READERS():
        # Map TIFF tag codes to import functions
        return {
            320: read_colormap,
            700: read_bytes,  # read_utf8,
            34377: read_numpy,
            33723: read_bytes,
            34675: read_bytes,
            33628: read_uic1tag,  # Universal Imaging Corp STK
            33629: read_uic2tag,
            33630: read_uic3tag,
            33631: read_uic4tag,
            34118: read_cz_sem,  # Carl Zeiss SEM
            34361: read_mm_header,  # Olympus FluoView
            34362: read_mm_stamp,
            34363: read_numpy,  # MM_Unknown
            34386: read_numpy,  # MM_UserBlock
            34412: read_cz_lsminfo,  # Carl Zeiss LSM
            34680: read_fei_metadata,  # S-FEG
            34682: read_fei_metadata,  # Helios NanoLab
            37706: read_tvips_header,  # TVIPS EMMENU
            43314: read_nih_image_header,
            # 40001: read_bytes,
            40100: read_bytes,
            50288: read_bytes,
            50296: read_bytes,
            50839: read_bytes,
            51123: read_json,
            34665: read_exif_ifd,
            34853: read_gps_ifd,
            40965: read_interoperability_ifd
        }
    def TAG_TUPLE():
        # Tags whose values must be stored as tuples
        return frozenset((273, 279, 324, 325, 530, 531))
    def TAG_ATTRIBUTES():
        #  Map tag codes to TiffPage attribute names
        return {
            'ImageWidth': 'imagewidth',
            'ImageLength': 'imagelength',
            'BitsPerSample': 'bitspersample',
            'Compression': 'compression',
            'PlanarConfiguration': 'planarconfig',
            'FillOrder': 'fillorder',
            'PhotometricInterpretation': 'photometric',
            'ColorMap': 'colormap',
            'ImageDescription': 'description',
            'ImageDescription1': 'description1',
            'SamplesPerPixel': 'samplesperpixel',
            'RowsPerStrip': 'rowsperstrip',
            'Software': 'software',
            'Predictor': 'predictor',
            'TileWidth': 'tilewidth',
            'TileLength': 'tilelength',
            'ExtraSamples': 'extrasamples',
            'SampleFormat': 'sampleformat',
            'ImageDepth': 'imagedepth',
            'TileDepth': 'tiledepth',
        }
    def TAG_ENUM():
        return {
            # 254: TIFF.FILETYPE,
            255: TIFF.OFILETYPE,
            259: TIFF.COMPRESSION,
            262: TIFF.PHOTOMETRIC,
            263: TIFF.THRESHHOLD,
            266: TIFF.FILLORDER,
            274: TIFF.ORIENTATION,
            284: TIFF.PLANARCONFIG,
            290: TIFF.GRAYRESPONSEUNIT,
            # 292: TIFF.GROUP3OPT,
            # 293: TIFF.GROUP4OPT,
            296: TIFF.RESUNIT,
            300: TIFF.COLORRESPONSEUNIT,
            317: TIFF.PREDICTOR,
            338: TIFF.EXTRASAMPLE,
            339: TIFF.SAMPLEFORMAT,
            # 512: TIFF.JPEGPROC,
            # 531: TIFF.YCBCRPOSITION,
        }
    def FILETYPE():
        class FILETYPE(enum.IntFlag):
            # Python 3.6 only
            UNDEFINED = 0
            REDUCEDIMAGE = 1
            PAGE = 2
            MASK = 4
        return FILETYPE
    def OFILETYPE():
        class OFILETYPE(enum.IntEnum):
            UNDEFINED = 0
            IMAGE = 1
            REDUCEDIMAGE = 2
            PAGE = 3
        return OFILETYPE
    def COMPRESSION():
        class COMPRESSION(enum.IntEnum):
            NONE = 1  # Uncompressed
            CCITTRLE = 2  # CCITT 1D
            CCITT_T4 = 3  # 'T4/Group 3 Fax',
            CCITT_T6 = 4  # 'T6/Group 4 Fax',
            LZW = 5
            OJPEG = 6  # old-style JPEG
            JPEG = 7
            ADOBE_DEFLATE = 8
            JBIG_BW = 9
            JBIG_COLOR = 10
            JPEG_99 = 99
            KODAK_262 = 262
            NEXT = 32766
            SONY_ARW = 32767
            PACKED_RAW = 32769
            SAMSUNG_SRW = 32770
            CCIRLEW = 32771
            SAMSUNG_SRW2 = 32772
            PACKBITS = 32773
            THUNDERSCAN = 32809
            IT8CTPAD = 32895
            IT8LW = 32896
            IT8MP = 32897
            IT8BL = 32898
            PIXARFILM = 32908
            PIXARLOG = 32909
            DEFLATE = 32946
            DCS = 32947
            APERIO_JP2000_YCBC = 33003  # Leica Aperio
            APERIO_JP2000_RGB = 33005  # Leica Aperio
            JBIG = 34661
            SGILOG = 34676
            SGILOG24 = 34677
            JPEG2000 = 34712
            NIKON_NEF = 34713
            JBIG2 = 34715
            MDI_BINARY = 34718  # 'Microsoft Document Imaging
            MDI_PROGRESSIVE = 34719  # 'Microsoft Document Imaging
            MDI_VECTOR = 34720  # 'Microsoft Document Imaging
            JPEG_LOSSY = 34892
            LZMA = 34925
            OPS_PNG = 34933  # Objective Pathology Services
            OPS_JPEGXR = 34934  # Objective Pathology Services
            KODAK_DCR = 65000
            PENTAX_PEF = 65535
            # def __bool__(self): return self != 1  # Python 3.6 only
        return COMPRESSION
    def PHOTOMETRIC():
        class PHOTOMETRIC(enum.IntEnum):
            MINISWHITE = 0
            MINISBLACK = 1
            RGB = 2
            PALETTE = 3
            MASK = 4
            SEPARATED = 5  # CMYK
            YCBCR = 6
            CIELAB = 8
            ICCLAB = 9
            ITULAB = 10
            CFA = 32803  # Color Filter Array
            LOGL = 32844
            LOGLUV = 32845
            LINEAR_RAW = 34892
        return PHOTOMETRIC
    def THRESHHOLD():
        class THRESHHOLD(enum.IntEnum):
            BILEVEL = 1
            HALFTONE = 2
            ERRORDIFFUSE = 3
        return THRESHHOLD
    def FILLORDER():
        class FILLORDER(enum.IntEnum):
            MSB2LSB = 1
            LSB2MSB = 2
        return FILLORDER
    def ORIENTATION():
        class ORIENTATION(enum.IntEnum):
            TOPLEFT = 1
            TOPRIGHT = 2
            BOTRIGHT = 3
            BOTLEFT = 4
            LEFTTOP = 5
            RIGHTTOP = 6
            RIGHTBOT = 7
            LEFTBOT = 8
        return ORIENTATION
    def PLANARCONFIG():
        class PLANARCONFIG(enum.IntEnum):
            CONTIG = 1
            SEPARATE = 2
        return PLANARCONFIG
    def GRAYRESPONSEUNIT():
        class GRAYRESPONSEUNIT(enum.IntEnum):
            _10S = 1
            _100S = 2
            _1000S = 3
            _10000S = 4
            _100000S = 5
        return GRAYRESPONSEUNIT
    def GROUP4OPT():
        class GROUP4OPT(enum.IntEnum):
            UNCOMPRESSED = 2
        return GROUP4OPT
    def RESUNIT():
        class RESUNIT(enum.IntEnum):
            NONE = 1
            INCH = 2
            CENTIMETER = 3
            # def __bool__(self): return self != 1  # Python 3.6 only
        return RESUNIT
    def COLORRESPONSEUNIT():
        class COLORRESPONSEUNIT(enum.IntEnum):
            _10S = 1
            _100S = 2
            _1000S = 3
            _10000S = 4
            _100000S = 5
        return COLORRESPONSEUNIT
    def PREDICTOR():
        class PREDICTOR(enum.IntEnum):
            NONE = 1
            HORIZONTAL = 2
            FLOATINGPOINT = 3
            # def __bool__(self): return self != 1  # Python 3.6 only
        return PREDICTOR
    def EXTRASAMPLE():
        class EXTRASAMPLE(enum.IntEnum):
            UNSPECIFIED = 0
            ASSOCALPHA = 1
            UNASSALPHA = 2
        return EXTRASAMPLE
    def SAMPLEFORMAT():
        class SAMPLEFORMAT(enum.IntEnum):
            UINT = 1
            INT = 2
            IEEEFP = 3
            VOID = 4
            COMPLEXINT = 5
            COMPLEXIEEEFP = 6
        return SAMPLEFORMAT
    def DATATYPES():
        class DATATYPES(enum.IntEnum):
            NOTYPE = 0
            BYTE = 1
            ASCII = 2
            SHORT = 3
            LONG = 4
            RATIONAL = 5
            SBYTE = 6
            UNDEFINED = 7
            SSHORT = 8
            SLONG = 9
            SRATIONAL = 10
            FLOAT = 11
            DOUBLE = 12
            IFD = 13
            UNICODE = 14
            COMPLEX = 15
            LONG8 = 16
            SLONG8 = 17
            IFD8 = 18
        return DATATYPES
    def DATA_FORMATS():
        # Map TIFF DATATYPES to Python struct formats
        return {
            1: '1B',   # BYTE 8-bit unsigned integer.
            2: '1s',   # ASCII 8-bit byte that contains a 7-bit ASCII code;
                       #   the last byte must be NULL (binary zero).
            3: '1H',   # SHORT 16-bit (2-byte) unsigned integer
            4: '1I',   # LONG 32-bit (4-byte) unsigned integer.
            5: '2I',   # RATIONAL Two LONGs: the first represents the numerator
                       #   of a fraction; the second, the denominator.
            6: '1b',   # SBYTE An 8-bit signed (twos-complement) integer.
            7: '1p',   # UNDEFINED An 8-bit byte that may contain anything,
                       #   depending on the definition of the field.
            8: '1h',   # SSHORT A 16-bit (2-byte) signed (twos-complement)
                       #   integer.
            9: '1i',   # SLONG A 32-bit (4-byte) signed (twos-complement)
                       #   integer.
            10: '2i',  # SRATIONAL Two SLONGs: the first represents the
                       #   numerator of a fraction, the second the denominator.
            11: '1f',  # FLOAT Single precision (4-byte) IEEE format.
            12: '1d',  # DOUBLE Double precision (8-byte) IEEE format.
            13: '1I',  # IFD unsigned 4 byte IFD offset.
            # 14: '',  # UNICODE
            # 15: '',  # COMPLEX
            16: '1Q',  # LONG8 unsigned 8 byte integer (BigTiff)
            17: '1q',  # SLONG8 signed 8 byte integer (BigTiff)
            18: '1Q',  # IFD8 unsigned 8 byte IFD offset (BigTiff)
        }
    def DATA_DTYPES():
        # Map numpy dtypes to TIFF DATATYPES
        return {'B': 1, 's': 2, 'H': 3, 'I': 4, '2I': 5, 'b': 6,
                'h': 8, 'i': 9, '2i': 10, 'f': 11, 'd': 12, 'Q': 16, 'q': 17}
    def SAMPLE_DTYPES():
        # Map TIFF SampleFormats and BitsPerSample to numpy dtype
        return {
            (1, 1): '?',  # bitmap
            (1, 2): 'B',
            (1, 3): 'B',
            (1, 4): 'B',
            (1, 5): 'B',
            (1, 6): 'B',
            (1, 7): 'B',
            (1, 8): 'B',
            (1, 9): 'H',
            (1, 10): 'H',
            (1, 11): 'H',
            (1, 12): 'H',
            (1, 13): 'H',
            (1, 14): 'H',
            (1, 15): 'H',
            (1, 16): 'H',
            (1, 17): 'I',
            (1, 18): 'I',
            (1, 19): 'I',
            (1, 20): 'I',
            (1, 21): 'I',
            (1, 22): 'I',
            (1, 23): 'I',
            (1, 24): 'I',
            (1, 25): 'I',
            (1, 26): 'I',
            (1, 27): 'I',
            (1, 28): 'I',
            (1, 29): 'I',
            (1, 30): 'I',
            (1, 31): 'I',
            (1, 32): 'I',
            (1, 64): 'Q',
            (2, 8): 'b',
            (2, 16): 'h',
            (2, 32): 'i',
            (2, 64): 'q',
            (3, 16): 'e',
            (3, 32): 'f',
            (3, 64): 'd',
            (6, 64): 'F',
            (6, 128): 'D',
            (1, (5, 6, 5)): 'B',
        }
    def DECOMPESSORS():
        decompressors = {
            None: identityfunc,
            1: identityfunc,
            5: decode_lzw,
            # 7: decode_jpeg,
            8: zlib.decompress,
            32946: zlib.decompress,
            32773: decode_packbits,
        }
        if lzma:
            decompressors[34925] = lzma.decompress
        return decompressors
    def FRAME_ATTRS():
        # Attributes that a TiffFrame shares with its keyframe
        return set('shape ndim size dtype axes is_final'.split())
    def FILE_FLAGS():
        # TiffFile and TiffPage 'is_\*' attributes
        exclude = set('reduced final memmappable contiguous '
                      'chroma_subsampled'.split())
        return set(a[3:] for a in dir(TiffPage)
                   if a[:3] == 'is_' and a[3:] not in exclude)
    def FILE_EXTENSIONS():
        # TIFF file extensions
        return tuple('tif tiff ome.tif lsm stk '
                     'gel seq svs bif tf8 tf2 btf'.split())
    def FILEOPEN_FILTER():
        # String for use in Windows File Open box
        return [("%s files" % ext.upper(), "*.%s" % ext)
                for ext in TIFF.FILE_EXTENSIONS] + [("allfiles", "*")]
    def AXES_LABELS():
        # TODO: is there a standard for character axes labels?
        axes = {
            'X': 'width',
            'Y': 'height',
            'Z': 'depth',
            'S': 'sample',  # rgb(a)
            'I': 'series',  # general sequence, plane, page, IFD
            'T': 'time',
            'C': 'channel',  # color, emission wavelength
            'A': 'angle',
            'P': 'phase',  # formerly F    # P is Position in LSM!
