This file is indexed.

/usr/share/doc/glibc-doc/html/libc_6.html is in glibc-doc 2.15-0ubuntu10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- This file documents the GNU C library.

This is Edition 0.13, last updated 2011-07-19,
of The GNU C Library Reference Manual, for version
2.14 (Ubuntu EGLIBC 2.15-0ubuntu10) .

Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2001, 2002,
2003, 2007, 2008, 2010, 2011 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "Free Software Needs Free Documentation"
and "GNU Lesser General Public License", the Front-Cover texts being
"A GNU Manual", and with the Back-Cover Texts as in (a) below.  A
copy of the license is included in the section entitled "GNU Free
Documentation License".

(a) The FSF's Back-Cover Text is: "You have the freedom to
copy and modify this GNU manual.  Buying copies from the FSF
supports it in developing GNU and promoting software freedom."
 -->
<!-- Created on April 20, 2012 by texi2html 1.82
texi2html was written by: 
            Lionel Cons <Lionel.Cons@cern.ch> (original author)
            Karl Berry  <karl@freefriends.org>
            Olaf Bachmann <obachman@mathematik.uni-kl.de>
            and many others.
Maintained by: Many creative people.
Send bugs and suggestions to <texi2html-bug@nongnu.org>
-->
<head>
<title>The GNU C Library: 6. Character Set Handling</title>

<meta name="description" content="The GNU C Library: 6. Character Set Handling">
<meta name="keywords" content="The GNU C Library: 6. Character Set Handling">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.82">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.roman {font-family:serif; font-weight:normal;}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">

<a name="Character-Set-Handling"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="libc_5.html#Envz-Functions" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Extended-Char-Intro" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc_5.html#String-and-Array-Utilities" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Character-Set-Handling-1"></a>
<h1 class="chapter">6. Character Set Handling</h1>


<p>Character sets used in the early days of computing had only six, seven,
or eight bits for each character: there was never a case where more than
eight bits (one byte) were used to represent a single character.  The
limitations of this approach became more apparent as more people
grappled with non-Roman character sets, where not all the characters
that make up a language&rsquo;s character set can be represented by <em>2^8</em>
choices.  This chapter shows the functionality that was added to the C
library to support multiple character sets.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#Extended-Char-Intro">6.1 Introduction to Extended Characters</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
<tr><td align="left" valign="top"><a href="#Charset-Function-Overview">6.2 Overview about Character Handling Functions</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
<tr><td align="left" valign="top"><a href="#Restartable-multibyte-conversion">6.3 Restartable Multibyte Conversion Functions</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"> Restartable multibyte conversion
                                      Functions.
</td></tr>
<tr><td align="left" valign="top"><a href="#Non_002dreentrant-Conversion">6.4 Non-reentrant Conversion Function</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
<tr><td align="left" valign="top"><a href="#Generic-Charset-Conversion">6.5 Generic Charset Conversion</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
</table>


<hr size="6">
<a name="Extended-Char-Intro"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Charset-Function-Overview" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Introduction-to-Extended-Characters"></a>
<h2 class="section">6.1 Introduction to Extended Characters</h2>

