This file is indexed.

/usr/lib/python3/dist-packages/photutils/psf/sandbox.py is in python3-photutils 0.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
This module stores work related to photutils.psf that is not quite ready
for prime-time (i.e., is not considered a stable public API), but is
included either for experimentation or as legacy code.
"""

from __future__ import (absolute_import, unicode_literals, division,
                        print_function)

import numpy as np
from astropy.table import Table
from astropy.modeling import Parameter, Fittable2DModel
from astropy.modeling.fitting import LevMarLSQFitter
from astropy.nddata.utils import subpixel_indices, extract_array
from astropy import wcs as fitswcs

from ..utils import mask_to_mirrored_num


__all__ = ['DiscretePRF', 'Reproject']

__doctest_requires__ = {('Reproject'): ['gwcs']}


class DiscretePRF(Fittable2DModel):
    """
    A discrete Pixel Response Function (PRF) model.

    The discrete PRF model stores images of the PRF at different
    subpixel positions or offsets as a lookup table. The resolution is
    given by the subsampling parameter, which states in how many
    subpixels a pixel is divided.

    In the typical case of wanting to create a PRF from an image with
    many point sources, use the `~DiscretePRF.create_from_image` method,
    rather than directly initializing this class.

    The discrete PRF model class in initialized with a 4 dimensional
    array, that contains the PRF images at different subpixel positions.
    The definition of the axes is as following:

        1. Axis: y subpixel position
        2. Axis: x subpixel position
        3. Axis: y direction of the PRF image
        4. Axis: x direction of the PRF image

    The total array therefore has the following shape
    (subsampling, subsampling, prf_size, prf_size)

    Parameters
    ----------
    prf_array : ndarray
        Array containing PRF images.
    normalize : bool
        Normalize PRF images to unity.  Equivalent to saying there is
        *no* flux outside the bounds of the PRF images.
    subsampling : int, optional
        Factor of subsampling. Default = 1.

    Notes
    -----
    See :ref:`psf-terminology` for more details on the distinction
    between PSF and PRF as used in this module.
    """

    flux = Parameter('flux')
    x_0 = Parameter('x_0')
    y_0 = Parameter('y_0')

    def __init__(self, prf_array, normalize=True, subsampling=1):
        # Array shape and dimension check
        if subsampling == 1:
            if prf_array.ndim == 2:
                prf_array = np.array([[prf_array]])
        if prf_array.ndim != 4:
            raise TypeError('Array must have 4 dimensions.')
        if prf_array.shape[:2] != (subsampling, subsampling):
            raise TypeError('Incompatible subsampling and array size')
        if np.isnan(prf_array).any():
            raise Exception("Array contains NaN values. Can't create PRF.")

        # Normalize if requested
        if normalize:
            for i in range(prf_array.shape[0]):
                for j in range(prf_array.shape[1]):
                    prf_array[i, j] /= prf_array[i, j].sum()

        # Set PRF asttributes
        self._prf_array = prf_array
        self.subsampling = subsampling

        constraints = {'fixed': {'x_0': True, 'y_0': True}}
        x_0 = 0
        y_0 = 0
        flux = 1
        super(DiscretePRF, self).__init__(n_models=1, x_0=x_0, y_0=y_0,
                                          flux=flux, **constraints)
        self.fitter = LevMarLSQFitter()

    @property
    def prf_shape(self):
        """Shape of the PRF image."""

        return self._prf_array.shape[-2:]

    def evaluate(self, x, y, flux, x_0, y_0):
        """
        Discrete PRF model evaluation.

        Given a certain position and flux the corresponding image of
        the PSF is chosen and scaled to the flux. If x and y are
        outside the boundaries of the image, zero will be returned.

        Parameters
        ----------
        x : float
            x coordinate array in pixel coordinates.
        y : float
            y coordinate array in pixel coordinates.
        flux : float
            Model flux.
        x_0 : float
            x position of the center of the PRF.
        y_0 : float
            y position of the center of the PRF.
        """

        # Convert x and y to index arrays
        x = (x - x_0 + 0.5 + self.prf_shape[1] // 2).astype('int')
        y = (y - y_0 + 0.5 + self.prf_shape[0] // 2).astype('int')

        # Get subpixel indices
        y_sub, x_sub = subpixel_indices((y_0, x_0), self.subsampling)

        # Out of boundary masks
        x_bound = np.logical_or(x < 0, x >= self.prf_shape[1])
        y_bound = np.logical_or(y < 0, y >= self.prf_shape[0])
        out_of_bounds = np.logical_or(x_bound, y_bound)

        # Set out of boundary indices to zero
        x[x_bound] = 0
        y[y_bound] = 0
        result = flux * self._prf_array[int(y_sub), int(x_sub)][y, x]

        # Set out of boundary values to zero
        result[out_of_bounds] = 0
        return result

    @classmethod
    def create_from_image(cls, imdata, positions, size, fluxes=None,
                          mask=None, mode='mean', subsampling=1,
                          fix_nan=False):
        """
        Create a discrete point response function (PRF) from image data.

