This file is indexed.

/usr/lib/python3/dist-packages/photutils/isophote/integrator.py is in python3-photutils 0.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import math
import numpy.ma as ma


__all__ = ['integrators', 'NEAREST_NEIGHBOR', 'BILINEAR', 'MEAN', 'MEDIAN']


# integration modes
NEAREST_NEIGHBOR = 'nearest_neighbor'
BILINEAR = 'bilinear'
MEAN = 'mean'
MEDIAN = 'median'


class _Integrator(object):
    """
    Base class that supports different kinds of pixel integration methods.

    Parameters
    ----------
    image : 2D `~numpy.ndarray`
         The image array.
    geometry : `~photutils.isophote.EllipseGeometry` instance
        object that encapsulates geometry information about current ellipse
    angles : list
        output list; contains the angle values along the elliptical path
    radii : list
        output list; contains the radius values along the elliptical path
    intensities : list
        output list; contains the extracted intensity values along the
        elliptical path
    """

    def __init__(self, image, geometry, angles, radii, intensities):
        self._image = image
        self._geometry = geometry

        self._angles = angles
        self._radii = radii
        self._intensities = intensities

        # for bounds checking
        self._i_range = range(0, self._image.shape[0] - 1)
        self._j_range = range(0, self._image.shape[1] - 1)

    def integrate(self, radius, phi):
        """
        The three input lists (angles, radii, intensities) are
        appended with one sample point taken from the image by
        a chosen integration method.

        Sub classes should implement the actual integration method.

        Parameters
        ----------
        radius : float
            length of radius vector in pixels
        phi : float
            polar angle of radius vector
        """

        raise NotImplementedError

    def _reset(self):
        """
        Starts the results lists anew.

        This method is for internal use and shouldn't
        be used by external callers.
        """

        self._angles = []
        self._radii = []
        self._intensities = []

    def _store_results(self, phi, radius, sample):
        self._angles.append(phi)
        self._radii.append(radius)
        self._intensities.append(sample)

    def get_polar_angle_step(self):
        """
        Returns the polar angle step used to walk over the
        elliptical path.

        The polar angle step is defined by the actual integrator
        subclass.

        Returns
        -------
        float
           the polar angle step
        """

        raise NotImplementedError

    def get_sector_area(self):
        """
        Returns the area of elliptical sectors where the integration
        takes place.

        This area is defined and managed by the actual integrator
        subclass. Depending on the integrator, the area may be a
        fixed constant, or may change along the elliptical path, so
        it's up to the caller to use this information in a correct way.

        Returns
        -------
        float
           the sector area
        """

        raise NotImplementedError

    def is_area(self):
        """
        Returns the type of the integrator.

        An area integrator gets it's value from operating over a (generally
        variable) number of pixels that define a finite area that  lays
        around the elliptical path, at a certain point on the image defined
        by a polar angle and radius values. A pixel integrator, by contrast,
        integrates over a fixed and normally small area related to a single
        pixel on the image. An example is the bilinear integrator, which
        integrates over a small, fixed, 5-pixel area. This method checks if
        the integrator is of the first type or not.

        Returns
        -------
        boolean
           True if this is an area integrator, False otherwise
        """

        raise NotImplementedError


class _NearestNeighborIntegrator(_Integrator):

    def integrate(self, radius, phi):
        self._r = radius

        # Get image coordinates of (radius, phi) pixel
        i = int(radius * math.cos(phi + self._geometry.pa) +
                self._geometry.x0)
        j = int(radius * math.sin(phi + self._geometry.pa) +
                self._geometry.y0)

        # ignore data point if outside image boundaries
        if (i in self._i_range) and (j in self._j_range):
            sample = self._image[j][i]

            if sample is not ma.masked:
                self._store_results(phi, radius, sample)

    def get_polar_angle_step(self):
        return 1. / self._r

    def get_sector_area(self):
        return 1.

    def is_area(self):
        return False


class _BiLinearIntegrator(_Integrator):

    def integrate(self, radius, phi):
        self._r = radius

        # Get image coordinates of (radius, phi) pixel
        x_ = radius * math.cos(phi + self._geometry.pa) + self._geometry.x0
        y_ = radius * math.sin(phi + self._geometry.pa) + self._geometry.y0
        i = int(x_)
        j = int(y_)
        fx = x_ - i
        fy = y_ - j

        # ignore data point if outside image boundaries
        if (i in self._i_range) and (j in self._j_range):
            # in the future, will need to handle masked pixels here
            qx = 1. - fx
            qy = 1. - fy

            if (self._image[j][i] is not ma.masked and
                    self._image[j+1][i] is not ma.masked and
                    self._image[j][i+1] is not ma.masked and
                    self._image[j+1][i+1] is not ma.masked):

                sample = (self._image[j][i] * qx * qy +
                          self._image[j + 1][i] * qx * fy +
                          self._image[j][i + 1] * fx * qy +
                          self._image[j + 1][i + 1] * fy * fx)

                self._store_results(phi, radius, sample)

    def get_polar_angle_step(self):
        return 1. / self._r

    def get_sector_area(self):
        return 2.