            'R': 'tile',  # region, point, mosaic
            'H': 'lifetime',  # histogram
            'E': 'lambda',  # excitation wavelength
            'L': 'exposure',  # lux
            'V': 'event',
            'Q': 'other',
            'M': 'mosaic',  # LSM 6
        }
        axes.update(dict((v, k) for k, v in axes.items()))
        return axes
    def ANDOR_TAGS():
        # Andor Technology tags #4864 - 5030
        return set(range(4864, 5030))
    def EXIF_TAGS():
        return {
            33434: 'ExposureTime',
            33437: 'FNumber',
            34850: 'ExposureProgram',
            34852: 'SpectralSensitivity',
            34855: 'ISOSpeedRatings',
            34856: 'OECF',
            34858: 'TimeZoneOffset',
            34859: 'SelfTimerMode',
            34864: 'SensitivityType',
            34865: 'StandardOutputSensitivity',
            34866: 'RecommendedExposureIndex',
            34867: 'ISOSpeed',
            34868: 'ISOSpeedLatitudeyyy',
            34869: 'ISOSpeedLatitudezzz',
            36864: 'ExifVersion',
            36867: 'DateTimeOriginal',
            36868: 'DateTimeDigitized',
            36873: 'GooglePlusUploadCode',
            36880: 'OffsetTime',
            36881: 'OffsetTimeOriginal',
            36882: 'OffsetTimeDigitized',
            37121: 'ComponentsConfiguration',
            37122: 'CompressedBitsPerPixel',
            37377: 'ShutterSpeedValue',
            37378: 'ApertureValue',
            37379: 'BrightnessValue',
            37380: 'ExposureBiasValue',
            37381: 'MaxApertureValue',
            37382: 'SubjectDistance',
            37383: 'MeteringMode',
            37384: 'LightSource',
            37385: 'Flash',
            37386: 'FocalLength',
            37393: 'ImageNumber',
            37394: 'SecurityClassification',
            37395: 'ImageHistory',
            37396: 'SubjectArea',
            37500: 'MakerNote',
            37510: 'UserComment',
            37520: 'SubsecTime',
            37521: 'SubsecTimeOriginal',
            37522: 'SubsecTimeDigitized',
            37888: 'Temperature',
            37889: 'Humidity',
            37890: 'Pressure',
            37891: 'WaterDepth',
            37892: 'Acceleration',
            37893: 'CameraElevationAngle',
            40960: 'FlashpixVersion',
            40961: 'ColorSpace',
            40962: 'PixelXDimension',
            40963: 'PixelYDimension',
            40964: 'RelatedSoundFile',
            41483: 'FlashEnergy',
            41484: 'SpatialFrequencyResponse',
            41486: 'FocalPlaneXResolution',
            41487: 'FocalPlaneYResolution',
            41488: 'FocalPlaneResolutionUnit',
            41492: 'SubjectLocation',
            41493: 'ExposureIndex',
            41495: 'SensingMethod',
            41728: 'FileSource',
            41729: 'SceneType',
            41730: 'CFAPattern',
            41985: 'CustomRendered',
            41986: 'ExposureMode',
            41987: 'WhiteBalance',
            41988: 'DigitalZoomRatio',
            41989: 'FocalLengthIn35mmFilm',
            41990: 'SceneCaptureType',
            41991: 'GainControl',
            41992: 'Contrast',
            41993: 'Saturation',
            41994: 'Sharpness',
            41995: 'DeviceSettingDescription',
            41996: 'SubjectDistanceRange',
            42016: 'ImageUniqueID',
            42032: 'CameraOwnerName',
            42033: 'BodySerialNumber',
            42034: 'LensSpecification',
            42035: 'LensMake',
            42036: 'LensModel',
            42037: 'LensSerialNumber',
            42240: 'Gamma',
            59932: 'Padding',
            59933: 'OffsetSchema',
            65000: 'OwnerName',
            65001: 'SerialNumber',
            65002: 'Lens',
            65100: 'RawFile',
            65101: 'Converter',
            65102: 'WhiteBalance',
            65105: 'Exposure',
            65106: 'Shadows',
            65107: 'Brightness',
            65108: 'Contrast',
            65109: 'Saturation',
            65110: 'Sharpness',
            65111: 'Smoothness',
            65112: 'MoireFilter',
        }
    def GPS_TAGS():
        return {
            0: 'GPSVersionID',
            1: 'GPSLatitudeRef',
            2: 'GPSLatitude',
            3: 'GPSLongitudeRef',
            4: 'GPSLongitude',
            5: 'GPSAltitudeRef',
            6: 'GPSAltitude',
            7: 'GPSTimeStamp',
            8: 'GPSSatellites',
            9: 'GPSStatus',
            10: 'GPSMeasureMode',
            11: 'GPSDOP',
            12: 'GPSSpeedRef',
            13: 'GPSSpeed',
            14: 'GPSTrackRef',
            15: 'GPSTrack',
            16: 'GPSImgDirectionRef',
            17: 'GPSImgDirection',
            18: 'GPSMapDatum',
            19: 'GPSDestLatitudeRef',
            20: 'GPSDestLatitude',
            21: 'GPSDestLongitudeRef',
            22: 'GPSDestLongitude',
            23: 'GPSDestBearingRef',
            24: 'GPSDestBearing',
            25: 'GPSDestDistanceRef',
            26: 'GPSDestDistance',
            27: 'GPSProcessingMethod',
            28: 'GPSAreaInformation',
            29: 'GPSDateStamp',
            30: 'GPSDifferential',
            31: 'GPSHPositioningError',
        }
    def IOP_TAGS():
        return {
            1: 'InteroperabilityIndex',
            2: 'InteroperabilityVersion',
            4096: 'RelatedImageFileFormat',
            4097: 'RelatedImageWidth',
            4098: 'RelatedImageLength',
        }
    def CZ_LSMINFO():
        return [
            ('MagicNumber', 'u4'),
            ('StructureSize', 'i4'),
            ('DimensionX', 'i4'),
            ('DimensionY', 'i4'),
            ('DimensionZ', 'i4'),
            ('DimensionChannels', 'i4'),
            ('DimensionTime', 'i4'),
            ('DataType', 'i4'),  # DATATYPES
            ('ThumbnailX', 'i4'),
            ('ThumbnailY', 'i4'),
            ('VoxelSizeX', 'f8'),
            ('VoxelSizeY', 'f8'),
            ('VoxelSizeZ', 'f8'),
            ('OriginX', 'f8'),
            ('OriginY', 'f8'),
            ('OriginZ', 'f8'),
            ('ScanType', 'u2'),
            ('SpectralScan', 'u2'),
            ('TypeOfData', 'u4'),  # TYPEOFDATA
            ('OffsetVectorOverlay', 'u4'),
            ('OffsetInputLut', 'u4'),
            ('OffsetOutputLut', 'u4'),
            ('OffsetChannelColors', 'u4'),
            ('TimeIntervall', 'f8'),
            ('OffsetChannelDataTypes', 'u4'),
            ('OffsetScanInformation', 'u4'),  # SCANINFO
            ('OffsetKsData', 'u4'),
            ('OffsetTimeStamps', 'u4'),
            ('OffsetEventList', 'u4'),
            ('OffsetRoi', 'u4'),
            ('OffsetBleachRoi', 'u4'),
            ('OffsetNextRecording', 'u4'),
            # LSM 2.0 ends here
            ('DisplayAspectX', 'f8'),
            ('DisplayAspectY', 'f8'),
            ('DisplayAspectZ', 'f8'),
            ('DisplayAspectTime', 'f8'),
            ('OffsetMeanOfRoisOverlay', 'u4'),
            ('OffsetTopoIsolineOverlay', 'u4'),
            ('OffsetTopoProfileOverlay', 'u4'),
            ('OffsetLinescanOverlay', 'u4'),
            ('ToolbarFlags', 'u4'),
            ('OffsetChannelWavelength', 'u4'),
            ('OffsetChannelFactors', 'u4'),
            ('ObjectiveSphereCorrection', 'f8'),
            ('OffsetUnmixParameters', 'u4'),
            # LSM 3.2, 4.0 end here
            ('OffsetAcquisitionParameters', 'u4'),
            ('OffsetCharacteristics', 'u4'),
            ('OffsetPalette', 'u4'),
            ('TimeDifferenceX', 'f8'),
            ('TimeDifferenceY', 'f8'),
            ('TimeDifferenceZ', 'f8'),
            ('InternalUse1', 'u4'),
            ('DimensionP', 'i4'),
            ('DimensionM', 'i4'),
            ('DimensionsReserved', '16i4'),
            ('OffsetTilePositions', 'u4'),
            ('', '9u4'),  # Reserved
            ('OffsetPositions', 'u4'),
            # ('', '21u4'),  # must be 0
        ]
    def CZ_LSMINFO_READERS():
        # Import functions for CZ_LSMINFO sub-records
        # TODO: read more CZ_LSMINFO sub-records
        return {
            'ScanInformation': read_lsm_scaninfo,
            'TimeStamps': read_lsm_timestamps,
            'EventList': read_lsm_eventlist,
            'ChannelColors': read_lsm_channelcolors,
            'Positions': read_lsm_floatpairs,
            'TilePositions': read_lsm_floatpairs,
            'VectorOverlay': None,
            'InputLut': None,
            'OutputLut': None,
            'TimeIntervall': None,
            'ChannelDataTypes': None,
            'KsData': None,
            'Roi': None,
            'BleachRoi': None,
            'NextRecording': None,
            'MeanOfRoisOverlay': None,
            'TopoIsolineOverlay': None,
            'TopoProfileOverlay': None,
            'ChannelWavelength': None,
            'SphereCorrection': None,
            'ChannelFactors': None,
            'UnmixParameters': None,
            'AcquisitionParameters': None,
            'Characteristics': None,
        }
    def CZ_LSMINFO_SCANTYPE():
        # Map CZ_LSMINFO.ScanType to dimension order
        return {
            0: 'XYZCT',  # 'Stack' normal x-y-z-scan
            1: 'XYZCT',  # 'Z-Scan' x-z-plane Y=1
            2: 'XYZCT',  # 'Line'
            3: 'XYTCZ',  # 'Time Series Plane' time series x-y  XYCTZ ? Z=1
            4: 'XYZTC',  # 'Time Series z-Scan' time series x-z
            5: 'XYTCZ',  # 'Time Series Mean-of-ROIs'
            6: 'XYZTC',  # 'Time Series Stack' time series x-y-z
            7: 'XYCTZ',  # Spline Scan
            8: 'XYCZT',  # Spline Plane x-z
            9: 'XYTCZ',  # Time Series Spline Plane x-z
            10: 'XYZCT',  # 'Time Series Point' point mode
        }
    def CZ_LSMINFO_DIMENSIONS():
        # Map dimension codes to CZ_LSMINFO attribute
        return {
            'X': 'DimensionX',
            'Y': 'DimensionY',
            'Z': 'DimensionZ',
            'C': 'DimensionChannels',
            'T': 'DimensionTime',
            'P': 'DimensionP',
            'M': 'DimensionM',
        }
    def CZ_LSMINFO_DATATYPES():
        # Description of CZ_LSMINFO.DataType
        return {
            0: 'varying data types',
            1: '8 bit unsigned integer',
            2: '12 bit unsigned integer',
            5: '32 bit float',
        }
    def CZ_LSMINFO_TYPEOFDATA():
        # Description of CZ_LSMINFO.TypeOfData
        return {
            0: 'Original scan data',
            1: 'Calculated data',
            2: '3D reconstruction',
            3: 'Topography height map',
        }
    def CZ_LSMINFO_SCANINFO_ARRAYS():
        return {
            0x20000000: 'Tracks',
            0x30000000: 'Lasers',
            0x60000000: 'DetectionChannels',
            0x80000000: 'IlluminationChannels',
            0xa0000000: 'BeamSplitters',
            0xc0000000: 'DataChannels',
            0x11000000: 'Timers',
            0x13000000: 'Markers',
        }
    def CZ_LSMINFO_SCANINFO_STRUCTS():
        return {
            # 0x10000000: "Recording",
            0x40000000: 'Track',
            0x50000000: 'Laser',
            0x70000000: 'DetectionChannel',
            0x90000000: 'IlluminationChannel',
            0xb0000000: 'BeamSplitter',
            0xd0000000: 'DataChannel',
            0x12000000: 'Timer',
            0x14000000: 'Marker',
        }
    def CZ_LSMINFO_SCANINFO_ATTRIBUTES():
        return {
            # Recording
            0x10000001: 'Name',
            0x10000002: 'Description',
            0x10000003: 'Notes',
            0x10000004: 'Objective',
            0x10000005: 'ProcessingSummary',
            0x10000006: 'SpecialScanMode',
            0x10000007: 'ScanType',
            0x10000008: 'ScanMode',
            0x10000009: 'NumberOfStacks',
            0x1000000a: 'LinesPerPlane',
            0x1000000b: 'SamplesPerLine',
            0x1000000c: 'PlanesPerVolume',
            0x1000000d: 'ImagesWidth',
            0x1000000e: 'ImagesHeight',
            0x1000000f: 'ImagesNumberPlanes',
            0x10000010: 'ImagesNumberStacks',
            0x10000011: 'ImagesNumberChannels',
            0x10000012: 'LinscanXySize',
            0x10000013: 'ScanDirection',
            0x10000014: 'TimeSeries',
            0x10000015: 'OriginalScanData',
            0x10000016: 'ZoomX',
            0x10000017: 'ZoomY',
            0x10000018: 'ZoomZ',
            0x10000019: 'Sample0X',
            0x1000001a: 'Sample0Y',
            0x1000001b: 'Sample0Z',
            0x1000001c: 'SampleSpacing',
            0x1000001d: 'LineSpacing',
            0x1000001e: 'PlaneSpacing',
            0x1000001f: 'PlaneWidth',
            0x10000020: 'PlaneHeight',
            0x10000021: 'VolumeDepth',
            0x10000023: 'Nutation',
            0x10000034: 'Rotation',
            0x10000035: 'Precession',
            0x10000036: 'Sample0time',
            0x10000037: 'StartScanTriggerIn',
            0x10000038: 'StartScanTriggerOut',
            0x10000039: 'StartScanEvent',
            0x10000040: 'StartScanTime',
            0x10000041: 'StopScanTriggerIn',
            0x10000042: 'StopScanTriggerOut',
            0x10000043: 'StopScanEvent',
            0x10000044: 'StopScanTime',
            0x10000045: 'UseRois',
            0x10000046: 'UseReducedMemoryRois',
            0x10000047: 'User',
            0x10000048: 'UseBcCorrection',
            0x10000049: 'PositionBcCorrection1',
            0x10000050: 'PositionBcCorrection2',
            0x10000051: 'InterpolationY',
            0x10000052: 'CameraBinning',
            0x10000053: 'CameraSupersampling',
            0x10000054: 'CameraFrameWidth',
            0x10000055: 'CameraFrameHeight',
            0x10000056: 'CameraOffsetX',
            0x10000057: 'CameraOffsetY',
            0x10000059: 'RtBinning',
            0x1000005a: 'RtFrameWidth',
            0x1000005b: 'RtFrameHeight',
            0x1000005c: 'RtRegionWidth',
            0x1000005d: 'RtRegionHeight',
            0x1000005e: 'RtOffsetX',
            0x1000005f: 'RtOffsetY',
            0x10000060: 'RtZoom',
            0x10000061: 'RtLinePeriod',
            0x10000062: 'Prescan',
            0x10000063: 'ScanDirectionZ',
            # Track
            0x40000001: 'MultiplexType',  # 0 After Line; 1 After Frame
            0x40000002: 'MultiplexOrder',
            0x40000003: 'SamplingMode',  # 0 Sample; 1 Line Avg; 2 Frame Avg
            0x40000004: 'SamplingMethod',  # 1 Mean; 2 Sum
            0x40000005: 'SamplingNumber',
            0x40000006: 'Acquire',
            0x40000007: 'SampleObservationTime',
            0x4000000b: 'TimeBetweenStacks',
            0x4000000c: 'Name',
            0x4000000d: 'Collimator1Name',
            0x4000000e: 'Collimator1Position',
            0x4000000f: 'Collimator2Name',
            0x40000010: 'Collimator2Position',
            0x40000011: 'IsBleachTrack',
            0x40000012: 'IsBleachAfterScanNumber',
            0x40000013: 'BleachScanNumber',
            0x40000014: 'TriggerIn',
            0x40000015: 'TriggerOut',
            0x40000016: 'IsRatioTrack',
            0x40000017: 'BleachCount',
            0x40000018: 'SpiCenterWavelength',
            0x40000019: 'PixelTime',
            0x40000021: 'CondensorFrontlens',
            0x40000023: 'FieldStopValue',
            0x40000024: 'IdCondensorAperture',
            0x40000025: 'CondensorAperture',
            0x40000026: 'IdCondensorRevolver',
            0x40000027: 'CondensorFilter',
            0x40000028: 'IdTransmissionFilter1',
            0x40000029: 'IdTransmission1',
            0x40000030: 'IdTransmissionFilter2',
            0x40000031: 'IdTransmission2',
            0x40000032: 'RepeatBleach',
            0x40000033: 'EnableSpotBleachPos',
            0x40000034: 'SpotBleachPosx',
            0x40000035: 'SpotBleachPosy',
            0x40000036: 'SpotBleachPosz',
            0x40000037: 'IdTubelens',
            0x40000038: 'IdTubelensPosition',
            0x40000039: 'TransmittedLight',
            0x4000003a: 'ReflectedLight',
            0x4000003b: 'SimultanGrabAndBleach',
            0x4000003c: 'BleachPixelTime',
            # Laser
            0x50000001: 'Name',
            0x50000002: 'Acquire',
            0x50000003: 'Power',
            # DetectionChannel
            0x70000001: 'IntegrationMode',
            0x70000002: 'SpecialMode',
            0x70000003: 'DetectorGainFirst',
            0x70000004: 'DetectorGainLast',
            0x70000005: 'AmplifierGainFirst',
            0x70000006: 'AmplifierGainLast',
            0x70000007: 'AmplifierOffsFirst',
            0x70000008: 'AmplifierOffsLast',
            0x70000009: 'PinholeDiameter',
            0x7000000a: 'CountingTrigger',
            0x7000000b: 'Acquire',
