This file is indexed.

/usr/lib/python3/dist-packages/gsw/geostrophy.py is in python3-gsw 3.2.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
"""
Functions for calculating geostrophic currents.
"""

import numpy as np

from . import _gsw_ufuncs
from ._utilities import match_args_return, indexer
from .conversions import z_from_p

__all__ = ['geo_strf_dyn_height',
           'distance',
           'f',
           'geostrophic_velocity',
           ]

@match_args_return
def geo_strf_dyn_height(SA, CT, p, p_ref=0, axis=0, max_dp=1.0,
                        interp_method='pchip'):
    """
    Dynamic height anomaly as a function of pressure.

    Parameters
    ----------
    SA : array-like
        Absolute Salinity, g/kg
    CT : array-like
        Conservative Temperature (ITS-90), degrees C
    p : array-like
        Sea pressure (absolute pressure minus 10.1325 dbar), dbar
    p_ref : float or array-like, optional
        Reference pressure, dbar
    axis : int, optional, default is 0
        The index of the pressure dimension in SA and CT.
    max_dp : float
        If any pressure interval in the input p exceeds max_dp, the dynamic
        height will be calculated after interpolating to a grid with this
        spacing.
    interp_method : string {'pchip', 'linear'}
        Interpolation algorithm.

    Returns
    -------
    dynamic_height : array
        This is the integral of specific volume anomaly with respect
        to pressure, from each pressure in p to the specified
        reference pressure.  It is the geostrophic streamfunction
        in an isobaric surface, relative to the reference surface.

    """
    interp_methods = {'pchip' : 2, 'linear' : 1}
    if interp_method not in interp_methods:
        raise ValueError('interp_method must be one of %s'
                         % (interp_methods.keys(),))
    if SA.shape != CT.shape:
        raise ValueError('Shapes of SA and CT must match; found %s and %s'
                         % (SA.shape, CT.shape))
    if p.ndim == 1 and SA.ndim > 1:
        if len(p) != SA.shape[axis]:
            raise ValueError('With 1-D p, len(p) must be SA.shape[axis];\n'
                             ' found %d versus %d on specified axis, %d'
                             % (len(p), SA.shape[axis], axis))
        ind = [np.newaxis] * SA.ndim
        ind[axis] = slice(None)
        p = p[tuple(ind)]
    p_ref = float(p_ref)
    with np.errstate(invalid='ignore'):
        # The need for this context seems to be a bug in np.ma.any.
        if np.ma.any(np.ma.diff(np.ma.masked_invalid(p), axis=axis) <= 0):
            raise ValueError('p must be increasing along the specified axis')
    p = np.broadcast_to(p, SA.shape)
    goodmask = ~(np.isnan(SA) | np.isnan(CT) | np.isnan(p))
    dh = np.empty(SA.shape, dtype=float)
    dh.fill(np.nan)

    order = 'F' if SA.flags.fortran else 'C'
    for ind in indexer(SA.shape, axis, order=order):
        igood = goodmask[ind]
        # If p_ref is below the deepest value, skip the profile.
        pgood = p[ind][igood]
        if  len(pgood) > 1 and pgood[-1] >= p_ref:
            sa = SA[ind][igood]
            ct = CT[ind][igood]
            # Temporarily add a top (typically surface) point and mixed layer
            # if p_ref is above the shallowest pressure.
            if pgood[0] < p_ref:
                ptop = np.arange(p_ref, pgood[0], max_dp)
                ntop = len(ptop)
                sa = np.hstack(([sa[0]]*ntop, sa))
                ct = np.hstack(([ct[0]]*ntop, ct))
                pgood = np.hstack((ptop, pgood))
            else:
                ntop = 0
            dh_all = _gsw_ufuncs.geo_strf_dyn_height_1(
                                         sa, ct, pgood, p_ref, max_dp,
                                         interp_methods[interp_method])
            if ntop > 0:
                dh[ind][igood] = dh_all[ntop:]
            else:
                dh[ind][igood] = dh_all

    return dh


def unwrap(lon, centered=True, copy=True):
    """
    Unwrap a sequence of longitudes or headings in degrees.

    Optionally center it as close to zero as possible

    By default, return a copy; if *copy* is False, avoid a
    copy when possible.

    Returns a masked array only if the input is a masked array.
    """
    # From pycurrents.data.ocean.  It could probably be simplified
    # for use here.

    masked_input = np.ma.isMaskedArray(lon)
    if masked_input:
        fill_value = lon.fill_value
        # masked_invalid loses the original fill_value (ma bug, 2011/01/20)
    lon = np.ma.masked_invalid(lon).astype(float)
    if lon.ndim != 1:
        raise ValueError("Only 1-D sequences are supported")
    if lon.shape[0] < 2:
        return lon
    x = lon.compressed()
    if len(x) < 2:
        return lon
    w = np.zeros(x.shape[0]-1, int)
    ld = np.diff(x)
    np.putmask(w, ld > 180, -1)
    np.putmask(w, ld < -180, 1)
    x[1:] += (w.cumsum() * 360.0)

    if centered:
        x -= 360 * np.round(x.mean() / 360.0)

    if lon.mask is np.ma.nomask:
        lon[:] = x
    else:
        lon[~lon.mask] = x
    if masked_input:
        lon.fill_value = fill_value
        return lon
    else:
        return lon.filled(np.nan)


@match_args_return
def distance(lon, lat, p=0, axis=-1):
    """
    Great-circle distance in m between lon, lat points.