<p>A variety of solutions is available to overcome the differences between
character sets with a 1:1 relation between bytes and characters and
character sets with ratios of 2:1 or 4:1.  The remainder of this
section gives a few examples to help understand the design decisions
made while developing the functionality of the C library.
</p>
<a name="index-internal-representation"></a>
<p>A distinction we have to make right away is between internal and
external representation.  <em>Internal representation</em> means the
representation used by a program while keeping the text in memory.
External representations are used when text is stored or transmitted
through some communication channel.  Examples of external
representations include files waiting in a directory to be
read and parsed.
</p>
<p>Traditionally there has been no difference between the two representations.
It was equally comfortable and useful to use the same single-byte
representation internally and externally.  This comfort level decreases
with more and larger character sets.
</p>
<p>One of the problems to overcome with the internal representation is
handling text that is externally encoded using different character
sets.  Assume a program that reads two texts and compares them using
some metric.  The comparison can be usefully done only if the texts are
internally kept in a common format.
</p>
<a name="index-wide-character"></a>
<p>For such a common format (<em>=</em> character set) eight bits are certainly
no longer enough.  So the smallest entity will have to grow: <em>wide
characters</em> will now be used.  Instead of one byte per character, two or
four will be used instead.  (Three are not good to address in memory and
more than four bytes seem not to be necessary).
</p>
<a name="index-Unicode"></a>
<a name="index-ISO-10646"></a>
<p>As shown in some other part of this manual,
a completely new family has been created of functions that can handle wide
character texts in memory.  The most commonly used character sets for such
internal wide character representations are Unicode and ISO 10646
(also known as UCS for Universal Character Set).  Unicode was originally
planned as a 16-bit character set; whereas, ISO 10646 was designed to
be a 31-bit large code space.  The two standards are practically identical.
They have the same character repertoire and code table, but Unicode specifies
added semantics.  At the moment, only characters in the first <code>0x10000</code>
code positions (the so-called Basic Multilingual Plane, BMP) have been
assigned, but the assignment of more specialized characters outside this
16-bit space is already in progress.  A number of encodings have been
defined for Unicode and ISO 10646 characters:
<a name="index-UCS_002d2"></a>
<a name="index-UCS_002d4"></a>
<a name="index-UTF_002d8"></a>
<a name="index-UTF_002d16"></a>
UCS-2 is a 16-bit word that can only represent characters
from the BMP, UCS-4 is a 32-bit word than can represent any Unicode
and ISO 10646 character, UTF-8 is an ASCII compatible encoding where
ASCII characters are represented by ASCII bytes and non-ASCII characters
by sequences of 2-6 non-ASCII bytes, and finally UTF-16 is an extension
of UCS-2 in which pairs of certain UCS-2 words can be used to encode
non-BMP characters up to <code>0x10ffff</code>.
</p>
<p>To represent wide characters the <code>char</code> type is not suitable.  For
this reason the ISO C standard introduces a new type that is
designed to keep one character of a wide character string.  To maintain
the similarity there is also a type corresponding to <code>int</code> for
those functions that take a single wide character.
</p>
<dl>
<dt><a name="index-wchar_005ft"></a><u>Data type:</u> <b>wchar_t</b></dt>
<dd><p>This data type is used as the base type for wide character strings.
In other words, arrays of objects of this type are the equivalent of
<code>char[]</code> for multibyte character strings.  The type is defined in
&lsquo;<tt>stddef.h</tt>&rsquo;.
</p>
<p>The ISO C90 standard, where <code>wchar_t</code> was introduced, does not
say anything specific about the representation.  It only requires that
this type is capable of storing all elements of the basic character set.
Therefore it would be legitimate to define <code>wchar_t</code> as <code>char</code>,
which might make sense for embedded systems.
</p>
<p>But for GNU systems <code>wchar_t</code> is always 32 bits wide and, therefore,
capable of representing all UCS-4 values and, therefore, covering all of
ISO 10646.  Some Unix systems define <code>wchar_t</code> as a 16-bit type
and thereby follow Unicode very strictly.  This definition is perfectly
fine with the standard, but it also means that to represent all
characters from Unicode and ISO 10646 one has to use UTF-16 surrogate
characters, which is in fact a multi-wide-character encoding.  But
resorting to multi-wide-character encoding contradicts the purpose of the
<code>wchar_t</code> type.
</p></dd></dl>

<dl>
<dt><a name="index-wint_005ft-1"></a><u>Data type:</u> <b>wint_t</b></dt>
<dd><p><code>wint_t</code> is a data type used for parameters and variables that
contain a single wide character.  As the name suggests this type is the
equivalent of <code>int</code> when using the normal <code>char</code> strings.  The
types <code>wchar_t</code> and <code>wint_t</code> often have the same
representation if their size is 32 bits wide but if <code>wchar_t</code> is
defined as <code>char</code> the type <code>wint_t</code> must be defined as
<code>int</code> due to the parameter promotion.
</p>
<a name="index-wchar_002eh-2"></a>
<p>This type is defined in &lsquo;<tt>wchar.h</tt>&rsquo; and was introduced in
Amendment 1 to ISO C90.
</p></dd></dl>

<p>As there are for the <code>char</code> data type macros are available for
specifying the minimum and maximum value representable in an object of
type <code>wchar_t</code>.
</p>
<dl>
<dt><a name="index-WCHAR_005fMIN"></a><u>Macro:</u> wint_t <b>WCHAR_MIN</b></dt>
<dd><p>The macro <code>WCHAR_MIN</code> evaluates to the minimum value representable
by an object of type <code>wint_t</code>.
</p>
<p>This macro was introduced in Amendment 1 to ISO C90.
</p></dd></dl>

<dl>
<dt><a name="index-WCHAR_005fMAX"></a><u>Macro:</u> wint_t <b>WCHAR_MAX</b></dt>
<dd><p>The macro <code>WCHAR_MAX</code> evaluates to the maximum value representable
by an object of type <code>wint_t</code>.
</p>
<p>This macro was introduced in Amendment 1 to ISO C90.
</p></dd></dl>

<p>Another special wide character value is the equivalent to <code>EOF</code>.
</p>
<dl>
<dt><a name="index-WEOF"></a><u>Macro:</u> wint_t <b>WEOF</b></dt>
<dd><p>The macro <code>WEOF</code> evaluates to a constant expression of type
<code>wint_t</code> whose value is different from any member of the extended
character set.
</p>
<p><code>WEOF</code> need not be the same value as <code>EOF</code> and unlike
<code>EOF</code> it also need <em>not</em> be negative.  In other words, sloppy
code like
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">{
  int c;
  &hellip;
  while ((c = getc (fp)) &lt; 0)
    &hellip;
}
</pre></td></tr></table>

<p>has to be rewritten to use <code>WEOF</code> explicitly when wide characters
are used:
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">{
  wint_t c;
  &hellip;
  while ((c = wgetc (fp)) != WEOF)
    &hellip;
}
</pre></td></tr></table>

<a name="index-wchar_002eh-3"></a>
<p>This macro was introduced in Amendment 1 to ISO C90 and is
defined in &lsquo;<tt>wchar.h</tt>&rsquo;.
</p></dd></dl>