    def is_area(self):
        return False


class _AreaIntegrator(_Integrator):

    def __init__(self, image, geometry, angles, radii, intensities):
        super(_AreaIntegrator, self).__init__(image, geometry, angles, radii,
                                              intensities)

        # build auxiliary bilinear integrator to be used when
        # sector areas contain a too small number of valid pixels.
        self._bilinear_integrator = integrators[BILINEAR](image, geometry,
                                                          angles, radii,
                                                          intensities)

    def integrate(self, radius, phi):
        self._phi = phi

        # Get image coordinates of the four vertices of the elliptical sector.
        vertex_x, vertex_y = self._geometry.initialize_sector_geometry(phi)

        self._sector_area = self._geometry.sector_area

        # step in polar angle to be used by caller next time
        # when updating the current polar angle `phi` to point
        # to the next sector.
        self._phistep = self._geometry.sector_angular_width

        # define rectangular image area that encompasses the elliptical
        # sector. We have to account for rounding of pixel indices.
        i1 = int(min(vertex_x)) - 1
        j1 = int(min(vertex_y)) - 1
        i2 = int(max(vertex_x)) + 1
        j2 = int(max(vertex_y)) + 1

        # polar angle limits for this sector
        phi1, phi2 = self._geometry.polar_angle_sector_limits()

        # ignore data point if the elliptical sector lies
        # partially, ou totally, outside image boundaries
        if (i1 in self._i_range) and (j1 in self._j_range) and \
           (i2 in self._i_range) and (j2 in self._j_range):

            # Scan rectangular image area, compute sample value.
            npix = 0
            accumulator = self.initialize_accumulator()
            for j in range(j1, j2):
                for i in range(i1, i2):
                    # Check if polar coordinates of each pixel
                    # put it inside elliptical sector.
                    rp, phip = self._geometry.to_polar(i, j)

                    # check if inside angular limits
                    if phip < phi2 and phip >= phi1:

                        # check if radius is inside bounding ellipses
                        sma1, sma2 = self._geometry.bounding_ellipses()
                        aux = ((1. - self._geometry.eps) /
                               math.sqrt(((1. - self._geometry.eps) *
                                          math.cos(phip))**2 +
                                         (math.sin(phip))**2))

                        r1 = sma1 * aux
                        r2 = sma2 * aux

                        if rp < r2 and rp >= r1:
                            # update accumulator with pixel value
                            pix_value = self._image[j][i]
                            if pix_value is not ma.masked:
                                accumulator, npix = self.accumulate(
                                    pix_value, accumulator)

            # If 6 or less pixels were sampled, get the bilinear
            # interpolated value instead.
            if npix in range(0, 7):
                # must reset integrator to remove older samples.
                self._bilinear_integrator._reset()
                self._bilinear_integrator.integrate(radius, phi)
                # because it was reset, current value is the only one stored
                # internally in the bilinear integrator instance. Move it
                # from the internal integrator to this instance.
                if len(self._bilinear_integrator._intensities) > 0:
                    sample_value = self._bilinear_integrator._intensities[0]
                    self._store_results(phi, radius, sample_value)

            elif npix > 6:
                sample_value = self.compute_sample_value(accumulator)
                self._store_results(phi, radius, sample_value)

    def get_polar_angle_step(self):
        phi1, phi2 = self._geometry.polar_angle_sector_limits()
        phistep = self._geometry.sector_angular_width / 2. + phi2 - self._phi
        return phistep

    def get_sector_area(self):
        return self._sector_area

    def is_area(self):
        return True

    def initialize_accumulator(self):
        raise NotImplementedError

    def accumulate(self, pixel_value, accumulator):
        raise NotImplementedError

    def compute_sample_value(self, accumulator):
        raise NotImplementedError


class _MeanIntegrator(_AreaIntegrator):

    def initialize_accumulator(self):
        accumulator = 0.
        self._npix = 0
        return accumulator

    def accumulate(self, pixel_value, accumulator):
        accumulator += pixel_value
        self._npix += 1
        return accumulator, self._npix

    def compute_sample_value(self, accumulator):
        return accumulator / self._npix


class _MedianIntegrator(_AreaIntegrator):

    def initialize_accumulator(self):
        accumulator = []
        self._npix = 0
        return accumulator

    def accumulate(self, pixel_value, accumulator):
        accumulator.append(pixel_value)
        self._npix += 1
        return accumulator, self._npix

    def compute_sample_value(self, accumulator):
        accumulator.sort()
        return accumulator[int(self._npix/2)]


# Specific integrator subclasses can be instantiated from here.
integrators = {
    NEAREST_NEIGHBOR: _NearestNeighborIntegrator,
    BILINEAR: _BiLinearIntegrator,
    MEAN: _MeanIntegrator,
    MEDIAN: _MedianIntegrator
}