            0x7000000c: 'PointDetectorName',
            0x7000000d: 'AmplifierName',
            0x7000000e: 'PinholeName',
            0x7000000f: 'FilterSetName',
            0x70000010: 'FilterName',
            0x70000013: 'IntegratorName',
            0x70000014: 'ChannelName',
            0x70000015: 'DetectorGainBc1',
            0x70000016: 'DetectorGainBc2',
            0x70000017: 'AmplifierGainBc1',
            0x70000018: 'AmplifierGainBc2',
            0x70000019: 'AmplifierOffsetBc1',
            0x70000020: 'AmplifierOffsetBc2',
            0x70000021: 'SpectralScanChannels',
            0x70000022: 'SpiWavelengthStart',
            0x70000023: 'SpiWavelengthStop',
            0x70000026: 'DyeName',
            0x70000027: 'DyeFolder',
            # IlluminationChannel
            0x90000001: 'Name',
            0x90000002: 'Power',
            0x90000003: 'Wavelength',
            0x90000004: 'Aquire',
            0x90000005: 'DetchannelName',
            0x90000006: 'PowerBc1',
            0x90000007: 'PowerBc2',
            # BeamSplitter
            0xb0000001: 'FilterSet',
            0xb0000002: 'Filter',
            0xb0000003: 'Name',
            # DataChannel
            0xd0000001: 'Name',
            0xd0000003: 'Acquire',
            0xd0000004: 'Color',
            0xd0000005: 'SampleType',
            0xd0000006: 'BitsPerSample',
            0xd0000007: 'RatioType',
            0xd0000008: 'RatioTrack1',
            0xd0000009: 'RatioTrack2',
            0xd000000a: 'RatioChannel1',
            0xd000000b: 'RatioChannel2',
            0xd000000c: 'RatioConst1',
            0xd000000d: 'RatioConst2',
            0xd000000e: 'RatioConst3',
            0xd000000f: 'RatioConst4',
            0xd0000010: 'RatioConst5',
            0xd0000011: 'RatioConst6',
            0xd0000012: 'RatioFirstImages1',
            0xd0000013: 'RatioFirstImages2',
            0xd0000014: 'DyeName',
            0xd0000015: 'DyeFolder',
            0xd0000016: 'Spectrum',
            0xd0000017: 'Acquire',
            # Timer
            0x12000001: 'Name',
            0x12000002: 'Description',
            0x12000003: 'Interval',
            0x12000004: 'TriggerIn',
            0x12000005: 'TriggerOut',
            0x12000006: 'ActivationTime',
            0x12000007: 'ActivationNumber',
            # Marker
            0x14000001: 'Name',
            0x14000002: 'Description',
            0x14000003: 'TriggerIn',
            0x14000004: 'TriggerOut',
        }
    def NIH_IMAGE_HEADER():
        return [
            ('FileID', 'a8'),
            ('nLines', 'i2'),
            ('PixelsPerLine', 'i2'),
            ('Version', 'i2'),
            ('OldLutMode', 'i2'),
            ('OldnColors', 'i2'),
            ('Colors', 'u1', (3, 32)),
            ('OldColorStart', 'i2'),
            ('ColorWidth', 'i2'),
            ('ExtraColors', 'u2', (6, 3)),
            ('nExtraColors', 'i2'),
            ('ForegroundIndex', 'i2'),
            ('BackgroundIndex', 'i2'),
            ('XScale', 'f8'),
            ('Unused2', 'i2'),
            ('Unused3', 'i2'),
            ('UnitsID', 'i2'),  # NIH_UNITS_TYPE
            ('p1', [('x', 'i2'), ('y', 'i2')]),
            ('p2', [('x', 'i2'), ('y', 'i2')]),
            ('CurveFitType', 'i2'),  # NIH_CURVEFIT_TYPE
            ('nCoefficients', 'i2'),
            ('Coeff', 'f8', 6),
            ('UMsize', 'u1'),
            ('UM', 'a15'),
            ('UnusedBoolean', 'u1'),
            ('BinaryPic', 'b1'),
            ('SliceStart', 'i2'),
            ('SliceEnd', 'i2'),
            ('ScaleMagnification', 'f4'),
            ('nSlices', 'i2'),
            ('SliceSpacing', 'f4'),
            ('CurrentSlice', 'i2'),
            ('FrameInterval', 'f4'),
            ('PixelAspectRatio', 'f4'),
            ('ColorStart', 'i2'),
            ('ColorEnd', 'i2'),
            ('nColors', 'i2'),
            ('Fill1', '3u2'),
            ('Fill2', '3u2'),
            ('Table', 'u1'),  # NIH_COLORTABLE_TYPE
            ('LutMode', 'u1'),  # NIH_LUTMODE_TYPE
            ('InvertedTable', 'b1'),
            ('ZeroClip', 'b1'),
            ('XUnitSize', 'u1'),
            ('XUnit', 'a11'),
            ('StackType', 'i2'),  # NIH_STACKTYPE_TYPE
            # ('UnusedBytes', 'u1', 200)
        ]
    def NIH_COLORTABLE_TYPE():
        return ('CustomTable', 'AppleDefault', 'Pseudo20', 'Pseudo32',
                'Rainbow', 'Fire1', 'Fire2', 'Ice', 'Grays', 'Spectrum')
    def NIH_LUTMODE_TYPE():
        return ('PseudoColor', 'OldAppleDefault', 'OldSpectrum', 'GrayScale',
                'ColorLut', 'CustomGrayscale')
    def NIH_CURVEFIT_TYPE():
        return ('StraightLine', 'Poly2', 'Poly3', 'Poly4', 'Poly5', 'ExpoFit',
                'PowerFit', 'LogFit', 'RodbardFit', 'SpareFit1',
                'Uncalibrated', 'UncalibratedOD')
    def NIH_UNITS_TYPE():
        return ('Nanometers', 'Micrometers', 'Millimeters', 'Centimeters',
                'Meters', 'Kilometers', 'Inches', 'Feet', 'Miles', 'Pixels',
                'OtherUnits')
    def NIH_STACKTYPE_TYPE():
        return ('VolumeStack', 'RGBStack', 'MovieStack', 'HSVStack')
    def TVIPS_HEADER_V1():
        # TVIPS TemData structure from EMMENU Help file
        return [
            ('Version', 'i4'),
            ('CommentV1', 'a80'),
            ('HighTension', 'i4'),
            ('SphericalAberration', 'i4'),
            ('IlluminationAperture', 'i4'),
            ('Magnification', 'i4'),
            ('PostMagnification', 'i4'),
            ('FocalLength', 'i4'),
            ('Defocus', 'i4'),
            ('Astigmatism', 'i4'),
            ('AstigmatismDirection', 'i4'),
            ('BiprismVoltage', 'i4'),
            ('SpecimenTiltAngle', 'i4'),
            ('SpecimenTiltDirection', 'i4'),
            ('IlluminationTiltDirection', 'i4'),
            ('IlluminationTiltAngle', 'i4'),
            ('ImageMode', 'i4'),
            ('EnergySpread', 'i4'),
            ('ChromaticAberration', 'i4'),
            ('ShutterType', 'i4'),
            ('DefocusSpread', 'i4'),
            ('CcdNumber', 'i4'),
            ('CcdSize', 'i4'),
            ('OffsetXV1', 'i4'),
            ('OffsetYV1', 'i4'),
            ('PhysicalPixelSize', 'i4'),
            ('Binning', 'i4'),
            ('ReadoutSpeed', 'i4'),
            ('GainV1', 'i4'),
            ('SensitivityV1', 'i4'),
            ('ExposureTimeV1', 'i4'),
            ('FlatCorrected', 'i4'),
            ('DeadPxCorrected', 'i4'),
            ('ImageMean', 'i4'),
            ('ImageStd', 'i4'),
            ('DisplacementX', 'i4'),
            ('DisplacementY', 'i4'),
            ('DateV1', 'i4'),
            ('TimeV1', 'i4'),
            ('ImageMin', 'i4'),
            ('ImageMax', 'i4'),
            ('ImageStatisticsQuality', 'i4'),
        ]
    def TVIPS_HEADER_V2():
        return [
            ('ImageName', 'V160'),  # utf16
            ('ImageFolder', 'V160'),
            ('ImageSizeX', 'i4'),
            ('ImageSizeY', 'i4'),
            ('ImageSizeZ', 'i4'),
            ('ImageSizeE', 'i4'),
            ('ImageDataType', 'i4'),
            ('Date', 'i4'),
            ('Time', 'i4'),
            ('Comment', 'V1024'),
            ('ImageHistory', 'V1024'),
            ('Scaling', '16f4'),
            ('ImageStatistics', '16c16'),
            ('ImageType', 'i4'),
            ('ImageDisplaType', 'i4'),
            ('PixelSizeX', 'f4'),  # distance between two px in x, [nm]
            ('PixelSizeY', 'f4'),  # distance between two px in y, [nm]
            ('ImageDistanceZ', 'f4'),
            ('ImageDistanceE', 'f4'),
            ('ImageMisc', '32f4'),
            ('TemType', 'V160'),
            ('TemHighTension', 'f4'),
            ('TemAberrations', '32f4'),
            ('TemEnergy', '32f4'),
            ('TemMode', 'i4'),
            ('TemMagnification', 'f4'),
            ('TemMagnificationCorrection', 'f4'),
            ('PostMagnification', 'f4'),
            ('TemStageType', 'i4'),
            ('TemStagePosition', '5f4'),  # x, y, z, a, b
            ('TemImageShift', '2f4'),
            ('TemBeamShift', '2f4'),
            ('TemBeamTilt', '2f4'),
            ('TilingParameters', '7f4'),  # 0: tiling? 1:x 2:y 3: max x
                                          # 4: max y 5: overlap x 6: overlap y
            ('TemIllumination', '3f4'),  # 0: spotsize 1: intensity
            ('TemShutter', 'i4'),
            ('TemMisc', '32f4'),
            ('CameraType', 'V160'),
            ('PhysicalPixelSizeX', 'f4'),
            ('PhysicalPixelSizeY', 'f4'),
            ('OffsetX', 'i4'),
            ('OffsetY', 'i4'),
            ('BinningX', 'i4'),
            ('BinningY', 'i4'),
            ('ExposureTime', 'f4'),
            ('Gain', 'f4'),
            ('ReadoutRate', 'f4'),
            ('FlatfieldDescription', 'V160'),
            ('Sensitivity', 'f4'),
            ('Dose', 'f4'),
            ('CamMisc', '32f4'),
            ('FeiMicroscopeInformation', 'V1024'),
            ('FeiSpecimenInformation', 'V1024'),
            ('Magic', 'u4'),
        ]
    def MM_HEADER():
        # Olympus FluoView MM_Header
        MM_DIMENSION = [
            ('Name', 'a16'),
            ('Size', 'i4'),
            ('Origin', 'f8'),
            ('Resolution', 'f8'),
            ('Unit', 'a64')]
        return [
            ('HeaderFlag', 'i2'),
            ('ImageType', 'u1'),
            ('ImageName', 'a257'),
            ('OffsetData', 'u4'),
            ('PaletteSize', 'i4'),
            ('OffsetPalette0', 'u4'),
            ('OffsetPalette1', 'u4'),
            ('CommentSize', 'i4'),
            ('OffsetComment', 'u4'),
            ('Dimensions', MM_DIMENSION, 10),
            ('OffsetPosition', 'u4'),
            ('MapType', 'i2'),
            ('MapMin', 'f8'),
            ('MapMax', 'f8'),
            ('MinValue', 'f8'),
            ('MaxValue', 'f8'),
            ('OffsetMap', 'u4'),
            ('Gamma', 'f8'),
            ('Offset', 'f8'),
            ('GrayChannel', MM_DIMENSION),
            ('OffsetThumbnail', 'u4'),
            ('VoiceField', 'i4'),
            ('OffsetVoiceField', 'u4'),
        ]
    def MM_DIMENSIONS():
        # Map FluoView MM_Header.Dimensions to axes characters
        return {
            'X': 'X',
            'Y': 'Y',
            'Z': 'Z',
            'T': 'T',
            'CH': 'C',
            'WAVELENGTH': 'C',
            'TIME': 'T',
            'XY': 'R',
            'EVENT': 'V',
            'EXPOSURE': 'L',
        }
    def UIC_TAGS():
        # Map Universal Imaging Corporation MetaMorph internal tag ids to
        # name and type
        from fractions import Fraction
        return [
            ('AutoScale', int),
            ('MinScale', int),
            ('MaxScale', int),
            ('SpatialCalibration', int),
            ('XCalibration', Fraction),
            ('YCalibration', Fraction),
            ('CalibrationUnits', str),
            ('Name', str),
            ('ThreshState', int),
            ('ThreshStateRed', int),
            ('tagid_10', None),  # undefined
            ('ThreshStateGreen', int),
            ('ThreshStateBlue', int),
            ('ThreshStateLo', int),
            ('ThreshStateHi', int),
            ('Zoom', int),
            ('CreateTime', julian_datetime),
            ('LastSavedTime', julian_datetime),
            ('currentBuffer', int),
            ('grayFit', None),
            ('grayPointCount', None),
            ('grayX', Fraction),
            ('grayY', Fraction),
            ('grayMin', Fraction),
            ('grayMax', Fraction),
            ('grayUnitName', str),
            ('StandardLUT', int),
            ('wavelength', int),
            ('StagePosition', '(%i,2,2)u4'),  # N xy positions as fract
            ('CameraChipOffset', '(%i,2,2)u4'),  # N xy offsets as fract
            ('OverlayMask', None),
            ('OverlayCompress', None),
            ('Overlay', None),
            ('SpecialOverlayMask', None),
            ('SpecialOverlayCompress', None),
            ('SpecialOverlay', None),
            ('ImageProperty', read_uic_image_property),
            ('StageLabel', '%ip'),  # N str
            ('AutoScaleLoInfo', Fraction),
            ('AutoScaleHiInfo', Fraction),
            ('AbsoluteZ', '(%i,2)u4'),  # N fractions
            ('AbsoluteZValid', '(%i,)u4'),  # N long
            ('Gamma', 'I'),  # 'I' uses offset
            ('GammaRed', 'I'),
            ('GammaGreen', 'I'),
            ('GammaBlue', 'I'),
            ('CameraBin', '2I'),
            ('NewLUT', int),
            ('ImagePropertyEx', None),
            ('PlaneProperty', int),
            ('UserLutTable', '(256,3)u1'),
            ('RedAutoScaleInfo', int),
            ('RedAutoScaleLoInfo', Fraction),
            ('RedAutoScaleHiInfo', Fraction),
            ('RedMinScaleInfo', int),
            ('RedMaxScaleInfo', int),
            ('GreenAutoScaleInfo', int),
            ('GreenAutoScaleLoInfo', Fraction),
            ('GreenAutoScaleHiInfo', Fraction),
            ('GreenMinScaleInfo', int),
            ('GreenMaxScaleInfo', int),
            ('BlueAutoScaleInfo', int),
            ('BlueAutoScaleLoInfo', Fraction),
            ('BlueAutoScaleHiInfo', Fraction),
            ('BlueMinScaleInfo', int),
            ('BlueMaxScaleInfo', int),
            # ('OverlayPlaneColor', read_uic_overlay_plane_color),
        ]
    def PILATUS_HEADER():
        # PILATUS CBF Header Specification, Version 1.4
        # Map key to [value_indices], type
        return {
            'Detector': ([slice(1, None)], str),
            'Pixel_size': ([1, 4], float),
            'Silicon': ([3], float),
            'Exposure_time': ([1], float),
            'Exposure_period': ([1], float),
            'Tau': ([1], float),
            'Count_cutoff': ([1], int),
            'Threshold_setting': ([1], float),
            'Gain_setting': ([1, 2], str),
            'N_excluded_pixels': ([1], int),
            'Excluded_pixels': ([1], str),
            'Flat_field': ([1], str),
            'Trim_file': ([1], str),
            'Image_path': ([1], str),
            # optional
            'Wavelength': ([1], float),
            'Energy_range': ([1, 2], float),
            'Detector_distance': ([1], float),
            'Detector_Voffset': ([1], float),
            'Beam_xy': ([1, 2], float),
            'Flux': ([1], str),
            'Filter_transmission': ([1], float),
            'Start_angle': ([1], float),
            'Angle_increment': ([1], float),
            'Detector_2theta': ([1], float),
            'Polarization': ([1], float),
            'Alpha': ([1], float),
            'Kappa': ([1], float),
            'Phi': ([1], float),
            'Phi_increment': ([1], float),
            'Chi': ([1], float),
            'Chi_increment': ([1], float),
            'Oscillation_axis': ([slice(1, None)], str),
            'N_oscillations': ([1], int),
            'Start_position': ([1], float),
            'Position_increment': ([1], float),
            'Shutter_time': ([1], float),
            'Omega': ([1], float),
            'Omega_increment': ([1], float)
        }
    def REVERSE_BITORDER_BYTES():
        # Bytes with reversed bitorder
        return (
            b'\x00\x80@\xc0 \xa0`\xe0\x10\x90P\xd00\xb0p\xf0\x08\x88H\xc8('
            b'\xa8h\xe8\x18\x98X\xd88\xb8x\xf8\x04\x84D\xc4$\xa4d\xe4\x14'
            b'\x94T\xd44\xb4t\xf4\x0c\x8cL\xcc,\xacl\xec\x1c\x9c\\\xdc<\xbc|'
            b'\xfc\x02\x82B\xc2"\xa2b\xe2\x12\x92R\xd22\xb2r\xf2\n\x8aJ\xca*'
            b'\xaaj\xea\x1a\x9aZ\xda:\xbaz\xfa\x06\x86F\xc6&\xa6f\xe6\x16'
            b'\x96V\xd66\xb6v\xf6\x0e\x8eN\xce.\xaen\xee\x1e\x9e^\xde>\xbe~'
            b'\xfe\x01\x81A\xc1!\xa1a\xe1\x11\x91Q\xd11\xb1q\xf1\t\x89I\xc9)'
            b'\xa9i\xe9\x19\x99Y\xd99\xb9y\xf9\x05\x85E\xc5%\xa5e\xe5\x15'
            b'\x95U\xd55\xb5u\xf5\r\x8dM\xcd-\xadm\xed\x1d\x9d]\xdd=\xbd}'
            b'\xfd\x03\x83C\xc3#\xa3c\xe3\x13\x93S\xd33\xb3s\xf3\x0b\x8bK'
            b'\xcb+\xabk\xeb\x1b\x9b[\xdb;\xbb{\xfb\x07\x87G\xc7\'\xa7g\xe7'
            b'\x17\x97W\xd77\xb7w\xf7\x0f\x8fO\xcf/\xafo\xef\x1f\x9f_'
            b'\xdf?\xbf\x7f\xff')
    def REVERSE_BITORDER_ARRAY():
        # Numpy array of bytes with reversed bitorder
        return numpy.fromstring(TIFF.REVERSE_BITORDER_BYTES, dtype='uint8')
    def ALLOCATIONGRANULARITY():
        # alignment for writing contiguous data to TIFF
        import mmap  # delayed import
        return mmap.ALLOCATIONGRANULARITY
    # Max line length of printed output
    PRINT_LINE_WIDTH = 100
    # Max number of lines to print
    PRINT_MAX_LINES = 512
def read_tags(fh, byteorder, offsetsize, tagnames,
              customtags=None, maxifds=None):
    """Read tags from chain of IFDs and return as list of dicts.
    The file handle position must be at a valid IFD header.