<p>These internal representations present problems when it comes to storing
and transmittal.  Because each single wide character consists of more
than one byte, they are effected by byte-ordering.  Thus, machines with
different endianesses would see different values when accessing the same
data.  This byte ordering concern also applies for communication protocols
that are all byte-based and therefore require that the sender has to
decide about splitting the wide character in bytes.  A last (but not least
important) point is that wide characters often require more storage space
than a customized byte-oriented character set.
</p>
<a name="index-multibyte-character"></a>
<a name="index-EBCDIC"></a>
<p>For all the above reasons, an external encoding that is different from
the internal encoding is often used if the latter is UCS-2 or UCS-4.
The external encoding is byte-based and can be chosen appropriately for
the environment and for the texts to be handled.  A variety of different
character sets can be used for this external encoding (information that
will not be exhaustively presented here&ndash;instead, a description of the
major groups will suffice).  All of the ASCII-based character sets
fulfill one requirement: they are &quot;filesystem safe.&quot;  This means that
the character <code>'/'</code> is used in the encoding <em>only</em> to
represent itself.  Things are a bit different for character sets like
EBCDIC (Extended Binary Coded Decimal Interchange Code, a character set
family used by IBM), but if the operation system does not understand
EBCDIC directly the parameters-to-system calls have to be converted
first anyhow.
</p>
<ul>
<li>
The simplest character sets are single-byte character sets.  There can
be only up to 256 characters (for 8 bit character sets), which is
not sufficient to cover all languages but might be sufficient to handle
a specific text.  Handling of a 8 bit character sets is simple.  This
is not true for other kinds presented later, and therefore, the
application one uses might require the use of 8 bit character sets.

<a name="index-ISO-2022"></a>
</li><li>
The ISO 2022 standard defines a mechanism for extended character
sets where one character <em>can</em> be represented by more than one
byte.  This is achieved by associating a state with the text.
Characters that can be used to change the state can be embedded in the
text.  Each byte in the text might have a different interpretation in each
state.  The state might even influence whether a given byte stands for a
character on its own or whether it has to be combined with some more
bytes.

<a name="index-EUC"></a>
<a name="index-Shift_005fJIS"></a>
<a name="index-SJIS"></a>
<p>In most uses of ISO 2022 the defined character sets do not allow
state changes that cover more than the next character.  This has the
big advantage that whenever one can identify the beginning of the byte
sequence of a character one can interpret a text correctly.  Examples of
character sets using this policy are the various EUC character sets
(used by Sun&rsquo;s operations systems, EUC-JP, EUC-KR, EUC-TW, and EUC-CN)
or Shift_JIS (SJIS, a Japanese encoding).
</p>
<p>But there are also character sets using a state that is valid for more
than one character and has to be changed by another byte sequence.
Examples for this are ISO-2022-JP, ISO-2022-KR, and ISO-2022-CN.
</p>
</li><li>
<a name="index-ISO-6937"></a>
Early attempts to fix 8 bit character sets for other languages using the
Roman alphabet lead to character sets like ISO 6937.  Here bytes
representing characters like the acute accent do not produce output
themselves: one has to combine them with other characters to get the
desired result.  For example, the byte sequence <code>0xc2 0x61</code>
(non-spacing acute accent, followed by lower-case &lsquo;a&rsquo;) to get the &ldquo;small
a with  acute&rdquo; character.  To get the acute accent character on its own,
one has to write <code>0xc2 0x20</code> (the non-spacing acute followed by a
space).

<p>Character sets like ISO 6937 are used in some embedded systems such
as teletex.
</p>
</li><li>
<a name="index-UTF_002d8-1"></a>
Instead of converting the Unicode or ISO 10646 text used internally,
it is often also sufficient to simply use an encoding different than
UCS-2/UCS-4.  The Unicode and ISO 10646 standards even specify such an
encoding: UTF-8.  This encoding is able to represent all of ISO
10646 31 bits in a byte string of length one to six.

<a name="index-UTF_002d7"></a>
<p>There were a few other attempts to encode ISO 10646 such as UTF-7,
but UTF-8 is today the only encoding that should be used.  In fact, with
any luck UTF-8 will soon be the only external encoding that has to be
supported.  It proves to be universally usable and its only disadvantage
is that it favors Roman languages by making the byte string
representation of other scripts (Cyrillic, Greek, Asian scripts) longer
than necessary if using a specific character set for these scripts.
Methods like the Unicode compression scheme can alleviate these
problems.
</p></li></ul>

<p>The question remaining is: how to select the character set or encoding
to use.  The answer: you cannot decide about it yourself, it is decided
by the developers of the system or the majority of the users.  Since the
goal is interoperability one has to use whatever the other people one
works with use.  If there are no constraints, the selection is based on
the requirements the expected circle of users will have.  In other words,
if a project is expected to be used in only, say, Russia it is fine to use
KOI8-R or a similar character set.  But if at the same time people from,
say, Greece are participating one should use a character set that allows
all people to collaborate.
</p>
<p>The most widely useful solution seems to be: go with the most general
character set, namely ISO 10646.  Use UTF-8 as the external encoding
and problems about users not being able to use their own language
adequately are a thing of the past.
</p>
<p>One final comment about the choice of the wide character representation
is necessary at this point.  We have said above that the natural choice
is using Unicode or ISO 10646.  This is not required, but at least
encouraged, by the ISO C standard.  The standard defines at least a
macro <code>__STDC_ISO_10646__</code> that is only defined on systems where
the <code>wchar_t</code> type encodes ISO 10646 characters.  If this
symbol is not defined one should avoid making assumptions about the wide
character representation.  If the programmer uses only the functions
provided by the C library to handle wide character strings there should
be no compatibility problems with other systems.
</p>
<hr size="6">
<a name="Charset-Function-Overview"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Extended-Char-Intro" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Restartable-multibyte-conversion" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Overview-about-Character-Handling-Functions"></a>
<h2 class="section">6.2 Overview about Character Handling Functions</h2>