    Parameters
    ----------
    lon, lat : array-like, 1-D or 2-D (shapes must match)
        Longitude, latitude, in degrees.
    p : array-like, scalar, 1-D or 2-D, optional, default is 0
        Sea pressure (absolute pressure minus 10.1325 dbar), dbar
    axis : int, -1, 0, 1, optional
        The axis or dimension along which *lat and lon* vary.
        This differs from most functions, for which axis is the
        dimension along which p increases.

    Returns
    -------
    distance : 1-D or 2-D array
        distance in meters between adjacent points.

    """
    earth_radius = 6371e3

    if not lon.shape == lat.shape:
        raise ValueError('lon, lat shapes must match; found %s, %s'
                          % (lon.shape, lat.shape))
    if not (lon.ndim in (1, 2) and lon.shape[axis] > 1):
        raise ValueError('lon, lat must be 1-D or 2-D with more than one point'
                         ' along axis; found shape %s and axis %s'
                          % (lon.shape, axis))
    if lon.ndim == 1:
        one_d = True
        lon = lon[np.newaxis, :]
        lat = lat[np.newaxis, :]
        axis = -1
    else:
        one_d = False

    one_d = one_d and p.ndim == 1

    if axis == 0:
        indm = (slice(0, -1), slice(None))
        indp = (slice(1, None), slice(None))
    else:
        indm = (slice(None), slice(0, -1))
        indp = (slice(None), slice(1, None))

    if np.all(p == 0):
        z = 0
    else:
        lon, lat, p = np.broadcast_arrays(lon, lat, p)

        p_mid = 0.5 * (p[indm] + p[indp])
        lat_mid = 0.5 * (lat[indm] + lat[indp])

        z = z_from_p(p_mid, lat_mid)

    lon = np.radians(lon)
    lat = np.radians(lat)

    dlon = np.diff(lon, axis=axis)
    dlat = np.diff(lat, axis=axis)

    a = ((np.sin(dlat / 2)) ** 2 + np.cos(lat[indm]) *
         np.cos(lat[indp]) * (np.sin(dlon / 2)) ** 2)

    angles = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))

    distance = (earth_radius + z) * angles

    if one_d:
        distance = distance[0]

    return distance


@match_args_return
def f(lat):
    """
    Coriolis parameter in 1/s for latitude in degrees.
    """
    omega = 7.292115e-5  # (1/s)   (Groten, 2004).
    f = 2 * omega * np.sin(np.radians(lat))
    return f

@match_args_return
def geostrophic_velocity(geo_strf, lon, lat, p=0, axis=0):
    """
    Calculate geostrophic velocity from a streamfunction.

    Calculates geostrophic velocity relative to a reference pressure,
    given a geostrophic streamfunction and the position of each station
    in sequence along an ocean section.  The data can be from a single
    isobaric or "density" surface, or from a series of such surfaces.

    Parameters
    ----------
    geo_strf : array-like, 1-D or 2-D
        geostrophic streamfunction; see Notes below.
    lon : array-like, 1-D
        Longitude, -360 to 360 degrees
    lat : array-like, 1-D
        Latitude, degrees
    p : float or array-like, optional
        Sea pressure (absolute pressure minus 10.1325 dbar), dbar.
        This used only for a tiny correction in the distance calculation;
        it is safe to omit it.
    axis : int, 0 or 1, optional
        The axis or dimension along which pressure increases in geo_strf.
        If geo_strf is 1-D, it is ignored.

    Returns
    -------
    velocity : array, 2-D or 1-D
        Geostrophic velocity in m/s relative to the sea surface,
        averaged between each successive pair of positions.
    mid_lon, mid_lat : array, 1-D
        Midpoints of input lon and lat.

    Notes
    -----
    The geostrophic streamfunction can be:

    - geo_strf_dyn_height (in an isobaric surface)
    - geo_strf_Montgomery (in a specific volume anomaly surface)
    - geo_strf_Cunninhgam (in an approximately neutral surface
      such as a potential density surface).
    - geo_strf_isopycnal (in an approximately neutral surface
      such as a potential density surface, a Neutral Density
      surface, or an omega surface (Klocker et al., 2009)).

    Only :func:`geo_strf_dyn_height` is presently implemented
    in GSW-Python.

    """
    lon = unwrap(lon)

    if lon.shape != lat.shape or lon.ndim != 1:
        raise ValueError('lon, lat must be 1-D and matching; found shapes'
                         ' %s and %s' % (lon.shape, lat.shape))

    if geo_strf.ndim not in (1, 2):
        raise ValueError('geo_strf must be 1-D or 2-d; found shape %s'
                         % (geo_strf.shape,))

    laxis = 0 if axis else -1

    ds = distance(lon, lat, p)

    mid_lon = 0.5 * (lon[:-1] + lon[1:])
    mid_lat = 0.5 * (lat[:-1] + lat[1:])

    u = np.diff(geo_strf, axis=laxis) / (ds * f(mid_lat))

    return u, mid_lon, mid_lat