    """
    if offsetsize == 4:
        offsetformat = byteorder+'I'
        tagnosize = 2
        tagnoformat = byteorder+'H'
        tagsize = 12
        tagformat1 = byteorder+'HH'
        tagformat2 = byteorder+'I4s'
    elif offsetsize == 8:
        offsetformat = byteorder+'Q'
        tagnosize = 8
        tagnoformat = byteorder+'Q'
        tagsize = 20
        tagformat1 = byteorder+'HH'
        tagformat2 = byteorder+'Q8s'
    else:
        raise ValueError("invalid offset size")
    if customtags is None:
        customtags = {}
    if maxifds is None:
        maxifds = 2**32
    result = []
    unpack = struct.unpack
    offset = fh.tell()
    while len(result) < maxifds:
        # loop over IFDs
        try:
            tagno = unpack(tagnoformat, fh.read(tagnosize))[0]
            if tagno > 4096:
                raise ValueError("suspicious number of tags")
        except Exception:
            warnings.warn("corrupted tag list at offset %i" % offset)
            break
        tags = {}
        data = fh.read(tagsize * tagno)
        pos = fh.tell()
        index = 0
        for _ in range(tagno):
            code, type_ = unpack(tagformat1, data[index:index+4])
            count, value = unpack(tagformat2, data[index+4:index+tagsize])
            index += tagsize
            name = tagnames.get(code, str(code))
            try:
                dtype = TIFF.DATA_FORMATS[type_]
            except KeyError:
                raise TiffTag.Error("unknown tag data type %i" % type_)
            fmt = '%s%i%s' % (byteorder, count * int(dtype[0]), dtype[1])
            size = struct.calcsize(fmt)
            if size > offsetsize or code in customtags:
                offset = unpack(offsetformat, value)[0]
                if offset < 8 or offset > fh.size - size:
                    raise TiffTag.Error("invalid tag value offset")
                fh.seek(offset)
                if code in customtags:
                    readfunc = customtags[code][1]
                    value = readfunc(fh, byteorder, dtype, count, offsetsize)
                elif code in tagnames or dtype[-1] == 's':
                    value = unpack(fmt, fh.read(size))
                else:
                    value = read_numpy(fh, byteorder, dtype, count, offsetsize)
            else:
                value = unpack(fmt, value[:size])
            if code not in customtags and code not in TIFF.TAG_TUPLE:
                if len(value) == 1:
                    value = value[0]
            if type_ != 7 and dtype[-1] == 's' and isinstance(value, bytes):
                # TIFF ASCII fields can contain multiple strings,
                #   each terminated with a NUL
                value = bytes2str(stripascii(value))
            tags[name] = value
        result.append(tags)
        # read offset to next page
        fh.seek(pos)
        offset = unpack(offsetformat, fh.read(offsetsize))[0]
        if offset == 0:
            break
        if offset >= fh.size:
            warnings.warn("invalid page offset (%i)" % offset)
            break
        fh.seek(offset)
    if maxifds == 1:
        result = result[0]
    return result
def read_exif_ifd(fh, byteorder, dtype, count, offsetsize):
    """Read EXIF tags from file and return as dict."""
    tags = read_tags(fh, byteorder, offsetsize, TIFF.EXIF_TAGS, maxifds=1)
    if 'ExifVersion' in tags:
        tags['ExifVersion'] = bytes2str(tags['ExifVersion'])
    return tags
def read_gps_ifd(fh, byteorder, dtype, count, offsetsize):
    """Read GPS tags from file and return as dict."""
    return read_tags(fh, byteorder, offsetsize, TIFF.GPS_TAGS, maxifds=1)
def read_interoperability_ifd(fh, byteorder, dtype, count, offsetsize):
    """Read Interoperability tags from file and return as dict."""
    tag_names = {1: 'InteroperabilityIndex'}
    return read_tags(fh, byteorder, offsetsize, tag_names, maxifds=1)
def read_bytes(fh, byteorder, dtype, count, offsetsize):
    """Read tag data from file and return as byte string."""
    dtype = 'b' if dtype[-1] == 's' else byteorder+dtype[-1]
    return fh.read_array(dtype, count).tostring()
def read_utf8(fh, byteorder, dtype, count, offsetsize):
    """Read tag data from file and return as unicode string."""
    return fh.read(count).decode('utf-8')
def read_numpy(fh, byteorder, dtype, count, offsetsize):
    """Read tag data from file and return as numpy array."""
    dtype = 'b' if dtype[-1] == 's' else byteorder+dtype[-1]
    return fh.read_array(dtype, count)
def read_colormap(fh, byteorder, dtype, count, offsetsize):
    """Read ColorMap data from file and return as numpy array."""
    cmap = fh.read_array(byteorder+dtype[-1], count)
    cmap.shape = (3, -1)
    return cmap
def read_json(fh, byteorder, dtype, count, offsetsize):
    """Read JSON tag data from file and return as object."""
    data = fh.read(count)
    try:
        return json.loads(unicode(stripnull(data), 'utf-8'))
    except ValueError:
        warnings.warn("invalid JSON '%s'" % data)
def read_mm_header(fh, byteorder, dtype, count, offsetsize):
    """Read FluoView mm_header tag from file and return as dict."""
    mmh = fh.read_record(TIFF.MM_HEADER, byteorder=byteorder)
    mmh = recarray2dict(mmh)
    mmh['Dimensions'] = [
        (bytes2str(d[0]).strip(), d[1], d[2], d[3], bytes2str(d[4]).strip())
        for d in mmh['Dimensions']]
    d = mmh['GrayChannel']
    mmh['GrayChannel'] = (
        bytes2str(d[0]).strip(), d[1], d[2], d[3], bytes2str(d[4]).strip())
    return mmh
def read_mm_stamp(fh, byteorder, dtype, count, offsetsize):
    """Read FluoView mm_stamp tag from file and return as numpy.ndarray."""
    return fh.read_array(byteorder+'f8', 8)
def read_uic1tag(fh, byteorder, dtype, count, offsetsize, planecount=None):
    """Read MetaMorph STK UIC1Tag from file and return as dict.
    Return empty dictionary if planecount is unknown.
    """
    assert dtype in ('2I', '1I') and byteorder == '<'
    result = {}
    if dtype == '2I':
        # pre MetaMorph 2.5 (not tested)
        values = fh.read_array('<u4', 2*count).reshape(count, 2)
        result = {'ZDistance': values[:, 0] / values[:, 1]}
    elif planecount:
        for _ in range(count):
            tagid = struct.unpack('<I', fh.read(4))[0]
            if tagid in (28, 29, 37, 40, 41):
                # silently skip unexpected tags
                fh.read(4)
                continue
            name, value = read_uic_tag(fh, tagid, planecount, offset=True)
            result[name] = value
    return result
def read_uic2tag(fh, byteorder, dtype, planecount, offsetsize):
    """Read MetaMorph STK UIC2Tag from file and return as dict."""
    assert dtype == '2I' and byteorder == '<'
    values = fh.read_array('<u4', 6*planecount).reshape(planecount, 6)
    return {
        'ZDistance': values[:, 0] / values[:, 1],
        'DateCreated': values[:, 2],  # julian days
        'TimeCreated': values[:, 3],  # milliseconds
        'DateModified': values[:, 4],  # julian days
        'TimeModified': values[:, 5]}  # milliseconds
def read_uic3tag(fh, byteorder, dtype, planecount, offsetsize):
    """Read MetaMorph STK UIC3Tag from file and return as dict."""
    assert dtype == '2I' and byteorder == '<'
    values = fh.read_array('<u4', 2*planecount).reshape(planecount, 2)
    return {'Wavelengths': values[:, 0] / values[:, 1]}
def read_uic4tag(fh, byteorder, dtype, planecount, offsetsize):
    """Read MetaMorph STK UIC4Tag from file and return as dict."""
    assert dtype == '1I' and byteorder == '<'
    result = {}
    while True:
        tagid = struct.unpack('<H', fh.read(2))[0]
        if tagid == 0:
            break
        name, value = read_uic_tag(fh, tagid, planecount, offset=False)
        result[name] = value
    return result
def read_uic_tag(fh, tagid, planecount, offset):
    """Read a single UIC tag value from file and return tag name and value.
    UIC1Tags use an offset.
    """
    def read_int(count=1):
        value = struct.unpack('<%iI' % count, fh.read(4*count))
        return value[0] if count == 1 else value
    try:
        name, dtype = TIFF.UIC_TAGS[tagid]
    except IndexError:
        # unknown tag
        return '_TagId%i' % tagid, read_int()
    Fraction = TIFF.UIC_TAGS[4][1]
    if offset:
        pos = fh.tell()
        if dtype not in (int, None):
            off = read_int()
            if off < 8:
                if dtype is str:
                    return name, ''
                warnings.warn("invalid offset for uic tag '%s': %i" %
                              (name, off))
                return name, off
            fh.seek(off)
    if dtype is None:
        # skip
        name = '_' + name
        value = read_int()
    elif dtype is int:
        # int
        value = read_int()
    elif dtype is Fraction:
        # fraction
        value = read_int(2)
        value = value[0] / value[1]
    elif dtype is julian_datetime:
        # datetime
        value = julian_datetime(*read_int(2))
    elif dtype is read_uic_image_property:
        # ImagePropertyEx
        value = read_uic_image_property(fh)
    elif dtype is str:
        # pascal string
        size = read_int()
        if 0 <= size < 2**10:
            value = struct.unpack('%is' % size, fh.read(size))[0][:-1]
            value = bytes2str(stripnull(value))
        elif offset:
            value = ''
            warnings.warn("corrupt string in uic tag '%s'" % name)
        else:
            raise ValueError("invalid string size %i" % size)
    elif dtype == '%ip':
        # sequence of pascal strings
        value = []
        for _ in range(planecount):
            size = read_int()
            if 0 <= size < 2**10:
                string = struct.unpack('%is' % size, fh.read(size))[0][:-1]
                string = bytes2str(stripnull(string))
                value.append(string)
            elif offset:
                warnings.warn("corrupt string in uic tag '%s'" % name)
            else:
                raise ValueError("invalid string size %i" % size)
    else:
        # struct or numpy type
        dtype = '<' + dtype
        if '%i' in dtype:
            dtype = dtype % planecount
        if '(' in dtype:
            # numpy type
            value = fh.read_array(dtype, 1)[0]
            if value.shape[-1] == 2:
                # assume fractions
                value = value[..., 0] / value[..., 1]
        else:
            # struct format
            value = struct.unpack(dtype, fh.read(struct.calcsize(dtype)))
            if len(value) == 1:
                value = value[0]
    if offset:
        fh.seek(pos + 4)
    return name, value
def read_uic_image_property(fh):
    """Read UIC ImagePropertyEx tag from file and return as dict."""
    # TODO: test this
    size = struct.unpack('B', fh.read(1))[0]
    name = struct.unpack('%is' % size, fh.read(size))[0][:-1]
    flags, prop = struct.unpack('<IB', fh.read(5))
    if prop == 1:
        value = struct.unpack('II', fh.read(8))
        value = value[0] / value[1]
    else:
        size = struct.unpack('B', fh.read(1))[0]
        value = struct.unpack('%is' % size, fh.read(size))[0]
    return dict(name=name, flags=flags, value=value)
def read_cz_lsminfo(fh, byteorder, dtype, count, offsetsize):
    """Read CZ_LSMINFO tag from file and return as dict."""
    assert byteorder == '<'
    magic_number, structure_size = struct.unpack('<II', fh.read(8))
    if magic_number not in (50350412, 67127628):
        raise ValueError("invalid CZ_LSMINFO structure")
    fh.seek(-8, 1)
    if structure_size < numpy.dtype(TIFF.CZ_LSMINFO).itemsize:
        # adjust structure according to structure_size
        lsminfo = []
        size = 0
        for name, dtype in TIFF.CZ_LSMINFO:
            size += numpy.dtype(dtype).itemsize
            if size > structure_size:
                break
            lsminfo.append((name, dtype))
    else:
        lsminfo = TIFF.CZ_LSMINFO
    lsminfo = fh.read_record(lsminfo, byteorder=byteorder)
    lsminfo = recarray2dict(lsminfo)
    # read LSM info subrecords at offsets
    for name, reader in TIFF.CZ_LSMINFO_READERS.items():
        if reader is None:
            continue
        offset = lsminfo.get('Offset' + name, 0)
        if offset < 8:
            continue
        fh.seek(offset)
        try:
            lsminfo[name] = reader(fh)
        except ValueError:
            pass
    return lsminfo
def read_lsm_floatpairs(fh):
    """Read LSM sequence of float pairs from file and return as list."""
    size = struct.unpack('<i', fh.read(4))[0]
    return fh.read_array('<2f8', count=size)
def read_lsm_positions(fh):
    """Read LSM positions from file and return as list."""
    size = struct.unpack('<I', fh.read(4))[0]
    return fh.read_array('<2f8', count=size)
def read_lsm_timestamps(fh):
    """Read LSM time stamps from file and return as list."""
    size, count = struct.unpack('<ii', fh.read(8))
    if size != (8 + 8 * count):
        warnings.warn("invalid LSM TimeStamps block")
        return []
    # return struct.unpack('<%dd' % count, fh.read(8*count))
    return fh.read_array('<f8', count=count)
def read_lsm_eventlist(fh):
    """Read LSM events from file and return as list of (time, type, text)."""
    count = struct.unpack('<II', fh.read(8))[1]
    events = []
    while count > 0:
        esize, etime, etype = struct.unpack('<IdI', fh.read(16))
        etext = bytes2str(stripnull(fh.read(esize - 16)))
        events.append((etime, etype, etext))
        count -= 1
    return events
def read_lsm_channelcolors(fh):
    """Read LSM ChannelColors structure from file and return as dict."""
    result = {'Mono': False, 'Colors': [], 'ColorNames': []}
    pos = fh.tell()
    (size, ncolors, nnames,
     coffset, noffset, mono) = struct.unpack('<IIIIII', fh.read(24))
    if ncolors != nnames:
        warnings.warn("invalid LSM ChannelColors structure")
        return result
    result['Mono'] = bool(mono)
    # Colors
    fh.seek(pos + coffset)
    colors = fh.read_array('uint8', count=ncolors*4).reshape((ncolors, 4))
    result['Colors'] = colors.tolist()
    # ColorNames
    fh.seek(pos + noffset)
    buffer = fh.read(size - noffset)
    names = []
    while len(buffer) > 4:
        size = struct.unpack('<I', buffer[:4])[0]
        names.append(bytes2str(buffer[4:3+size]))
        buffer = buffer[4+size:]
    result['ColorNames'] = names
    return result
def read_lsm_scaninfo(fh):
    """Read LSM ScanInfo structure from file and return as dict."""
    block = {}
    blocks = [block]
    unpack = struct.unpack
    if struct.unpack('<I', fh.read(4))[0] != 0x10000000:
        # not a Recording sub block
        warnings.warn("invalid LSM ScanInfo structure")
        return block
    fh.read(8)
    while True:
        entry, dtype, size = unpack('<III', fh.read(12))
        if dtype == 2:
            # ascii
            value = bytes2str(stripnull(fh.read(size)))
        elif dtype == 4:
            # long
            value = unpack('<i', fh.read(4))[0]
        elif dtype == 5:
            # rational
            value = unpack('<d', fh.read(8))[0]
        else:
            value = 0
        if entry in TIFF.CZ_LSMINFO_SCANINFO_ARRAYS:
            blocks.append(block)
            name = TIFF.CZ_LSMINFO_SCANINFO_ARRAYS[entry]
            newobj = []
            block[name] = newobj
            block = newobj
        elif entry in TIFF.CZ_LSMINFO_SCANINFO_STRUCTS:
            blocks.append(block)
            newobj = {}
            block.append(newobj)
            block = newobj
        elif entry in TIFF.CZ_LSMINFO_SCANINFO_ATTRIBUTES:
            name = TIFF.CZ_LSMINFO_SCANINFO_ATTRIBUTES[entry]
            block[name] = value
        elif entry == 0xffffffff:
            # end sub block
            block = blocks.pop()
        else:
            # unknown entry
            block["Entry0x%x" % entry] = value
        if not blocks:
            break
    return block
def read_tvips_header(fh, byteorder, dtype, count, offsetsize):
    """Read TVIPS EM-MENU headers and return as dict."""
    result = {}
    header = fh.read_record(TIFF.TVIPS_HEADER_V1, byteorder=byteorder)
    for name, typestr in TIFF.TVIPS_HEADER_V1:
        result[name] = header[name].tolist()
    if header['Version'] == 2:
        header = fh.read_record(TIFF.TVIPS_HEADER_V2, byteorder=byteorder)
        if header['Magic'] != int(0xaaaaaaaa):
            warnings.warn("invalid TVIPS v2 magic number")
            return {}
        # decode utf16 strings
        for name, typestr in TIFF.TVIPS_HEADER_V2:
            if typestr.startswith('V'):
                s = header[name].tostring().decode('utf16', errors='ignore')
                result[name] = stripnull(s, null='\0')
            else:
                result[name] = header[name].tolist()
        # convert nm to m
        for axis in 'XY':
            header['PhysicalPixelSize' + axis] /= 1e9
            header['PixelSize' + axis] /= 1e9
    elif header.version != 1:
        warnings.warn("unknown TVIPS header version")
        return {}
    return result
def read_fei_metadata(fh, byteorder, dtype, count, offsetsize):
    """Read FEI SFEG/HELIOS headers and return as dict."""
    result = {}
    section = {}
    data = bytes2str(fh.read(count))
    for line in data.splitlines():
        line = line.strip()
        if line.startswith('['):
            section = {}
            result[line[1:-1]] = section
            continue
        try:
            key, value = line.split('=')
        except ValueError:
            continue
        section[key] = astype(value)
    return result
def read_cz_sem(fh, byteorder, dtype, count, offsetsize):
    """Read Zeiss SEM tag and return as dict."""
    result = {'': ()}
    key = None
    data = bytes2str(fh.read(count))
    for line in data.splitlines():
        if line.isupper():
            key = line.lower()
        elif key:
            try:
                name, value = line.split('=')
            except ValueError:
                continue
            value = value.strip()
            unit = ''
            try:
                v, u = value.split()
                number = astype(v, (int, float))
                if number != v:
                    value = number
                    unit = u
            except Exception:
                number = astype(value, (int, float))
                if number != value:
                    value = number
                if value in ('No', 'Off'):
                    value = False
                elif value in ('Yes', 'On'):
                    value = True
            result[key] = (name.strip(), value)
            if unit:
                result[key] += (unit,)
            key = None
        else:
            result[''] += (astype(line, (int, float)),)
    return result
def read_nih_image_header(fh, byteorder, dtype, count, offsetsize):
    """Read NIH_IMAGE_HEADER tag from file and return as dict."""
    a = fh.read_record(TIFF.NIH_IMAGE_HEADER, byteorder=byteorder)
    a = a.newbyteorder(byteorder)
    a = recarray2dict(a)
    a['XUnit'] = a['XUnit'][:a['XUnitSize']]
    a['UM'] = a['UM'][:a['UMsize']]
    return a
def read_scanimage_metadata(fh):
    """Read ScanImage BigTIFF v3 static and ROI metadata from open file.