<p>A Unix C library contains three different sets of functions in two
families to handle character set conversion.  One of the function families
(the most commonly used) is specified in the ISO C90 standard and,
therefore, is portable even beyond the Unix world.  Unfortunately this
family is the least useful one.  These functions should be avoided
whenever possible, especially when developing libraries (as opposed to
applications).
</p>
<p>The second family of functions got introduced in the early Unix standards
(XPG2) and is still part of the latest and greatest Unix standard:
Unix 98.  It is also the most powerful and useful set of functions.
But we will start with the functions defined in Amendment 1 to
ISO C90.
</p>
<hr size="6">
<a name="Restartable-multibyte-conversion"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Charset-Function-Overview" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Selecting-the-Conversion" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Restartable-Multibyte-Conversion-Functions"></a>
<h2 class="section">6.3 Restartable Multibyte Conversion Functions</h2>

<p>The ISO C standard defines functions to convert strings from a
multibyte representation to wide character strings.  There are a number
of peculiarities:
</p>
<ul>
<li>
The character set assumed for the multibyte encoding is not specified
as an argument to the functions.  Instead the character set specified by
the <code>LC_CTYPE</code> category of the current locale is used; see
<a href="libc_7.html#Locale-Categories">Categories of Activities that Locales Affect</a>.

</li><li>
The functions handling more than one character at a time require NUL
terminated strings as the argument (i.e., converting blocks of text
does not work unless one can add a NUL byte at an appropriate place).
The GNU C library contains some extensions to the standard that allow
specifying a size, but basically they also expect terminated strings.
</li></ul>

<p>Despite these limitations the ISO C functions can be used in many
contexts.  In graphical user interfaces, for instance, it is not
uncommon to have functions that require text to be displayed in a wide
character string if the text is not simple ASCII.  The text itself might
come from a file with translations and the user should decide about the
current locale, which determines the translation and therefore also the
external encoding used.  In such a situation (and many others) the
functions described here are perfect.  If more freedom while performing
the conversion is necessary take a look at the <code>iconv</code> functions
(see section <a href="#Generic-Charset-Conversion">Generic Charset Conversion</a>).
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#Selecting-the-Conversion">6.3.1 Selecting the conversion and its properties</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
<tr><td align="left" valign="top"><a href="#Keeping-the-state">6.3.2 Representing the state of the conversion</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
<tr><td align="left" valign="top"><a href="#Converting-a-Character">6.3.3 Converting Single Characters</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
<tr><td align="left" valign="top"><a href="#Converting-Strings">6.3.4 Converting Multibyte and Wide Character Strings</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
<tr><td align="left" valign="top"><a href="#Multibyte-Conversion-Example">6.3.5 A Complete Multibyte Conversion Example</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
</table>

<hr size="6">
<a name="Selecting-the-Conversion"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Restartable-multibyte-conversion" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Keeping-the-state" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Restartable-multibyte-conversion" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Selecting-the-conversion-and-its-properties"></a>
<h3 class="subsection">6.3.1 Selecting the conversion and its properties</h3>

<p>We already said above that the currently selected locale for the
<code>LC_CTYPE</code> category decides about the conversion that is performed
by the functions we are about to describe.  Each locale uses its own
character set (given as an argument to <code>localedef</code>) and this is the
one assumed as the external multibyte encoding.  The wide character
set is always UCS-4, at least on GNU systems.
</p>
<p>A characteristic of each multibyte character set is the maximum number
of bytes that can be necessary to represent one character.  This
information is quite important when writing code that uses the
conversion functions (as shown in the examples below).
The ISO C standard defines two macros that provide this information.
</p>

<dl>
<dt><a name="index-MB_005fLEN_005fMAX"></a><u>Macro:</u> int <b>MB_LEN_MAX</b></dt>
<dd><p><code>MB_LEN_MAX</code> specifies the maximum number of bytes in the multibyte
sequence for a single character in any of the supported locales.  It is
a compile-time constant and is defined in &lsquo;<tt>limits.h</tt>&rsquo;.
<a name="index-limits_002eh-1"></a>
</p></dd></dl>

<dl>
<dt><a name="index-MB_005fCUR_005fMAX"></a><u>Macro:</u> int <b>MB_CUR_MAX</b></dt>
<dd><p><code>MB_CUR_MAX</code> expands into a positive integer expression that is the
maximum number of bytes in a multibyte character in the current locale.
The value is never greater than <code>MB_LEN_MAX</code>.  Unlike
<code>MB_LEN_MAX</code> this macro need not be a compile-time constant, and in
the GNU C library it is not.
</p>
<a name="index-stdlib_002eh-6"></a>
<p><code>MB_CUR_MAX</code> is defined in &lsquo;<tt>stdlib.h</tt>&rsquo;.
</p></dd></dl>