        Given a list of positions and size this function estimates an
        image of the PRF by extracting and combining the individual PRFs
        from the given positions.

        NaN values are either ignored by passing a mask or can be
        replaced by the mirrored value with respect to the center of the
        PRF.

        Note that if fluxes are *not* specified explicitly, it will be
        flux estimated from an aperture of the same size as the PRF
        image. This does *not* account for aperture corrections so often
        will *not* be what you want for anything other than quick-look
        needs.

        Parameters
        ----------
        imdata : array
            Data array with the image to extract the PRF from
        positions : List or array or `~astropy.table.Table`
            List of pixel coordinate source positions to use in creating
            the PRF.  If this is a `~astropy.table.Table` it must have
            columns called ``x_0`` and ``y_0``.
        size : odd int
            Size of the quadratic PRF image in pixels.
        mask : bool array, optional
            Boolean array to mask out bad values.
        fluxes : array, optional
            Object fluxes to normalize extracted PRFs. If not given (or
            None), the flux is estimated from an aperture of the same
            size as the PRF image.
        mode : {'mean', 'median'}
            One of the following modes to combine the extracted PRFs:
                * 'mean':  Take the pixelwise mean of the extracted PRFs.
                * 'median':  Take the pixelwise median of the extracted PRFs.
        subsampling : int
            Factor of subsampling of the PRF (default = 1).
        fix_nan : bool
            Fix NaN values in the data by replacing it with the
            mirrored value. Assuming that the PRF is symmetrical.

        Returns
        -------
        prf : `photutils.psf.sandbox.DiscretePRF`
            Discrete PRF model estimated from data.
        """

        # Check input array type and dimension.
        if np.iscomplexobj(imdata):
            raise TypeError('Complex type not supported')
        if imdata.ndim != 2:
            raise ValueError('{0}-d array not supported. '
                             'Only 2-d arrays supported.'.format(imdata.ndim))
        if size % 2 == 0:
            raise TypeError("Size must be odd.")

        if fluxes is not None and len(fluxes) != len(positions):
            raise TypeError('Position and flux arrays must be of equal '
                            'length.')

        if mask is None:
            mask = np.isnan(imdata)

        if isinstance(positions, (list, tuple)):
            positions = np.array(positions)

        if isinstance(positions, Table) or \
                (isinstance(positions, np.ndarray) and
                 positions.dtype.names is not None):
            # One can do clever things like
            # positions['x_0', 'y_0'].as_array().view((positions['x_0'].dtype,
            #                                          2))
            # but that requires positions['x_0'].dtype is
            # positions['y_0'].dtype.
            # Better do something simple to allow type promotion if required.
            pos = np.empty((len(positions), 2))
            pos[:, 0] = positions['x_0']
            pos[:, 1] = positions['y_0']
            positions = pos

        if isinstance(fluxes, (list, tuple)):
            fluxes = np.array(fluxes)

        if mode == 'mean':
            combine = np.ma.mean
        elif mode == 'median':
            combine = np.ma.median
        else:
            raise Exception('Invalid mode to combine prfs.')

        data_internal = np.ma.array(data=imdata, mask=mask)
        prf_model = np.ndarray(shape=(subsampling, subsampling, size, size))
        positions_subpixel_indices = \
            np.array([subpixel_indices(_, subsampling) for _ in positions],
                     dtype=np.int)

        for i in range(subsampling):
            for j in range(subsampling):
                extracted_sub_prfs = []
                sub_prf_indices = np.all(positions_subpixel_indices == [j, i],
                                         axis=1)
                if not sub_prf_indices.any():
                    raise ValueError('The source coordinates do not sample '
                                     'all sub-pixel positions. Reduce the '
                                     'value of the subsampling parameter.')