    Return non-varying frame data as dict and ROI group data as JSON.
    The settings can be used to read image data and metadata without parsing
    the TIFF file.
    Raise ValueError if file does not contain valid ScanImage v3 metadata.
    """
    fh.seek(0)
    try:
        byteorder, version = struct.unpack('<2sH', fh.read(4))
        if byteorder != b'II' or version != 43:
            raise Exception
        fh.seek(16)
        magic, version, size0, size1 = struct.unpack('<IIII', fh.read(16))
        if magic != 117637889 or version != 3:
            raise Exception
    except Exception:
        raise ValueError("not a ScanImage BigTIFF v3 file")
    frame_data = matlabstr2py(bytes2str(fh.read(size0)[:-1]))
    roi_data = read_json(fh, '<', None, size1, None)
    return frame_data, roi_data
def read_micromanager_metadata(fh):
    """Read MicroManager non-TIFF settings from open file and return as dict.
    The settings can be used to read image data without parsing the TIFF file.
    Raise ValueError if the file does not contain valid MicroManager metadata.
    """
    fh.seek(0)
    try:
        byteorder = {b'II': '<', b'MM': '>'}[fh.read(2)]
    except IndexError:
        raise ValueError("not a MicroManager TIFF file")
    result = {}
    fh.seek(8)
    (index_header, index_offset, display_header, display_offset,
     comments_header, comments_offset, summary_header, summary_length
     ) = struct.unpack(byteorder + "IIIIIIII", fh.read(32))
    if summary_header != 2355492:
        raise ValueError("invalid MicroManager summary header")
    result['Summary'] = read_json(fh, byteorder, None, summary_length, None)
    if index_header != 54773648:
        raise ValueError("invalid MicroManager index header")
    fh.seek(index_offset)
    header, count = struct.unpack(byteorder + "II", fh.read(8))
    if header != 3453623:
        raise ValueError("invalid MicroManager index header")
    data = struct.unpack(byteorder + "IIIII"*count, fh.read(20*count))
    result['IndexMap'] = {'Channel': data[::5],
                          'Slice': data[1::5],
                          'Frame': data[2::5],
                          'Position': data[3::5],
                          'Offset': data[4::5]}
    if display_header != 483765892:
        raise ValueError("invalid MicroManager display header")
    fh.seek(display_offset)
    header, count = struct.unpack(byteorder + "II", fh.read(8))
    if header != 347834724:
        raise ValueError("invalid MicroManager display header")
    result['DisplaySettings'] = read_json(fh, byteorder, None, count, None)
    if comments_header != 99384722:
        raise ValueError("invalid MicroManager comments header")
    fh.seek(comments_offset)
    header, count = struct.unpack(byteorder + "II", fh.read(8))
    if header != 84720485:
        raise ValueError("invalid MicroManager comments header")
    result['Comments'] = read_json(fh, byteorder, None, count, None)
    return result
def read_metaseries_catalog(fh):
    """Read MetaSeries non-TIFF hint catalog from file.
    Raise ValueError if the file does not contain a valid hint catalog.
    """
    # TODO: implement read_metaseries_catalog
    raise NotImplementedError()
def imagej_metadata(data, bytecounts, byteorder):
    """Return IJMetadata tag value as dict.
    The 'info' string can have multiple formats, e.g. OIF or ScanImage,
    that might be parsed into dicts using the matlabstr2py or
    oiffile.SettingsFile functions.
    """
    def readstring(data, byteorder):
        return data.decode('utf-16' + {'>': 'be', '<': 'le'}[byteorder])
    def readdouble(data, byteorder):
        return struct.unpack(byteorder+('d' * (len(data) // 8)), data)
    def readbytes(data, byteorder):
        return numpy.fromstring(data, 'uint8')
    metadata_types = {  # big endian
        b'info': ('Info', readstring),
        b'labl': ('Labels', readstring),
        b'rang': ('Ranges', readdouble),
        b'luts': ('LUTs', readbytes),
        b'roi ': ('ROI', readbytes),
        b'over': ('Overlays', readbytes)}
    metadata_types.update(  # little endian
        dict((k[::-1], v) for k, v in metadata_types.items()))
    if not bytecounts:
        raise ValueError("no ImageJ metadata")
    if not data[:4] in (b'IJIJ', b'JIJI'):
        raise ValueError("invalid ImageJ metadata")
    header_size = bytecounts[0]
    if header_size < 12 or header_size > 804:
        raise ValueError("invalid ImageJ metadata header size")
    ntypes = (header_size - 4) // 8
    header = struct.unpack(byteorder+'4sI'*ntypes, data[4:4+ntypes*8])
    pos = 4 + ntypes * 8
    counter = 0
    result = {}
    for mtype, count in zip(header[::2], header[1::2]):
        values = []
        name, func = metadata_types.get(mtype, (bytes2str(mtype), read_bytes))
        for _ in range(count):
            counter += 1
            pos1 = pos + bytecounts[counter]
            values.append(func(data[pos:pos1], byteorder))
            pos = pos1
        result[name.strip()] = values[0] if count == 1 else values
    return result
def imagej_description_metadata(description):
    """Return metatata from ImageJ image description as dict.
    Raise ValueError if not a valid ImageJ description.
    >>> description = 'ImageJ=1.11a\\nimages=510\\nhyperstack=true\\n'
    >>> imagej_description_metadata(description)  # doctest: +SKIP
    {'ImageJ': '1.11a', 'images': 510, 'hyperstack': True}
    """
    def _bool(val):
        return {'true': True, 'false': False}[val.lower()]
    result = {}
    for line in description.splitlines():
        try:
            key, val = line.split('=')
        except Exception:
            continue
        key = key.strip()
        val = val.strip()
        for dtype in (int, float, _bool):
            try:
                val = dtype(val)
                break
            except Exception:
                pass
        result[key] = val
    if 'ImageJ' not in result:
        raise ValueError("not a ImageJ image description")
    return result
def imagej_description(shape, rgb=None, colormaped=False, version='1.11a',
                       hyperstack=None, mode=None, loop=None, **kwargs):
    """Return ImageJ image description from data shape.
    ImageJ can handle up to 6 dimensions in order TZCYXS.
    >>> imagej_description((51, 5, 2, 196, 171))  # doctest: +SKIP
    ImageJ=1.11a
    images=510
    channels=2
    slices=5
    frames=51
    hyperstack=true
    mode=grayscale
    loop=false
    """
    if colormaped:
        raise NotImplementedError("ImageJ colormapping not supported")
    shape = imagej_shape(shape, rgb=rgb)
    rgb = shape[-1] in (3, 4)
    result = ['ImageJ=%s' % version]
    append = []
    result.append('images=%i' % product(shape[:-3]))
    if hyperstack is None:
        hyperstack = True
        append.append('hyperstack=true')
    else:
        append.append('hyperstack=%s' % bool(hyperstack))
    if shape[2] > 1:
        result.append('channels=%i' % shape[2])
    if mode is None and not rgb:
        mode = 'grayscale'
    if hyperstack and mode:
        append.append('mode=%s' % mode)
    if shape[1] > 1:
        result.append('slices=%i' % shape[1])
    if shape[0] > 1:
        result.append("frames=%i" % shape[0])
        if loop is None:
            append.append('loop=false')
    if loop is not None:
        append.append('loop=%s' % bool(loop))
    for key, value in kwargs.items():
        append.append('%s=%s' % (key.lower(), value))
    return '\n'.join(result + append + [''])
def imagej_shape(shape, rgb=None):
    """Return shape normalized to 6D ImageJ hyperstack TZCYXS.
    Raise ValueError if not a valid ImageJ hyperstack shape.
    >>> imagej_shape((2, 3, 4, 5, 3), False)
    (2, 3, 4, 5, 3, 1)
    """
    shape = tuple(int(i) for i in shape)
    ndim = len(shape)
    if 1 > ndim > 6:
        raise ValueError("invalid ImageJ hyperstack: not 2 to 6 dimensional")
    if rgb is None:
        rgb = shape[-1] in (3, 4) and ndim > 2
    if rgb and shape[-1] not in (3, 4):
        raise ValueError("invalid ImageJ hyperstack: not a RGB image")
    if not rgb and ndim == 6 and shape[-1] != 1:
        raise ValueError("invalid ImageJ hyperstack: not a non-RGB image")
    if rgb or shape[-1] == 1:
        return (1, ) * (6 - ndim) + shape
    return (1, ) * (5 - ndim) + shape + (1,)
def json_description(shape, **metadata):
    """Return JSON image description from data shape and other meta data.
    Return UTF-8 encoded JSON.
    >>> json_description((256, 256, 3), axes='YXS')  # doctest: +SKIP
    b'{"shape": [256, 256, 3], "axes": "YXS"}'
    """
    metadata.update(shape=shape)
    return json.dumps(metadata)  # .encode('utf-8')
def json_description_metadata(description):
    """Return metatata from JSON formated image description as dict.
    Raise ValuError if description is of unknown format.
    >>> description = '{"shape": [256, 256, 3], "axes": "YXS"}'
    >>> json_description_metadata(description)  # doctest: +SKIP
    {'shape': [256, 256, 3], 'axes': 'YXS'}
    >>> json_description_metadata('shape=(256, 256, 3)')
    {'shape': (256, 256, 3)}
    """
    if description[:6] == 'shape=':
        # old style 'shaped' description; not JSON
        shape = tuple(int(i) for i in description[7:-1].split(','))
        return dict(shape=shape)
    if description[:1] == '{' and description[-1:] == '}':
        # JSON description
        return json.loads(description)
    raise ValueError("invalid JSON image description", description)
def fluoview_description_metadata(description, ignoresections=None):
    """Return metatata from FluoView image description as dict.
    The FluoView image description format is unspecified. Expect failures.
    >>> descr = ('[Intensity Mapping]\\nMap Ch0: Range=00000 to 02047\\n'
    ...          '[Intensity Mapping End]')
    >>> fluoview_description_metadata(descr)
    {'Intensity Mapping': {'Map Ch0: Range': '00000 to 02047'}}
    """
    if not description.startswith('['):
        raise ValueError("invalid FluoView image description")
    if ignoresections is None:
        ignoresections = {'Region Info (Fields)', 'Protocol Description'}
    result = {}
    sections = [result]
    comment = False
    for line in description.splitlines():
        if not comment:
            line = line.strip()
        if not line:
            continue
        if line[0] == '[':
            if line[-5:] == ' End]':
                # close section
                del sections[-1]
                section = sections[-1]
                name = line[1:-5]
                if comment:
                    section[name] = '\n'.join(section[name])
                if name[:4] == 'LUT ':
                    a = numpy.array(section[name], dtype='uint8')
                    a.shape = -1, 3
                    section[name] = a
                continue
            # new section
            comment = False
            name = line[1:-1]
            if name[:4] == 'LUT ':
                section = []
            elif name in ignoresections:
                section = []
                comment = True
            else:
                section = {}
            sections.append(section)
            result[name] = section
            continue
        # add entry
        if comment:
            section.append(line)
            continue
        line = line.split('=', 1)
        if len(line) == 1:
            section[line[0].strip()] = None
            continue
        key, value = line
        if key[:4] == 'RGB ':
            section.extend(int(rgb) for rgb in value.split())
        else:
            section[key.strip()] = astype(value.strip())
    return result
def pilatus_description_metadata(description):
    """Return metatata from Pilatus image description as dict.
    Return metadata from Pilatus pixel array detectors by Dectris, created
    by camserver or TVX software.
    >>> pilatus_description_metadata('# Pixel_size 172e-6 m x 172e-6 m')
    {'Pixel_size': (0.000172, 0.000172)}
    """
    result = {}
    if not description.startswith('# '):
        return result
    for c in '#:=,()':
        description = description.replace(c, ' ')
    for line in description.split('\n'):
        if line[:2] != '  ':
            continue
        line = line.split()
        name = line[0]
        if line[0] not in TIFF.PILATUS_HEADER:
            try:
                result['DateTime'] = datetime.datetime.strptime(
                    ' '.join(line), '%Y-%m-%dT%H %M %S.%f')
            except Exception:
                result[name] = ' '.join(line[1:])
            continue
        indices, dtype = TIFF.PILATUS_HEADER[line[0]]
        if isinstance(indices[0], slice):
            # assumes one slice
            values = line[indices[0]]
        else:
            values = [line[i] for i in indices]
        if dtype is float and values[0] == 'not':
            values = ['NaN']
        values = tuple(dtype(v) for v in values)
        if dtype == str:
            values = ' '.join(values)
        elif len(values) == 1:
            values = values[0]
        result[name] = values
    return result
def svs_description_metadata(description):
    """Return metatata from Aperio image description as dict.
    The Aperio image description format is unspecified. Expect failures.
    >>> svs_description_metadata('Aperio Image Library v1.0')
    {'Aperio Image Library': 'v1.0'}
    """
    if not description.startswith('Aperio Image Library '):
        raise ValueError("invalid Aperio image description")
    result = {}
    lines = description.split('\n')
    key, value = lines[0].strip().rsplit(None, 1)  # 'Aperio Image Library'
    result[key.strip()] = value.strip()
    if len(lines) == 1:
        return result
    items = lines[1].split('|')
    result[''] = items[0].strip()  # TODO: parse this?
    for item in items[1:]:
        key, value = item.split(' = ')
        result[key.strip()] = astype(value.strip())
    return result
def stk_description_metadata(description):
    """Return metadata from MetaMorph image description as list of dict.
    The MetaMorph image description format is unspecified. Expect failures.
    """
    description = description.strip()
    if not description:
        return []
    try:
        description = bytes2str(description)
    except UnicodeDecodeError:
        warnings.warn("failed to parse MetaMorph image description")
        return []
    result = []
    for plane in description.split('\x00'):
        d = {}
        for line in plane.split('\r\n'):
            line = line.split(':', 1)
            if len(line) > 1:
                name, value = line
                d[name.strip()] = astype(value.strip())
            else:
                value = line[0].strip()
                if value:
                    if '' in d:
                        d[''].append(value)
                    else:
                        d[''] = [value]
        result.append(d)
    return result
def metaseries_description_metadata(description):
    """Return metatata from MetaSeries image description as dict."""
    if not description.startswith('<MetaData>'):
        raise ValueError("invalid MetaSeries image description")
    from xml.etree import cElementTree as etree  # delayed import
    root = etree.fromstring(description)
    types = {'float': float, 'int': int,
             'bool': lambda x: asbool(x, 'on', 'off')}
    def parse(root, result):
        # recursive
        for child in root:
            attrib = child.attrib
            if not attrib:
                result[child.tag] = parse(child, {})
                continue
            if 'id' in attrib:
                i = attrib['id']
                t = attrib['type']
                v = attrib['value']
                if t in types:
                    result[i] = types[t](v)
                else:
                    result[i] = v
        return result
    adict = parse(root, {})
    if 'Description' in adict:
        adict['Description'] = adict['Description'].replace('&#13;&#10;', '\n')
    return adict
def scanimage_description_metadata(description):
    """Return metatata from ScanImage image description as dict."""
    return matlabstr2py(description)
def scanimage_artist_metadata(artist):
    """Return metatata from ScanImage artist tag as dict."""
    try:
        return json.loads(artist)
    except ValueError:
        warnings.warn("invalid JSON '%s'" % artist)
def _replace_by(module_function, package=__package__, warn=None, prefix='_'):
    """Try replace decorated function by module.function."""
    def _warn(e, warn):
        if warn is None:
            warn = "\n  Functionality might be degraded or be slow.\n"
        elif warn is True:
            warn = ''
        elif not warn:
            return
        warnings.warn("%s%s" % (e, warn))
    try:
        from importlib import import_module
    except ImportError as e:
        _warn(e, warn)
        return identityfunc
    def decorate(func, module_function=module_function, warn=warn):
        module, function = module_function.split('.')
        try:
            if package:
                module = import_module('.' + module, package=package)
            else:
                module = import_module(module)
        except Exception as e:
            _warn(e, warn)
            return func
        try:
            func, oldfunc = getattr(module, function), func
        except Exception as e:
            _warn(e, warn)
            return func
        globals()[prefix + func.__name__] = oldfunc
        return func
    return decorate
def decode_floats(data):
    """Decode floating point horizontal differencing.
    The TIFF predictor type 3 reorders the bytes of the image values and
    applies horizontal byte differencing to improve compression of floating
    point images. The ordering of interleaved color channels is preserved.
    Parameters
    ----------
    data : numpy.ndarray
        The image to be decoded. The dtype must be a floating point.
        The shape must include the number of contiguous samples per pixel
        even if 1.