<p>Two different macros are necessary since strictly ISO C90 compilers
do not allow variable length array definitions, but still it is desirable
to avoid dynamic allocation.  This incomplete piece of code shows the
problem:
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">{
  char buf[MB_LEN_MAX];
  ssize_t len = 0;

  while (! feof (fp))
    {
      fread (&amp;buf[len], 1, MB_CUR_MAX - len, fp);
      /* <span class="roman">&hellip; process</span> buf */
      len -= used;
    }
}
</pre></td></tr></table>

<p>The code in the inner loop is expected to have always enough bytes in
the array <var>buf</var> to convert one multibyte character.  The array
<var>buf</var> has to be sized statically since many compilers do not allow a
variable size.  The <code>fread</code> call makes sure that <code>MB_CUR_MAX</code>
bytes are always available in <var>buf</var>.  Note that it isn&rsquo;t
a problem if <code>MB_CUR_MAX</code> is not a compile-time constant.
</p>

<hr size="6">
<a name="Keeping-the-state"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Selecting-the-Conversion" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Converting-a-Character" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Restartable-multibyte-conversion" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Representing-the-state-of-the-conversion"></a>
<h3 class="subsection">6.3.2 Representing the state of the conversion</h3>

<a name="index-stateful"></a>
<p>In the introduction of this chapter it was said that certain character
sets use a <em>stateful</em> encoding.  That is, the encoded values depend
in some way on the previous bytes in the text.
</p>
<p>Since the conversion functions allow converting a text in more than one
step we must have a way to pass this information from one call of the
functions to another.
</p>
<dl>
<dt><a name="index-mbstate_005ft"></a><u>Data type:</u> <b>mbstate_t</b></dt>
<dd><a name="index-shift-state"></a>
<p>A variable of type <code>mbstate_t</code> can contain all the information
about the <em>shift state</em> needed from one call to a conversion
function to another.
</p>
<a name="index-wchar_002eh-4"></a>
<p><code>mbstate_t</code> is defined in &lsquo;<tt>wchar.h</tt>&rsquo;.  It was introduced in
Amendment 1 to ISO C90.
</p></dd></dl>

<p>To use objects of type <code>mbstate_t</code> the programmer has to define such
objects (normally as local variables on the stack) and pass a pointer to
the object to the conversion functions.  This way the conversion function
can update the object if the current multibyte character set is stateful.
</p>
<p>There is no specific function or initializer to put the state object in
any specific state.  The rules are that the object should always
represent the initial state before the first use, and this is achieved by
clearing the whole variable with code such as follows:
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">{
  mbstate_t state;
  memset (&amp;state, '\0', sizeof (state));
  /* <span class="roman">from now on <var>state</var> can be used.</span>  */
  &hellip;
}
</pre></td></tr></table>

<p>When using the conversion functions to generate output it is often
necessary to test whether the current state corresponds to the initial
state.  This is necessary, for example, to decide whether to emit
escape sequences to set the state to the initial state at certain
sequence points.  Communication protocols often require this.
</p>
<dl>
<dt><a name="index-mbsinit"></a><u>Function:</u> int <b>mbsinit</b><i> (const mbstate_t *<var>ps</var>)</i></dt>
<dd><p>The <code>mbsinit</code> function determines whether the state object pointed
to by <var>ps</var> is in the initial state.  If <var>ps</var> is a null pointer or
the object is in the initial state the return value is nonzero.  Otherwise
it is zero.
</p>
<a name="index-wchar_002eh-5"></a>
<p><code>mbsinit</code> was introduced in Amendment 1 to ISO C90 and is
declared in &lsquo;<tt>wchar.h</tt>&rsquo;.
</p></dd></dl>

<p>Code using <code>mbsinit</code> often looks similar to this:
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">{
  mbstate_t state;
  memset (&amp;state, '\0', sizeof (state));
  /* <span class="roman">Use <var>state</var>.</span>  */
  &hellip;
  if (! mbsinit (&amp;state))
    {
      /* <span class="roman">Emit code to return to initial state.</span>  */
      const wchar_t empty[] = L&quot;&quot;;
      const wchar_t *srcp = empty;
      wcsrtombs (outbuf, &amp;srcp, outbuflen, &amp;state);
    }
  &hellip;
}
</pre></td></tr></table>

<p>The code to emit the escape sequence to get back to the initial state is
interesting.  The <code>wcsrtombs</code> function can be used to determine the
necessary output code (see section <a href="#Converting-Strings">Converting Multibyte and Wide Character Strings</a>).  Please note that on
GNU systems it is not necessary to perform this extra action for the
conversion from multibyte text to wide character text since the wide
character encoding is not stateful.  But there is nothing mentioned in
any standard that prohibits making <code>wchar_t</code> using a stateful
encoding.
</p>
<hr size="6">
<a name="Converting-a-Character"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Keeping-the-state" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Converting-Strings" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Restartable-multibyte-conversion" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Converting-Single-Characters"></a>
<h3 class="subsection">6.3.3 Converting Single Characters</h3>