                positions_sub_prfs = positions[sub_prf_indices]
                for k, position in enumerate(positions_sub_prfs):
                    x, y = position
                    extracted_prf = extract_array(data_internal, (size, size),
                                                  (y, x))
                    # Check shape to exclude incomplete PRFs at the boundaries
                    # of the image
                    if (extracted_prf.shape == (size, size) and
                            np.ma.sum(extracted_prf) != 0):
                        # Replace NaN values by mirrored value, with respect
                        # to the prf's center
                        if fix_nan:
                            prf_nan = extracted_prf.mask
                            if prf_nan.any():
                                if (prf_nan.sum() > 3 or
                                        prf_nan[size // 2, size // 2]):
                                    continue
                                else:
                                    extracted_prf = mask_to_mirrored_num(
                                        extracted_prf, prf_nan,
                                        (size // 2, size // 2))
                        # Normalize and add extracted PRF to data cube
                        if fluxes is None:
                            extracted_prf_norm = (np.ma.copy(extracted_prf) /
                                                  np.ma.sum(extracted_prf))
                        else:
                            fluxes_sub_prfs = fluxes[sub_prf_indices]
                            extracted_prf_norm = (np.ma.copy(extracted_prf) /
                                                  fluxes_sub_prfs[k])
                        extracted_sub_prfs.append(extracted_prf_norm)
                    else:
                        continue
                prf_model[i, j] = np.ma.getdata(
                    combine(np.ma.dstack(extracted_sub_prfs), axis=2))
        return cls(prf_model, subsampling=subsampling)


class Reproject(object):
    """
    Class to reproject pixel coordinates between unrectified and
    rectified images.

    Parameters
    ----------
    wcs_original, wcs_rectified : `~astropy.wcs.WCS` or `~gwcs.wcs.WCS`
        The WCS objects for the original (unrectified) and rectified
        images.

    origin : {0, 1}
        Whether to use 0- or 1-based pixel coordinates.
    """

    def __init__(self, wcs_original, wcs_rectified):
        self.wcs_original = wcs_original
        self.wcs_rectified = wcs_rectified

    @staticmethod
    def _reproject(wcs1, wcs2):
        """
        Perform the forward transformation of ``wcs1`` followed by the
        inverse transformation of ``wcs2``.

        Parameters
        ----------
        wcs1, wcs2 : `~astropy.wcs.WCS` or `~gwcs.wcs.WCS`
            The WCS objects.

        Returns
        -------
        result : func
            Function to compute the transformations.  It takes x, y
            positions in ``wcs1`` and returns x, y positions in
            ``wcs2``.  The input and output x, y positions are zero
            indexed.
        """

        import gwcs

        forward_origin = []
        if isinstance(wcs1, fitswcs.WCS):
            forward = wcs1.all_pix2world
            forward_origin = [0]
        elif isinstance(wcs2, gwcs.wcs.WCS):
            forward = wcs1.forward_transform
        else:
            raise ValueError('wcs1 must be an astropy.wcs.WCS or '
                             'gwcs.wcs.WCS object.')

        inverse_origin = []
        if isinstance(wcs2, fitswcs.WCS):
            inverse = wcs2.all_world2pix
            inverse_origin = [0]
        elif isinstance(wcs2, gwcs.wcs.WCS):
            inverse = wcs2.forward_transform.inverse
        else:
            raise ValueError('wcs2 must be an astropy.wcs.WCS or '
                             'gwcs.wcs.WCS object.')

        def _reproject_func(x, y):
            forward_args = [x, y] + forward_origin
            sky = forward(*forward_args)
            inverse_args = sky + inverse_origin
            return inverse(*inverse_args)

        return _reproject_func

    def to_rectified(self, x, y):
        """
        Convert the input (x, y) positions from the original
        (unrectified) image to the rectified image.

        Parameters
        ----------
        x, y:  float or array-like of float
            The zero-index pixel coordinates in the original
            (unrectified) image.

        Returns
        -------
        x, y:  float or array-like
            The zero-index pixel coordinates in the rectified image.
        """

        return self._reproject(self.wcs_original,
                               self.wcs_rectified)(x, y)

    def to_original(self, x, y):
        """
        Convert the input (x, y) positions from the rectified image to
        the original (unrectified) image.

        Parameters
        ----------
        x, y:  float or array-like of float
            The zero-index pixel coordinates in the rectified image.

        Returns
        -------
        x, y:  float or array-like
            The zero-index pixel coordinates in the original
            (unrectified) image.
        """

        return self._reproject(self.wcs_rectified,
                               self.wcs_original)(x, y)