    """
    shape = data.shape
    dtype = data.dtype
    if len(shape) < 3:
        raise ValueError('invalid data shape')
    if dtype.char not in 'dfe':
        raise ValueError('not a floating point image')
    littleendian = data.dtype.byteorder == '<' or (
        sys.byteorder == 'little' and data.dtype.byteorder == '=')
    # undo horizontal byte differencing
    data = data.view('uint8')
    data.shape = shape[:-2] + (-1,) + shape[-1:]
    numpy.cumsum(data, axis=-2, dtype='uint8', out=data)
    # reorder bytes
    if littleendian:
        data.shape = shape[:-2] + (-1,) + shape[-2:]
    data = numpy.swapaxes(data, -3, -2)
    data = numpy.swapaxes(data, -2, -1)
    data = data[..., ::-1]
    # back to float
    data = numpy.ascontiguousarray(data)
    data = data.view(dtype)
    data.shape = shape
    return data
def decode_jpeg(encoded, tables=b'', photometric=None,
                ycbcrsubsampling=None, ycbcrpositioning=None):
    """Decode JPEG encoded byte string (using _czifile extension module)."""
    from czifile import _czifile
    image = _czifile.decode_jpeg(encoded, tables)
    if photometric == 2 and ycbcrsubsampling and ycbcrpositioning:
        # TODO: convert YCbCr to RGB
        pass
    return image.tostring()
@_replace_by('_tifffile.decode_packbits')
def decode_packbits(encoded):
    """Decompress PackBits encoded byte string.
    PackBits is a simple byte-oriented run-length compression scheme.
    """
    func = ord if sys.version[0] == '2' else identityfunc
    result = []
    result_extend = result.extend
    i = 0
    try:
        while True:
            n = func(encoded[i]) + 1
            i += 1
            if n < 129:
                result_extend(encoded[i:i+n])
                i += n
            elif n > 129:
                result_extend(encoded[i:i+1] * (258-n))
                i += 1
    except IndexError:
        pass
    return b''.join(result) if sys.version[0] == '2' else bytes(result)
@_replace_by('_tifffile.decode_lzw')
def decode_lzw(encoded):
    """Decompress LZW (Lempel-Ziv-Welch) encoded TIFF strip (byte string).
    The strip must begin with a CLEAR code and end with an EOI code.
    This is an implementation of the LZW decoding algorithm described in (1).
    It is not compatible with old style LZW compressed files like quad-lzw.tif.
    """
    len_encoded = len(encoded)
    bitcount_max = len_encoded * 8
    unpack = struct.unpack
    if sys.version[0] == '2':
        newtable = [chr(i) for i in range(256)]
    else:
        newtable = [bytes([i]) for i in range(256)]
    newtable.extend((0, 0))
    def next_code():
        """Return integer of 'bitw' bits at 'bitcount' position in encoded."""
        start = bitcount // 8
        s = encoded[start:start+4]
        try:
            code = unpack('>I', s)[0]
        except Exception:
            code = unpack('>I', s + b'\x00'*(4-len(s)))[0]
        code <<= bitcount % 8
        code &= mask
        return code >> shr
    switchbitch = {  # code: bit-width, shr-bits, bit-mask
        255: (9, 23, int(9*'1'+'0'*23, 2)),
        511: (10, 22, int(10*'1'+'0'*22, 2)),
        1023: (11, 21, int(11*'1'+'0'*21, 2)),
        2047: (12, 20, int(12*'1'+'0'*20, 2)), }
    bitw, shr, mask = switchbitch[255]
    bitcount = 0
    if len_encoded < 4:
        raise ValueError("strip must be at least 4 characters long")
    if next_code() != 256:
        raise ValueError("strip must begin with CLEAR code")
    code = 0
    oldcode = 0
    result = []
    result_append = result.append
    while True:
        code = next_code()  # ~5% faster when inlining this function
        bitcount += bitw
        if code == 257 or bitcount >= bitcount_max:  # EOI
            break
        if code == 256:  # CLEAR
            table = newtable[:]
            table_append = table.append
            lentable = 258
            bitw, shr, mask = switchbitch[255]
            code = next_code()
            bitcount += bitw
            if code == 257:  # EOI
                break
            result_append(table[code])
        else:
            if code < lentable:
                decoded = table[code]
                newcode = table[oldcode] + decoded[:1]
            else:
                newcode = table[oldcode]
                newcode += newcode[:1]
                decoded = newcode
            result_append(decoded)
            table_append(newcode)
            lentable += 1
        oldcode = code
        if lentable in switchbitch:
            bitw, shr, mask = switchbitch[lentable]
    if code != 257:
        warnings.warn("unexpected end of lzw stream (code %i)" % code)
    return b''.join(result)
@_replace_by('_tifffile.unpack_ints')
def unpack_ints(data, dtype, itemsize, runlen=0):
    """Decompress byte string to array of integers of any bit size <= 32.
    This Python implementation is slow and only handles itemsizes 1, 2, 4, 8,
    16, 32, and 64.
    Parameters
    ----------
    data : byte str
        Data to decompress.
    dtype : numpy.dtype or str
        A numpy boolean or integer type.
    itemsize : int
        Number of bits per integer.
    runlen : int
        Number of consecutive integers, after which to start at next byte.
    Examples
    --------
    >>> unpack_ints(b'a', 'B', 1)
    array([0, 1, 1, 0, 0, 0, 0, 1], dtype=uint8)
    >>> unpack_ints(b'ab', 'B', 2)
    array([1, 2, 0, 1, 1, 2, 0, 2], dtype=uint8)
    """
    if itemsize == 1:  # bitarray
        data = numpy.fromstring(data, '|B')
        data = numpy.unpackbits(data)
        if runlen % 8:
            data = data.reshape(-1, runlen + (8 - runlen % 8))
            data = data[:, :runlen].reshape(-1)
        return data.astype(dtype)
    dtype = numpy.dtype(dtype)
    if itemsize in (8, 16, 32, 64):
        return numpy.fromstring(data, dtype)
    if itemsize not in (1, 2, 4, 8, 16, 32):
        raise ValueError("itemsize not supported: %i" % itemsize)
    if dtype.kind not in "biu":
        raise ValueError("invalid dtype")
    itembytes = next(i for i in (1, 2, 4, 8) if 8 * i >= itemsize)
    if itembytes != dtype.itemsize:
        raise ValueError("dtype.itemsize too small")
    if runlen == 0:
        runlen = (8 * len(data)) // itemsize
    skipbits = runlen * itemsize % 8
    if skipbits:
        skipbits = 8 - skipbits
    shrbits = itembytes*8 - itemsize
    bitmask = int(itemsize*'1'+'0'*shrbits, 2)
    dtypestr = '>' + dtype.char  # dtype always big endian?
    unpack = struct.unpack
    l = runlen * (len(data)*8 // (runlen*itemsize + skipbits))
    result = numpy.empty((l,), dtype)
    bitcount = 0
    for i in range(l):
        start = bitcount // 8
        s = data[start:start+itembytes]
        try:
            code = unpack(dtypestr, s)[0]
        except Exception:
            code = unpack(dtypestr, s + b'\x00'*(itembytes-len(s)))[0]
        code <<= bitcount % 8
        code &= bitmask
        result[i] = code >> shrbits
        bitcount += itemsize
        if (i+1) % runlen == 0:
            bitcount += skipbits
    return result
def unpack_rgb(data, dtype='<B', bitspersample=(5, 6, 5), rescale=True):
    """Return array from byte string containing packed samples.
    Use to unpack RGB565 or RGB555 to RGB888 format.
    Parameters
    ----------
    data : byte str
        The data to be decoded. Samples in each pixel are stored consecutively.
        Pixels are aligned to 8, 16, or 32 bit boundaries.
    dtype : numpy.dtype
        The sample data type. The byteorder applies also to the data stream.
    bitspersample : tuple
        Number of bits for each sample in a pixel.
    rescale : bool
        Upscale samples to the number of bits in dtype.
    Returns
    -------
    result : ndarray
        Flattened array of unpacked samples of native dtype.
    Examples
    --------
    >>> data = struct.pack('BBBB', 0x21, 0x08, 0xff, 0xff)
    >>> print(unpack_rgb(data, '<B', (5, 6, 5), False))
    [ 1  1  1 31 63 31]
    >>> print(unpack_rgb(data, '<B', (5, 6, 5)))
    [  8   4   8 255 255 255]
    >>> print(unpack_rgb(data, '<B', (5, 5, 5)))
    [ 16   8   8 255 255 255]
    """
    dtype = numpy.dtype(dtype)
    bits = int(numpy.sum(bitspersample))
    if not (bits <= 32 and all(i <= dtype.itemsize*8 for i in bitspersample)):
        raise ValueError("sample size not supported %s" % str(bitspersample))
    dt = next(i for i in 'BHI' if numpy.dtype(i).itemsize*8 >= bits)
    data = numpy.fromstring(data, dtype.byteorder+dt)
    result = numpy.empty((data.size, len(bitspersample)), dtype.char)
    for i, bps in enumerate(bitspersample):
        t = data >> int(numpy.sum(bitspersample[i+1:]))
        t &= int('0b'+'1'*bps, 2)
        if rescale:
            o = ((dtype.itemsize * 8) // bps + 1) * bps
            if o > data.dtype.itemsize * 8:
                t = t.astype('I')
            t *= (2**o - 1) // (2**bps - 1)
            t //= 2**(o - (dtype.itemsize * 8))
        result[:, i] = t
    return result.reshape(-1)
@_replace_by('_tifffile.reverse_bitorder')
def reverse_bitorder(data):
    """Reverse bits in each byte of byte string or numpy array.
    Decode data where pixels with lower column values are stored in the
    lower-order bits of the bytes (FillOrder is LSB2MSB).
    Parameters
    ----------
    data : byte string or ndarray
        The data to be bit reversed. If byte string, a new bit-reversed byte
        string is returned. Numpy arrays are bit-reversed in-place.
    Examples
    --------
    >>> reverse_bitorder(b'\\x01\\x64')
    b'\\x80&'
    >>> data = numpy.array([1, 666], dtype='uint16')
    >>> reverse_bitorder(data)
    >>> data
    array([  128, 16473], dtype=uint16)
    """
    try:
        view = data.view('uint8')
        numpy.take(TIFF.REVERSE_BITORDER_ARRAY, view, out=view)
    except AttributeError:
        return data.translate(TIFF.REVERSE_BITORDER_BYTES)
    except ValueError:
        raise NotImplementedError("slices of arrays not supported")
def apply_colormap(image, colormap, contig=True):
    """Return palette-colored image.
    The image values are used to index the colormap on axis 1. The returned
    image is of shape image.shape+colormap.shape[0] and dtype colormap.dtype.
    Parameters
    ----------
    image : numpy.ndarray
        Indexes into the colormap.
    colormap : numpy.ndarray
        RGB lookup table aka palette of shape (3, 2**bits_per_sample).
    contig : bool
        If True, return a contiguous array.
    Examples
    --------
    >>> image = numpy.arange(256, dtype='uint8')
    >>> colormap = numpy.vstack([image, image, image]).astype('uint16') * 256
    >>> apply_colormap(image, colormap)[-1]
    array([65280, 65280, 65280], dtype=uint16)
    """
    image = numpy.take(colormap, image, axis=1)
    image = numpy.rollaxis(image, 0, image.ndim)
    if contig:
        image = numpy.ascontiguousarray(image)
    return image
def reorient(image, orientation):
    """Return reoriented view of image array.
    Parameters
    ----------
    image : numpy.ndarray
        Non-squeezed output of asarray() functions.
        Axes -3 and -2 must be image length and width respectively.
    orientation : int or str
        One of TIFF.ORIENTATION names or values.
    """
    ORIENTATION = TIFF.ORIENTATION
    orientation = enumarg(ORIENTATION, orientation)
    if orientation == ORIENTATION.TOPLEFT:
        return image
    elif orientation == ORIENTATION.TOPRIGHT:
        return image[..., ::-1, :]
    elif orientation == ORIENTATION.BOTLEFT:
        return image[..., ::-1, :, :]
    elif orientation == ORIENTATION.BOTRIGHT:
        return image[..., ::-1, ::-1, :]
    elif orientation == ORIENTATION.LEFTTOP:
        return numpy.swapaxes(image, -3, -2)
    elif orientation == ORIENTATION.RIGHTTOP:
        return numpy.swapaxes(image, -3, -2)[..., ::-1, :]
    elif orientation == ORIENTATION.RIGHTBOT:
        return numpy.swapaxes(image, -3, -2)[..., ::-1, :, :]
    elif orientation == ORIENTATION.LEFTBOT:
        return numpy.swapaxes(image, -3, -2)[..., ::-1, ::-1, :]
def repeat_nd(a, repeats):
    """Return read-only view into input array with elements repeated.
    Zoom nD image by integer factors using nearest neighbor interpolation
    (box filter).
    Parameters
    ----------
    a : array_like
        Input array.
    repeats : sequence of int
        The number of repetitions to apply along each dimension of input array.
    Example
    -------
    >>> repeat_nd([[1, 2], [3, 4]], (2, 2))
    array([[1, 1, 2, 2],
           [1, 1, 2, 2],
           [3, 3, 4, 4],
           [3, 3, 4, 4]])
    """
    a = numpy.asarray(a)
    reshape = []
    shape = []
    strides = []
    for i, j, k in zip(a.strides, a.shape, repeats):
        shape.extend((j, k))
        strides.extend((i, 0))
        reshape.append(j * k)
    return numpy.lib.stride_tricks.as_strided(
        a, shape, strides, writeable=False).reshape(reshape)
def reshape_nd(data_or_shape, ndim):
    """Return image array or shape with at least ndim dimensions.
    Prepend 1s to image shape as necessary.
    >>> reshape_nd(numpy.empty(0), 1).shape
    (0,)
    >>> reshape_nd(numpy.empty(1), 2).shape
    (1, 1)
    >>> reshape_nd(numpy.empty((2, 3)), 3).shape
    (1, 2, 3)
    >>> reshape_nd(numpy.empty((3, 4, 5)), 3).shape
    (3, 4, 5)
    >>> reshape_nd((2, 3), 3)
    (1, 2, 3)
    """
    is_shape = isinstance(data_or_shape, tuple)
    shape = data_or_shape if is_shape else data_or_shape.shape
    if len(shape) >= ndim:
        return data_or_shape
    shape = (1,) * (ndim - len(shape)) + shape
    return shape if is_shape else data_or_shape.reshape(shape)
def squeeze_axes(shape, axes, skip='XY'):
    """Return shape and axes with single-dimensional entries removed.
    Remove unused dimensions unless their axes are listed in 'skip'.
    >>> squeeze_axes((5, 1, 2, 1, 1), 'TZYXC')
    ((5, 2, 1), 'TYX')
    """
    if len(shape) != len(axes):
        raise ValueError("dimensions of axes and shape do not match")
    shape, axes = zip(*(i for i in zip(shape, axes)
                        if i[0] > 1 or i[1] in skip))
    return tuple(shape), ''.join(axes)
def transpose_axes(image, axes, asaxes='CTZYX'):
    """Return image with its axes permuted to match specified axes.
    A view is returned if possible.
    >>> transpose_axes(numpy.zeros((2, 3, 4, 5)), 'TYXC', asaxes='CTZYX').shape
    (5, 2, 1, 3, 4)
    """
    for ax in axes:
        if ax not in asaxes:
            raise ValueError("unknown axis %s" % ax)
    # add missing axes to image
    shape = image.shape
    for ax in reversed(asaxes):
        if ax not in axes:
            axes = ax + axes
            shape = (1,) + shape
    image = image.reshape(shape)
    # transpose axes
    image = image.transpose([axes.index(ax) for ax in asaxes])
    return image
def reshape_axes(axes, shape, newshape, unknown='Q'):
    """Return axes matching new shape.
    Unknown dimensions are labelled 'Q'.
    >>> reshape_axes('YXS', (219, 301, 1), (219, 301))
    'YX'
    >>> reshape_axes('IYX', (12, 219, 301), (3, 4, 219, 1, 301, 1))
    'QQYQXQ'
    """
    shape = tuple(shape)
    newshape = tuple(newshape)
    if len(axes) != len(shape):
        raise ValueError("axes do not match shape")
    size = product(shape)
    newsize = product(newshape)
    if size != newsize:
        raise ValueError("can not reshape %s to %s" % (shape, newshape))
    if not axes or not newshape:
        return ''
    lendiff = max(0, len(shape) - len(newshape))
    if lendiff:
        newshape = newshape + (1,) * lendiff
    i = len(shape)-1
    prodns = 1
    prods = 1
    result = []
    for ns in newshape[::-1]:
        prodns *= ns
        while i > 0 and shape[i] == 1 and ns != 1:
            i -= 1
        if ns == shape[i] and prodns == prods*shape[i]:
            prods *= shape[i]
            result.append(axes[i])
            i -= 1
        else:
            result.append(unknown)
    return ''.join(reversed(result[lendiff:]))
def stack_pages(pages, out=None, maxworkers=1, *args, **kwargs):
    """Read data from sequence of TiffPage and stack them vertically.
    Additional parameters are passsed to the TiffPage.asarray function.