<p>The most fundamental of the conversion functions are those dealing with
single characters.  Please note that this does not always mean single
bytes.  But since there is very often a subset of the multibyte
character set that consists of single byte sequences, there are
functions to help with converting bytes.  Frequently, ASCII is a subpart
of the multibyte character set.  In such a scenario, each ASCII character
stands for itself, and all other characters have at least a first byte
that is beyond the range <em>0</em> to <em>127</em>.
</p>
<dl>
<dt><a name="index-btowc"></a><u>Function:</u> wint_t <b>btowc</b><i> (int <var>c</var>)</i></dt>
<dd><p>The <code>btowc</code> function (&ldquo;byte to wide character&rdquo;) converts a valid
single byte character <var>c</var> in the initial shift state into the wide
character equivalent using the conversion rules from the currently
selected locale of the <code>LC_CTYPE</code> category.
</p>
<p>If <code>(unsigned char) <var>c</var></code> is no valid single byte multibyte
character or if <var>c</var> is <code>EOF</code>, the function returns <code>WEOF</code>.
</p>
<p>Please note the restriction of <var>c</var> being tested for validity only in
the initial shift state.  No <code>mbstate_t</code> object is used from
which the state information is taken, and the function also does not use
any static state.
</p>
<a name="index-wchar_002eh-6"></a>
<p>The <code>btowc</code> function was introduced in Amendment 1 to ISO C90
and is declared in &lsquo;<tt>wchar.h</tt>&rsquo;.
</p></dd></dl>

<p>Despite the limitation that the single byte value is always interpreted
in the initial state, this function is actually useful most of the time.
Most characters are either entirely single-byte character sets or they
are extension to ASCII.  But then it is possible to write code like this
(not that this specific example is very useful):
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">wchar_t *
itow (unsigned long int val)
{
  static wchar_t buf[30];
  wchar_t *wcp = &amp;buf[29];
  *wcp = L'\0';
  while (val != 0)
    {
      *--wcp = btowc ('0' + val % 10);
      val /= 10;
    }
  if (wcp == &amp;buf[29])
    *--wcp = L'0';
  return wcp;
}
</pre></td></tr></table>

<p>Why is it necessary to use such a complicated implementation and not
simply cast <code>'0' + val % 10</code> to a wide character?  The answer is
that there is no guarantee that one can perform this kind of arithmetic
on the character of the character set used for <code>wchar_t</code>
representation.  In other situations the bytes are not constant at
compile time and so the compiler cannot do the work.  In situations like
this, using <code>btowc</code> is required.
</p>
<p>There is also a function for the conversion in the other direction.
</p>
<dl>
<dt><a name="index-wctob"></a><u>Function:</u> int <b>wctob</b><i> (wint_t <var>c</var>)</i></dt>
<dd><p>The <code>wctob</code> function (&ldquo;wide character to byte&rdquo;) takes as the
parameter a valid wide character.  If the multibyte representation for
this character in the initial state is exactly one byte long, the return
value of this function is this character.  Otherwise the return value is
<code>EOF</code>.
</p>
<a name="index-wchar_002eh-7"></a>
<p><code>wctob</code> was introduced in Amendment 1 to ISO C90 and
is declared in &lsquo;<tt>wchar.h</tt>&rsquo;.
</p></dd></dl>

<p>There are more general functions to convert single character from
multibyte representation to wide characters and vice versa.  These
functions pose no limit on the length of the multibyte representation
and they also do not require it to be in the initial state.
</p>
<dl>
<dt><a name="index-mbrtowc"></a><u>Function:</u> size_t <b>mbrtowc</b><i> (wchar_t *restrict <var>pwc</var>, const char *restrict <var>s</var>, size_t <var>n</var>, mbstate_t *restrict <var>ps</var>)</i></dt>
<dd><a name="index-stateful-1"></a>
<p>The <code>mbrtowc</code> function (&ldquo;multibyte restartable to wide
character&rdquo;) converts the next multibyte character in the string pointed
to by <var>s</var> into a wide character and stores it in the wide character
string pointed to by <var>pwc</var>.  The conversion is performed according
to the locale currently selected for the <code>LC_CTYPE</code> category.  If
the conversion for the character set used in the locale requires a state,
the multibyte string is interpreted in the state represented by the
object pointed to by <var>ps</var>.  If <var>ps</var> is a null pointer, a static,
internal state variable used only by the <code>mbrtowc</code> function is
used.
</p>
<p>If the next multibyte character corresponds to the NUL wide character,
the return value of the function is <em>0</em> and the state object is
afterwards in the initial state.  If the next <var>n</var> or fewer bytes
form a correct multibyte character, the return value is the number of
bytes starting from <var>s</var> that form the multibyte character.  The
conversion state is updated according to the bytes consumed in the
conversion.  In both cases the wide character (either the <code>L'\0'</code>
or the one found in the conversion) is stored in the string pointed to
by <var>pwc</var> if <var>pwc</var> is not null.
</p>
<p>If the first <var>n</var> bytes of the multibyte string possibly form a valid
multibyte character but there are more than <var>n</var> bytes needed to
complete it, the return value of the function is <code>(size_t) -2</code> and
no value is stored.  Please note that this can happen even if <var>n</var>
has a value greater than or equal to <code>MB_CUR_MAX</code> since the input
might contain redundant shift sequences.
</p>
<p>If the first <code>n</code> bytes of the multibyte string cannot possibly form
a valid multibyte character, no value is stored, the global variable
<code>errno</code> is set to the value <code>EILSEQ</code>, and the function returns
<code>(size_t) -1</code>.  The conversion state is afterwards undefined.
</p>
<a name="index-wchar_002eh-8"></a>
<p><code>mbrtowc</code> was introduced in Amendment 1 to ISO C90 and
is declared in &lsquo;<tt>wchar.h</tt>&rsquo;.
</p></dd></dl>

<p>Use of <code>mbrtowc</code> is straightforward.  A function that copies a
multibyte string into a wide character string while at the same time
converting all lowercase characters into uppercase could look like this
(this is not the final version, just an example; it has no error
checking, and sometimes leaks memory):
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">wchar_t *
mbstouwcs (const char *s)
{
  size_t len = strlen (s);
  wchar_t *result = malloc ((len + 1) * sizeof (wchar_t));
  wchar_t *wcp = result;
  wchar_t tmp[1];
  mbstate_t state;
  size_t nbytes;

  memset (&amp;state, '\0', sizeof (state));
  while ((nbytes = mbrtowc (tmp, s, len, &amp;state)) &gt; 0)
    {
      if (nbytes &gt;= (size_t) -2)
        /* Invalid input string.  */
        return NULL;
      *wcp++ = towupper (tmp[0]);
      len -= nbytes;
      s += nbytes;
    }
  return result;
}
</pre></td></tr></table>

<p>The use of <code>mbrtowc</code> should be clear.  A single wide character is
stored in <code><var>tmp</var>[0]</code>, and the number of consumed bytes is stored
in the variable <var>nbytes</var>.  If the conversion is successful, the
uppercase variant of the wide character is stored in the <var>result</var>
array and the pointer to the input string and the number of available
bytes is adjusted.
</p>
<p>The only non-obvious thing about <code>mbrtowc</code> might be the way memory
is allocated for the result.  The above code uses the fact that there
can never be more wide characters in the converted results than there are
bytes in the multibyte input string.  This method yields a pessimistic
guess about the size of the result, and if many wide character strings
have to be constructed this way or if the strings are long, the extra
memory required to be allocated because the input string contains
multibyte characters might be significant.  The allocated memory block can
be resized to the correct size before returning it, but a better solution
might be to allocate just the right amount of space for the result right
away.  Unfortunately there is no function to compute the length of the wide
character string directly from the multibyte string.  There is, however, a
function that does part of the work.
</p>
<dl>
<dt><a name="index-mbrlen"></a><u>Function:</u> size_t <b>mbrlen</b><i> (const char *restrict <var>s</var>, size_t <var>n</var>, mbstate_t *<var>ps</var>)</i></dt>
<dd><p>The <code>mbrlen</code> function (&ldquo;multibyte restartable length&rdquo;) computes
the number of at most <var>n</var> bytes starting at <var>s</var>, which form the
next valid and complete multibyte character.
</p>
<p>If the next multibyte character corresponds to the NUL wide character,
the return value is <em>0</em>.  If the next <var>n</var> bytes form a valid
multibyte character, the number of bytes belonging to this multibyte
character byte sequence is returned.
</p>
<p>If the first <var>n</var> bytes possibly form a valid multibyte
character but the character is incomplete, the return value is
<code>(size_t) -2</code>.  Otherwise the multibyte character sequence is invalid
and the return value is <code>(size_t) -1</code>.
</p>
<p>The multibyte sequence is interpreted in the state represented by the
object pointed to by <var>ps</var>.  If <var>ps</var> is a null pointer, a state
object local to <code>mbrlen</code> is used.
</p>
<a name="index-wchar_002eh-9"></a>
<p><code>mbrlen</code> was introduced in Amendment 1 to ISO C90 and
is declared in &lsquo;<tt>wchar.h</tt>&rsquo;.
</p></dd></dl>

<p>The attentive reader now will note that <code>mbrlen</code> can be implemented
as
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">mbrtowc (NULL, s, n, ps != NULL ? ps : &amp;internal)
</pre></td></tr></table>

<p>This is true and in fact is mentioned in the official specification.
How can this function be used to determine the length of the wide
character string created from a multibyte character string?  It is not
directly usable, but we can define a function <code>mbslen</code> using it:
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">size_t
mbslen (const char *s)
{
  mbstate_t state;
  size_t result = 0;
  size_t nbytes;
  memset (&amp;state, '\0', sizeof (state));
  while ((nbytes = mbrlen (s, MB_LEN_MAX, &amp;state)) &gt; 0)
    {
      if (nbytes &gt;= (size_t) -2)
        /* <span class="roman">Something is wrong.</span>  */
        return (size_t) -1;
      s += nbytes;
      ++result;
    }
  return result;
}
</pre></td></tr></table>