    """
    npages = len(pages)
    if npages == 0:
        raise ValueError("no pages")
    if npages == 1:
        return pages[0].asarray(out=out, *args, **kwargs)
    page0 = next(p for p in pages if p is not None)
    page0.asarray(validate=None)  # ThreadPoolExecutor swallows exceptions
    shape = (npages,) + page0.keyframe.shape
    dtype = page0.keyframe.dtype
    out = create_output(out, shape, dtype)
    if maxworkers is None:
        maxworkers = multiprocessing.cpu_count() // 2
    page0.parent.filehandle.lock = maxworkers > 1
    filecache = OpenFileCache(size=max(4, maxworkers),
                              lock=page0.parent.filehandle.lock)
    def func(page, index, out=out, filecache=filecache,
             args=args, kwargs=kwargs):
        """Read, decode, and copy page data."""
        if page is not None:
            filecache.open(page.parent.filehandle)
            out[index] = page.asarray(lock=filecache.lock, reopen=False,
                                      validate=False, *args, **kwargs)
            filecache.close(page.parent.filehandle)
    if maxworkers < 2:
        for i, page in enumerate(pages):
            func(page, i)
    else:
        with concurrent.futures.ThreadPoolExecutor(maxworkers) as executor:
            executor.map(func, pages, range(npages))
    filecache.clear()
    page0.parent.filehandle.lock = None
    return out
def clean_offsets_counts(offsets, counts):
    """Return cleaned offsets and byte counts.
    Remove zero offsets and counts. Use to sanitize _offsets and _bytecounts
    tag values for strips or tiles.
    """
    offsets = list(offsets)
    counts = list(counts)
    assert len(offsets) == len(counts)
    j = 0
    for i, (o, b) in enumerate(zip(offsets, counts)):
        if o > 0 and b > 0:
            if i > j:
                offsets[j] = o
                counts[j] = b
            j += 1
        elif b > 0 and o <= 0:
            raise ValueError("invalid offset")
        else:
            warnings.warn("empty byte count")
    if j == 0:
        j = 1
    return offsets[:j], counts[:j]
def buffered_read(fh, lock, offsets, bytecounts, buffersize=2**26):
    """Return iterator over blocks read from file."""
    length = len(offsets)
    i = 0
    while i < length:
        data = []
        with lock:
            size = 0
            while size < buffersize and i < length:
                fh.seek(offsets[i])
                bytecount = bytecounts[i]
                data.append(fh.read(bytecount))
                size += bytecount
                i += 1
        for block in data:
            yield block
def create_output(out, shape, dtype, mode='w+', suffix='.memmap'):
    """Return numpy array where image data of shape and dtype can copied.
    The 'out' parameter may have the following values or types:
    None
        An empty array of shape and dtype is created and returned.
    numpy.ndarray
        An existing writable array of compatible dtype and shape. A view of
        the same array is returned after verification.
    'memmap' or 'memmap:tempdir'
        A memory-map to an array stored in a temporary binary file on disk
        is created and returned.
    str or open file
        The file name or file object used to create a memory-map to an array
        stored in a binary file on disk. The created memory-mapped array is
        returned.
    """
    if out is None:
        return numpy.zeros(shape, dtype)
    if isinstance(out, str) and out[:6] == 'memmap':
        tempdir = out[7:] if len(out) > 7 else None
        with tempfile.NamedTemporaryFile(dir=tempdir, suffix=suffix) as fh:
            return numpy.memmap(fh, shape=shape, dtype=dtype, mode=mode)
    if isinstance(out, numpy.ndarray):
        if product(shape) != product(out.shape):
            raise ValueError("incompatible output shape")
        if not numpy.can_cast(dtype, out.dtype):
            raise ValueError("incompatible output dtype")
        return out.reshape(shape)
    return numpy.memmap(out, shape=shape, dtype=dtype, mode=mode)
def matlabstr2py(s):
    """Return Python object from Matlab string representation.
    Return str, bool, int, float, list (Matlab arrays or cells), or
    dict (Matlab structures) types.
    Use to access ScanImage metadata.
    >>> matlabstr2py('1')
    1
    >>> matlabstr2py("['x y z' true false; 1 2.0 -3e4; NaN Inf @class]")
    [['x y z', True, False], [1, 2.0, -30000.0], [nan, inf, '@class']]
    >>> d = matlabstr2py("SI.hChannels.channelType = {'stripe' 'stripe'}\\n"
    ...                  "SI.hChannels.channelsActive = 2")
    >>> d['SI.hChannels.channelType']
    ['stripe', 'stripe']
    """
    # TODO: handle invalid input
    # TODO: review unboxing of multidimensional arrays
    def lex(s):
        # return sequence of tokens from matlab string representation
        tokens = ['[']
        while True:
            t, i = next_token(s)
            if t is None:
                break
            if t == ';':
                tokens.extend((']', '['))
            elif t == '[':
                tokens.extend(('[', '['))
            elif t == ']':
                tokens.extend((']', ']'))
            else:
                tokens.append(t)
            s = s[i:]
        tokens.append(']')
        return tokens
    def next_token(s):
        # return next token in matlab string
        length = len(s)
        if length == 0:
            return None, 0
        i = 0
        while i < length and s[i] == ' ':
            i += 1
        if i == length:
            return None, i
        if s[i] in '{[;]}':
            return s[i], i + 1
        if s[i] == "'":
            j = i + 1
            while j < length and s[j] != "'":
                j += 1
            return s[i: j+1], j + 1
        j = i
        while j < length and not s[j] in ' {[;]}':
            j += 1
        return s[i:j], j
    def value(s, fail=False):
        # return Python value of token
        s = s.strip()
        if not s:
            return s
        if len(s) == 1:
            try:
                return int(s)
            except Exception:
                if fail:
                    raise ValueError()
                return s
        if s[0] == "'":
            if fail and s[-1] != "'" or "'" in s[1:-1]:
                raise ValueError()
            return s[1:-1]
        if fail and any(i in s for i in " ';[]{}"):
            raise ValueError()
        if s[0] == '@':
            return s
        if s == 'true':
            return True
        if s == 'false':
            return False
        if '.' in s or 'e' in s:
            return float(s)
        try:
            return int(s)
        except Exception:
            pass
        try:
            return float(s)  # nan, inf
        except Exception:
            if fail:
                raise ValueError()
        return s
    def parse(s):
        # return Python value from string representation of Matlab value
        s = s.strip()
        try:
            return value(s, fail=True)
        except ValueError:
            pass
        result = add2 = []
        levels = [add2]
        for t in lex(s):
            if t in '[{':
                add2 = []
                levels.append(add2)
            elif t in ']}':
                x = levels.pop()
                if len(x) == 1 and isinstance(x[0], list):
                    x = x[0]
                add2 = levels[-1]
                add2.append(x)
            else:
                add2.append(value(t))
        if len(result) == 1 and isinstance(result[0], list):
            result = result[0]
        return result
    if '\r' in s or '\n' in s:
        # structure
        d = {}
        for line in s.splitlines():
            if not line.strip():
                continue
            k, v = line.split('=', 1)
            k = k.strip()
            if any(c in k for c in " ';[]{}"):
                continue
            d[k] = parse(v.strip())
        return d
    return parse(s)
def stripnull(string, null=b'\x00'):
    """Return string truncated at first null character.
    Clean NULL terminated C strings. For unicode strings use null='\\0'.
    >>> stripnull(b'string\\x00')
    b'string'
    >>> stripnull('string\\x00', null='\\0')
    'string'
    """
    i = string.find(null)
    return string if (i < 0) else string[:i]
def stripascii(string):
    """Return string truncated at last byte that is 7-bit ASCII.
    Clean NULL separated and terminated TIFF strings.
    >>> stripascii(b'string\\x00string\\n\\x01\\x00')
    b'string\\x00string\\n'
    >>> stripascii(b'\\x00')
    b''
    """
    # TODO: pythonize this
    i = len(string)
    while i:
        i -= 1
        if 8 < byte2int(string[i]) < 127:
            break
    else:
        i = -1
    return string[:i+1]
def asbool(value, true=(b'true', u'true'), false=(b'false', u'false')):
    """Return string as bool if possible, else raise TypeError.
    >>> asbool(b' False ')
    False
    """
    value = value.strip().lower()
    if value in true:  # might raise UnicodeWarning/BytesWarning
        return True
    if value in false:
        return False
    raise TypeError()
def astype(value, types=None):
    """Return argument as one of types if possible.
    >>> astype('42')
    42
    >>> astype('3.14')
    3.14
    >>> astype('True')
    True
    >>> astype(b'Neee-Wom')
    'Neee-Wom'
    """
    if types is None:
        types = int, float, asbool, bytes2str
    for typ in types:
        try:
            return typ(value)
        except (ValueError, AttributeError, TypeError, UnicodeEncodeError):
            pass
    return value
def format_size(size, threshold=1536):
    """Return file size as string from byte size.
    >>> format_size(1234)
    '1234 B'
    >>> format_size(12345678901)
    '11.50 GiB'
    """
    if size < threshold:
        return "%i B" % size
    for unit in ('KiB', 'MiB', 'GiB', 'TiB', 'PiB'):
        size /= 1024.0
        if size < threshold:
            return "%.2f %s" % (size, unit)
def identityfunc(arg):
    """Single argument identity function.
    >>> identityfunc('arg')
    'arg'
    """
    return arg
def nullfunc(*args, **kwargs):
    """Null function.
    >>> nullfunc('arg', kwarg='kwarg')
    """
    return
def sequence(value):
    """Return tuple containing value if value is not a sequence.
    >>> sequence(1)
    (1,)
    >>> sequence([1])
    [1]
    """
    try:
        len(value)
        return value
    except TypeError:
        return (value,)
def product(iterable):
    """Return product of sequence of numbers.
    Equivalent of functools.reduce(operator.mul, iterable, 1).
    Multiplying numpy integers might overflow.
    >>> product([2**8, 2**30])
    274877906944
    >>> product([])
    1
    """
    prod = 1
    for i in iterable:
        prod *= i
    return prod
def natural_sorted(iterable):
    """Return human sorted list of strings.
    E.g. for sorting file names.
    >>> natural_sorted(['f1', 'f2', 'f10'])
    ['f1', 'f2', 'f10']
    """
    def sortkey(x):
        return [(int(c) if c.isdigit() else c) for c in re.split(numbers, x)]
    numbers = re.compile(r'(\d+)')
    return sorted(iterable, key=sortkey)
def excel_datetime(timestamp, epoch=datetime.datetime.fromordinal(693594)):
    """Return datetime object from timestamp in Excel serial format.
    Convert LSM time stamps.
    >>> excel_datetime(40237.029999999795)
    datetime.datetime(2010, 2, 28, 0, 43, 11, 999982)
    """
    return epoch + datetime.timedelta(timestamp)
def julian_datetime(julianday, milisecond=0):
    """Return datetime from days since 1/1/4713 BC and ms since midnight.
    Convert Julian dates according to MetaMorph.
    >>> julian_datetime(2451576, 54362783)
    datetime.datetime(2000, 2, 2, 15, 6, 2, 783)
    """
    if julianday <= 1721423:
        # no datetime before year 1
        return None
    a = julianday + 1
    if a > 2299160:
        alpha = math.trunc((a - 1867216.25) / 36524.25)
        a += 1 + alpha - alpha // 4
    b = a + (1524 if a > 1721423 else 1158)
    c = math.trunc((b - 122.1) / 365.25)
    d = math.trunc(365.25 * c)
    e = math.trunc((b - d) / 30.6001)
    day = b - d - math.trunc(30.6001 * e)
    month = e - (1 if e < 13.5 else 13)
    year = c - (4716 if month > 2.5 else 4715)
    hour, milisecond = divmod(milisecond, 1000 * 60 * 60)
    minute, milisecond = divmod(milisecond, 1000 * 60)
    second, milisecond = divmod(milisecond, 1000)
    return datetime.datetime(year, month, day,
                             hour, minute, second, milisecond)
def byteorder_isnative(byteorder):
    """Return if byteorder matches the system's byteorder.
    >>> byteorder_isnative('=')
    True
    """
    if byteorder == '=' or byteorder == sys.byteorder:
        return True
    keys = {'big': '>', 'little': '<'}
    return keys.get(byteorder, byteorder) == keys[sys.byteorder]
def recarray2dict(recarray):
    """Return numpy.recarray as dict."""
    # TODO: subarrays
    result = {}
    for descr, value in zip(recarray.dtype.descr, recarray):
        name, dtype = descr[:2]
        if dtype[1] == 'S':
            value = bytes2str(stripnull(value))
        elif value.ndim < 2:
            value = value.tolist()
        result[name] = value
    return result
def xml2dict(xml, sanitize=True, prefix=None):
    """Return XML as dict.
    >>> xml2dict('<?xml version="1.0" ?><root attr="name"><key>1</key></root>')
    {'root': {'key': 1, 'attr': 'name'}}
    """
    from collections import defaultdict  # delayed import
    from xml.etree import cElementTree as etree  # delayed import
    at = tx = ''
    if prefix:
        at, tx = prefix
    def astype(value):
        # return value as int, float, bool, or str
        for t in (int, float, asbool):
            try:
                return t(value)
            except Exception:
                pass
        return value
    def etree2dict(t):
        # adapted from https://stackoverflow.com/a/10077069/453463
        key = t.tag
        if sanitize:
            key = key.rsplit('}', 1)[-1]
        d = {key: {} if t.attrib else None}
        children = list(t)
        if children:
            dd = defaultdict(list)
            for dc in map(etree2dict, children):
                for k, v in dc.items():
                    dd[k].append(astype(v))
            d = {key: {k: astype(v[0]) if len(v) == 1 else astype(v)
                       for k, v in dd.items()}}
        if t.attrib:
            d[key].update((at + k, astype(v)) for k, v in t.attrib.items())
        if t.text:
            text = t.text.strip()
            if children or t.attrib:
                if text:
                    d[key][tx + 'value'] = astype(text)
            else:
                d[key] = astype(text)
        return d
    return etree2dict(etree.fromstring(xml))
def pformat_xml(arg):
    """Return pretty formatted XML."""
    try:
        import lxml.etree as etree  # delayed import
        if not isinstance(arg, bytes):
            arg = arg.encode('utf-8')
        xml = etree.fromstring(arg)
        xml = etree.tostring(xml, pretty_print=True, encoding="unicode")
    except Exception:
        xml = bytes2str(arg).replace('><', '>\n<').replace('><', '>\n<')
    return xml.replace('  ', ' ').replace('\t', ' ')
def pformat(arg, maxlines=None, linewidth=None, compact=True):
    """Return pretty formatted representation of object as string."""
    if maxlines is None:
        maxlines = TIFF.PRINT_MAX_LINES
    elif not maxlines:
        maxlines = 2**32
    if linewidth is None:
        linewidth = TIFF.PRINT_LINE_WIDTH
    elif not linewidth:
        linewidth = 2**32
    numpy.set_printoptions(threshold=100, linewidth=linewidth)
    if isinstance(arg, basestring):
        if arg[:5].lower() in ('<?xml', b'<?xml'):
            arg = pformat_xml(arg)
        elif isinstance(arg, bytes):
            try:
                arg = bytes2str(arg)
                arg = arg.replace('\r', '\n').replace('\n\n', '\n')
            except Exception:
                import binascii  # delayed import
                import pprint  # delayed import
                arg = binascii.hexlify(arg)
                arg = pprint.pformat(arg, width=linewidth)
                maxlines = min(maxlines, 16)
        arg = arg.rstrip()
    elif isinstance(arg, numpy.record):
        arg = arg.pprint()
    else:
        from pprint import pformat  # delayed import
        compact = {} if sys.version_info[0] == 2 else dict(compact=compact)
        arg = pformat(arg, width=linewidth, **compact)
    argl = list(arg.splitlines())
    if len(argl) > maxlines:
        arg = '\n'.join(argl[:maxlines] +
                        ['...truncated to %i lines.' % maxlines])
    return arg
def snipstr(string, length=16, ellipse=None):
    """Return string cut in middle to specified length.
    >>> snipstr('abcdefghijklmnop', 8)
    'abcd…nop'
    """
    size = len(string)
    if size <= length:
        return string
    if ellipse is None:
        if isinstance(string, bytes):
            ellipse = b'...'
        else:
            ellipse = u'\u2026'
    esize = len(ellipse)
    if length < esize + 1:
        return string[:length]
    if length < esize + 4:
        return string[:length-esize] + ellipse
    half = (length - esize) // 2
    return string[:half + (length-esize) % 2] + ellipse + string[-half:]
def enumarg(enum, arg):
    """Return enum member from its name or value.
    >>> enumarg(TIFF.PHOTOMETRIC, 2)
    <PHOTOMETRIC.RGB: 2>
    >>> enumarg(TIFF.PHOTOMETRIC, 'RGB')
    <PHOTOMETRIC.RGB: 2>
    """
    try:
        return enum(arg)
    except Exception:
        try:
            return enum[arg.upper()]
        except Exception:
            raise ValueError("invalid argument %s" % arg)
def parse_kwargs(kwargs, *keys, **keyvalues):
    """Return dict with keys from keys|keyvals and values from kwargs|keyvals.
    Existing keys are deleted from kwargs.
    >>> kwargs = {'one': 1, 'two': 2, 'four': 4}
    >>> kwargs2 = parse_kwargs(kwargs, 'two', 'three', four=None, five=5)
    >>> kwargs == {'one': 1}
    True
    >>> kwargs2 == {'two': 2, 'four': 4, 'five': 5}
    True
    """
    result = {}
    for key in keys:
        if key in kwargs:
            result[key] = kwargs[key]
            del kwargs[key]
    for key, value in keyvalues.items():
        if key in kwargs:
            result[key] = kwargs[key]
            del kwargs[key]
        else:
            result[key] = value
    return result
def update_kwargs(kwargs, **keyvalues):
    """Update dict with keys and values if keys do not already exist.
    >>> kwargs = {'one': 1, }
    >>> update_kwargs(kwargs, one=None, two=2)
    >>> kwargs == {'one': 1, 'two': 2}
    True
    """
    for key, value in keyvalues.items():
        if key not in kwargs:
            kwargs[key] = value
def lsm2bin(lsmfile, binfile=None, tile=(256, 256), verbose=True):
    """Convert [MP]TZCYX LSM file to series of BIN files.
    One BIN file containing 'ZCYX' data is created for each position, time,
    and tile. The position, time, and tile indices are encoded at the end
    of the filenames.
    """
    verbose = print_ if verbose else nullfunc
    if binfile is None:
        binfile = lsmfile
    elif binfile.lower() == 'none':
        binfile = None
    if binfile:
        binfile += "_(z%ic%iy%ix%i)_m%%ip%%it%%03iy%%ix%%i.bin"
    verbose("\nOpening LSM file... ", end='', flush=True)
    start_time = time.time()
    with TiffFile(lsmfile) as lsm:
        if not lsm.is_lsm:
            verbose("\n", lsm, flush=True)
            raise ValueError("not a LSM file")
        series = lsm.series[0]  # first series contains the image data
        shape = series.shape
        axes = series.axes
        dtype = series.dtype
        size = product(shape) * dtype.itemsize
        verbose("%.3f s" % (time.time() - start_time))
        # verbose(lsm, flush=True)
        verbose("Image\n  axes:  %s\n  shape: %s\n  dtype: %s\n  size:  %s"
                % (axes, shape, dtype, format_size(size)), flush=True)
        if not series.axes.endswith('TZCYX'):
            raise ValueError("not a *TZCYX LSM file")
        verbose("Copying image from LSM to BIN files", end='', flush=True)
        start_time = time.time()
        tiles = shape[-2] // tile[-2], shape[-1] // tile[-1]
        if binfile:
            binfile = binfile % (shape[-4], shape[-3], tile[0], tile[1])
        shape = (1,) * (7-len(shape)) + shape
        # cache for ZCYX stacks and output files
        data = numpy.empty(shape[3:], dtype=dtype)
        out = numpy.empty((shape[-4], shape[-3], tile[0], tile[1]),
                          dtype=dtype)
        # iterate over Tiff pages containing data
        pages = iter(series.pages)
        for m in range(shape[0]):  # mosaic axis
            for p in range(shape[1]):  # position axis
                for t in range(shape[2]):  # time axis
                    for z in range(shape[3]):  # z slices
                        data[z] = next(pages).asarray()
                    for y in range(tiles[0]):  # tile y
                        for x in range(tiles[1]):  # tile x
                            out[:] = data[...,
                                          y*tile[0]:(y+1)*tile[0],
                                          x*tile[1]:(x+1)*tile[1]]
                            if binfile:
                                out.tofile(binfile % (m, p, t, y, x))
                            verbose('.', end='', flush=True)
        verbose(" %.3f s" % (time.time() - start_time))
def imshow(data, title=None, vmin=0, vmax=None, cmap=None,
           bitspersample=None, photometric='RGB',
           interpolation=None, dpi=96, figure=None, subplot=111, maxdim=32768,
           **kwargs):
    """Plot n-dimensional images using matplotlib.pyplot.
    Return figure, subplot and plot axis.
    Requires pyplot already imported C{from matplotlib import pyplot}.
    Parameters
    ----------
    bitspersample : int or None
        Number of bits per channel in integer RGB images.
    photometric : {'MINISWHITE', 'MINISBLACK', 'RGB', or 'PALETTE'}
        The color space of the image data.
    title : str
        Window and subplot title.
    figure : matplotlib.figure.Figure (optional).
        Matplotlib to use for plotting.
    subplot : int
        A matplotlib.pyplot.subplot axis.
    maxdim : int
        maximum image width and length.
    kwargs : optional
        Arguments for matplotlib.pyplot.imshow.
    """
    isrgb = photometric in ('RGB',)  # 'PALETTE'
    if isrgb and not (data.shape[-1] in (3, 4) or (
            data.ndim > 2 and data.shape[-3] in (3, 4))):
        isrgb = False
        photometric = 'MINISWHITE'
    data = data.squeeze()
    if photometric in ('MINISWHITE', 'MINISBLACK', None):
        data = reshape_nd(data, 2)
    else:
        data = reshape_nd(data, 3)
    dims = data.ndim
    if dims < 2:
        raise ValueError("not an image")
    elif dims == 2:
        dims = 0
        isrgb = False
    else:
        if isrgb and data.shape[-3] in (3, 4):
            data = numpy.swapaxes(data, -3, -2)
            data = numpy.swapaxes(data, -2, -1)
        elif not isrgb and (data.shape[-1] < data.shape[-2] // 8 and
                            data.shape[-1] < data.shape[-3] // 8 and
                            data.shape[-1] < 5):
            data = numpy.swapaxes(data, -3, -1)
            data = numpy.swapaxes(data, -2, -1)
        isrgb = isrgb and data.shape[-1] in (3, 4)
        dims -= 3 if isrgb else 2
    if isrgb:
        data = data[..., :maxdim, :maxdim, :maxdim]
    else:
        data = data[..., :maxdim, :maxdim]
    if photometric == 'PALETTE' and isrgb:
        datamax = data.max()
        if datamax > 255:
            data = data >> 8  # possible precision loss
        data = data.astype('B')
    elif data.dtype.kind in 'ui':
        if not (isrgb and data.dtype.itemsize <= 1) or bitspersample is None:
            try:
                bitspersample = int(math.ceil(math.log(data.max(), 2)))
            except Exception:
                bitspersample = data.dtype.itemsize * 8
        elif not isinstance(bitspersample, inttypes):
            # bitspersample can be tuple, e.g. (5, 6, 5)
            bitspersample = data.dtype.itemsize * 8
        datamax = 2**bitspersample
        if isrgb:
            if bitspersample < 8:
                data = data << (8 - bitspersample)
            elif bitspersample > 8:
                data = data >> (bitspersample - 8)  # precision loss
            data = data.astype('B')
    elif data.dtype.kind == 'f':
        datamax = data.max()
        if isrgb and datamax > 1.0:
            if data.dtype.char == 'd':
                data = data.astype('f')
                data /= datamax
            else:
                data = data / datamax
    elif data.dtype.kind == 'b':
        datamax = 1
    elif data.dtype.kind == 'c':
        data = numpy.absolute(data)
        datamax = data.max()
    if not isrgb:
        if vmax is None:
            vmax = datamax
        if vmin is None:
            if data.dtype.kind == 'i':
                dtmin = numpy.iinfo(data.dtype).min
                vmin = numpy.min(data)
                if vmin == dtmin:
                    vmin = numpy.min(data > dtmin)
            if data.dtype.kind == 'f':
                dtmin = numpy.finfo(data.dtype).min
                vmin = numpy.min(data)
                if vmin == dtmin:
                    vmin = numpy.min(data > dtmin)
            else:
                vmin = 0
    pyplot = sys.modules['matplotlib.pyplot']
    if figure is None:
        pyplot.rc('font', family='sans-serif', weight='normal', size=8)
        figure = pyplot.figure(dpi=dpi, figsize=(10.3, 6.3), frameon=True,
                               facecolor='1.0', edgecolor='w')
        try:
            figure.canvas.manager.window.title(title)
        except Exception:
            pass
        l = len(title.splitlines()) if title else 1
        pyplot.subplots_adjust(bottom=0.03*(dims+2), top=0.98-l*0.03,
                               left=0.1, right=0.95, hspace=0.05, wspace=0.0)
    subplot = pyplot.subplot(subplot)
    if title:
        try:
            title = unicode(title, 'Windows-1252')
        except TypeError:
            pass
        pyplot.title(title, size=11)
    if cmap is None:
        if data.dtype.kind in 'ubf' or vmin == 0:
            cmap = 'viridis'
        else:
            cmap = 'coolwarm'
        if photometric == 'MINISWHITE':
            cmap += '_r'
    image = pyplot.imshow(data[(0,) * dims].squeeze(), vmin=vmin, vmax=vmax,
                          cmap=cmap, interpolation=interpolation, **kwargs)
    if not isrgb:
        pyplot.colorbar()  # panchor=(0.55, 0.5), fraction=0.05
    def format_coord(x, y):
        # callback function to format coordinate display in toolbar
        x = int(x + 0.5)
        y = int(y + 0.5)
        try:
            if dims:
                return "%s @ %s [%4i, %4i]" % (
                    curaxdat[1][y, x], current, y, x)
            return "%s @ [%4i, %4i]" % (data[y, x], y, x)
        except IndexError:
            return ''
    def none(event):
        return ''
    subplot.format_coord = format_coord
    image.get_cursor_data = none
    image.format_cursor_data = none
    if dims:
        current = list((0,) * dims)
        curaxdat = [0, data[tuple(current)].squeeze()]
        sliders = [pyplot.Slider(
            pyplot.axes([0.125, 0.03*(axis+1), 0.725, 0.025]),
            'Dimension %i' % axis, 0, data.shape[axis]-1, 0, facecolor='0.5',
            valfmt='%%.0f [%i]' % data.shape[axis]) for axis in range(dims)]
        for slider in sliders:
            slider.drawon = False
        def set_image(current, sliders=sliders, data=data):
            # change image and redraw canvas
            curaxdat[1] = data[tuple(current)].squeeze()
            image.set_data(curaxdat[1])
            for ctrl, index in zip(sliders, current):
                ctrl.eventson = False
                ctrl.set_val(index)
                ctrl.eventson = True
            figure.canvas.draw()
        def on_changed(index, axis, data=data, current=current):
            # callback function for slider change event
            index = int(round(index))
            curaxdat[0] = axis
            if index == current[axis]:
                return
            if index >= data.shape[axis]:
                index = 0
            elif index < 0:
                index = data.shape[axis] - 1
            current[axis] = index
            set_image(current)
        def on_keypressed(event, data=data, current=current):
            # callback function for key press event
            key = event.key
            axis = curaxdat[0]
            if str(key) in '0123456789':
                on_changed(key, axis)
            elif key == 'right':
                on_changed(current[axis] + 1, axis)
            elif key == 'left':
                on_changed(current[axis] - 1, axis)
            elif key == 'up':
                curaxdat[0] = 0 if axis == len(data.shape)-1 else axis + 1
            elif key == 'down':
                curaxdat[0] = len(data.shape)-1 if axis == 0 else axis - 1
            elif key == 'end':
                on_changed(data.shape[axis] - 1, axis)
            elif key == 'home':
                on_changed(0, axis)
        figure.canvas.mpl_connect('key_press_event', on_keypressed)
        for axis, ctrl in enumerate(sliders):
            ctrl.on_changed(lambda k, a=axis: on_changed(k, a))
    return figure, subplot, image
def _app_show():
    """Block the GUI. For use as skimage plugin."""
    pyplot = sys.modules['matplotlib.pyplot']
    pyplot.show()
def askopenfilename(**kwargs):
    """Return file name(s) from Tkinter's file open dialog."""
    try:
        from Tkinter import Tk
        import tkFileDialog as filedialog
    except ImportError:
        from tkinter import Tk, filedialog
    root = Tk()
    root.withdraw()
    root.update()
    filenames = filedialog.askopenfilename(**kwargs)
    root.destroy()
    return filenames
def main(argv=None):
    """Command line usage main function."""
    if float(sys.version[0:3]) < 2.7:
        print("This script requires Python version 2.7 or better.")
        print("This is Python version %s" % sys.version)
        return 0
    if argv is None:
        argv = sys.argv
    import optparse  # TODO: use argparse
    parser = optparse.OptionParser(
        usage="usage: %prog [options] path",
        description="Display image data in TIFF files.",
        version="%%prog %s" % __version__)
    opt = parser.add_option
    opt('-p', '--page', dest='page', type='int', default=-1,
        help="display single page")
    opt('-s', '--series', dest='series', type='int', default=-1,
        help="display series of pages of same shape")
    opt('--nomultifile', dest='nomultifile', action='store_true',
        default=False, help="do not read OME series from multiple files")
    opt('--noplots', dest='noplots', type='int', default=8,
        help="maximum number of plots")
    opt('--interpol', dest='interpol', metavar='INTERPOL', default='bilinear',
        help="image interpolation method")
    opt('--dpi', dest='dpi', type='int', default=96,
        help="plot resolution")
    opt('--vmin', dest='vmin', type='int', default=None,
        help="minimum value for colormapping")
    opt('--vmax', dest='vmax', type='int', default=None,
        help="maximum value for colormapping")
    opt('--debug', dest='debug', action='store_true', default=False,
        help="raise exception on failures")
    opt('--doctest', dest='doctest', action='store_true', default=False,
        help="runs the docstring examples")
    opt('-v', '--detail', dest='detail', type='int', default=2)
    opt('-q', '--quiet', dest='quiet', action='store_true')
    settings, path = parser.parse_args()
    path = ' '.join(path)
    if settings.doctest:
        import doctest
        doctest.testmod(optionflags=doctest.ELLIPSIS)
        return 0
    if not path:
        path = askopenfilename(title="Select a TIFF file",
                               filetypes=TIFF.FILEOPEN_FILTER)
        if not path:
            parser.error("No file specified")
    if any(i in path for i in '?*'):
        path = glob.glob(path)
        if not path:
            print('no files match the pattern')
            return 0
        # TODO: handle image sequences
        path = path[0]
    if not settings.quiet:
        print("\nReading file structure...", end=' ')
    start = time.time()
    try:
        tif = TiffFile(path, multifile=not settings.nomultifile)
    except Exception as e:
        if settings.debug:
            raise
        else:
            print("\n", e)
            sys.exit(0)
    if not settings.quiet:
        print("%.3f ms" % ((time.time()-start) * 1e3))
    if tif.is_ome:
        settings.norgb = True
    images = []
    if settings.noplots > 0:
        if not settings.quiet:
            print("Reading image data... ", end=' ')
        def notnone(x):
            return next(i for i in x if i is not None)
        start = time.time()
        try:
            if settings.page >= 0:
                images = [(tif.asarray(key=settings.page),
                           tif[settings.page], None)]
            elif settings.series >= 0:
                images = [(tif.asarray(series=settings.series),
                           notnone(tif.series[settings.series].pages),
                           tif.series[settings.series])]
            else:
                images = []
                for i, s in enumerate(tif.series[:settings.noplots]):
                    try:
                        images.append((tif.asarray(series=i),
                                       notnone(s.pages),
                                       tif.series[i]))
                    except ValueError as e:
                        images.append((None, notnone(s.pages), None))
                        if settings.debug:
                            raise
                        else:
                            print("\nSeries %i failed: %s... " % (i, e),
                                  end='')
            if not settings.quiet:
                print("%.3f ms" % ((time.time()-start) * 1e3))
        except Exception as e:
            if settings.debug:
                raise
            else:
                print(e)
    if not settings.quiet:
        print()
        print(TiffFile.__str__(tif, detail=int(settings.detail)))
        print()
    tif.close()
    if images and settings.noplots > 0:
        try:
            import matplotlib
            matplotlib.use('TkAgg')
            from matplotlib import pyplot
        except ImportError as e:
            warnings.warn("failed to import matplotlib.\n%s" % e)
        else:
            for img, page, series in images:
                if img is None:
                    continue
                vmin, vmax = settings.vmin, settings.vmax
                if 'GDAL_NODATA' in page.tags:
                    try:
                        vmin = numpy.min(
                            img[img > float(page.tags['GDAL_NODATA'].value)])
                    except ValueError:
                        pass
                if tif.is_stk:
                    try:
                        vmin = tif.stk_metadata['MinScale']
                        vmax = tif.stk_metadata['MaxScale']
                    except KeyError:
                        pass
                    else:
                        if vmax <= vmin:
                            vmin, vmax = settings.vmin, settings.vmax
                if series:
                    title = "%s\n%s\n%s" % (str(tif), str(page), str(series))
                else:
                    title = "%s\n %s" % (str(tif), str(page))
                photometric = 'MINISBLACK'
                if page.photometric not in (3,):
                    photometric = TIFF.PHOTOMETRIC(page.photometric).name
                imshow(img, title=title, vmin=vmin, vmax=vmax,
                       bitspersample=page.bitspersample,
                       photometric=photometric,
                       interpolation=settings.interpol,
                       dpi=settings.dpi)
            pyplot.show()
if sys.version_info[0] == 2:
    inttypes = int, long  # noqa
    def print_(*args, **kwargs):
        """Print function with flush support."""
        flush = kwargs.pop('flush', False)
        print(*args, **kwargs)
        if flush:
            sys.stdout.flush()
    def bytes2str(b, encoding=None, errors=None):
        """Return string from bytes."""
        return b
    def str2bytes(s, encoding=None):
        """Return bytes from string."""
        return s
    def byte2int(b):
        """Return value of byte as int."""
        return ord(b)
    class FileNotFoundError(IOError):
        pass
    TiffFrame = TiffPage  # noqa
else:
    inttypes = int
    basestring = str, bytes
    unicode = str
    print_ = print
    def bytes2str(b, encoding=None, errors='strict'):
        """Return unicode string from encoded bytes."""
        if encoding is not None:
            return b.decode(encoding, errors)
        try:
            return b.decode('utf-8', errors)
        except UnicodeDecodeError:
            return b.decode('cp1252', errors)
    def str2bytes(s, encoding='cp1252'):
        """Return bytes from unicode string."""
        return s.encode(encoding)
    def byte2int(b):
        """Return value of byte as int."""
        return b
if __name__ == "__main__":
    sys.exit(main())