<p>This function simply calls <code>mbrlen</code> for each multibyte character
in the string and counts the number of function calls.  Please note that
we here use <code>MB_LEN_MAX</code> as the size argument in the <code>mbrlen</code>
call.  This is acceptable since a) this value is larger then the length of
the longest multibyte character sequence and b) we know that the string
<var>s</var> ends with a NUL byte, which cannot be part of any other multibyte
character sequence but the one representing the NUL wide character.
Therefore, the <code>mbrlen</code> function will never read invalid memory.
</p>
<p>Now that this function is available (just to make this clear, this
function is <em>not</em> part of the GNU C library) we can compute the
number of wide character required to store the converted multibyte
character string <var>s</var> using
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">wcs_bytes = (mbslen (s) + 1) * sizeof (wchar_t);
</pre></td></tr></table>

<p>Please note that the <code>mbslen</code> function is quite inefficient.  The
implementation of <code>mbstouwcs</code> with <code>mbslen</code> would have to
perform the conversion of the multibyte character input string twice, and
this conversion might be quite expensive.  So it is necessary to think
about the consequences of using the easier but imprecise method before
doing the work twice.
</p>
<dl>
<dt><a name="index-wcrtomb"></a><u>Function:</u> size_t <b>wcrtomb</b><i> (char *restrict <var>s</var>, wchar_t <var>wc</var>, mbstate_t *restrict <var>ps</var>)</i></dt>
<dd><p>The <code>wcrtomb</code> function (&ldquo;wide character restartable to
multibyte&rdquo;) converts a single wide character into a multibyte string
corresponding to that wide character.
</p>
<p>If <var>s</var> is a null pointer, the function resets the state stored in
the objects pointed to by <var>ps</var> (or the internal <code>mbstate_t</code>
object) to the initial state.  This can also be achieved by a call like
this:
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">wcrtombs (temp_buf, L'\0', ps)
</pre></td></tr></table>

<p>since, if <var>s</var> is a null pointer, <code>wcrtomb</code> performs as if it
writes into an internal buffer, which is guaranteed to be large enough.
</p>
<p>If <var>wc</var> is the NUL wide character, <code>wcrtomb</code> emits, if
necessary, a shift sequence to get the state <var>ps</var> into the initial
state followed by a single NUL byte, which is stored in the string
<var>s</var>.
</p>
<p>Otherwise a byte sequence (possibly including shift sequences) is written
into the string <var>s</var>.  This only happens if <var>wc</var> is a valid wide
character (i.e., it has a multibyte representation in the character set
selected by locale of the <code>LC_CTYPE</code> category).  If <var>wc</var> is no
valid wide character, nothing is stored in the strings <var>s</var>,
<code>errno</code> is set to <code>EILSEQ</code>, the conversion state in <var>ps</var>
is undefined and the return value is <code>(size_t) -1</code>.
</p>
<p>If no error occurred the function returns the number of bytes stored in
the string <var>s</var>.  This includes all bytes representing shift
sequences.
</p>
<p>One word about the interface of the function: there is no parameter
specifying the length of the array <var>s</var>.  Instead the function
assumes that there are at least <code>MB_CUR_MAX</code> bytes available since
this is the maximum length of any byte sequence representing a single
character.  So the caller has to make sure that there is enough space
available, otherwise buffer overruns can occur.
</p>
<a name="index-wchar_002eh-10"></a>
<p><code>wcrtomb</code> was introduced in Amendment 1 to ISO C90 and is
declared in &lsquo;<tt>wchar.h</tt>&rsquo;.
</p></dd></dl>

<p>Using <code>wcrtomb</code> is as easy as using <code>mbrtowc</code>.  The following
example appends a wide character string to a multibyte character string.
Again, the code is not really useful (or correct), it is simply here to
demonstrate the use and some problems.
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">char *
mbscatwcs (char *s, size_t len, const wchar_t *ws)
{
  mbstate_t state;
  /* <span class="roman">Find the end of the existing string.</span>  */
  char *wp = strchr (s, '\0');
  len -= wp - s;
  memset (&amp;state, '\0', sizeof (state));
  do
    {
      size_t nbytes;
      if (len &lt; MB_CUR_LEN)
        {
          /* <span class="roman">We cannot guarantee that the next</span>
             <span class="roman">character fits into the buffer, so</span>
             <span class="roman">return an error.</span>  */
          errno = E2BIG;
          return NULL;
        }
      nbytes = wcrtomb (wp, *ws, &amp;state);
      if (nbytes == (size_t) -1)
        /* <span class="roman">Error in the conversion.</span>  */
        return NULL;
      len -= nbytes;
      wp += nbytes;
    }
  while (*ws++ != L'\0');
  return s;
}
</pre></td></tr></table>

<p>First the function has to find the end of the string currently in the
array <var>s</var>.  The <code>strchr</code> call does this very efficiently since a
requirement for multibyte character representations is that the NUL byte
is never used except to represent itself (and in this context, the end
of the string).
</p>
<p>After initializing the state object the loop is entered where the first
task is to make sure there is enough room in the array <var>s</var>.  We
abort if there are not at least <code>MB_CUR_LEN</code> bytes available.  This
is not always optimal but we have no other choice.  We might have less
than <code>MB_CUR_LEN</code> bytes available but the next multibyte character
might also be only one byte long.  At the time the <code>wcrtomb</code> call
returns it is too late to decide whether the buffer was large enough.  If
this solution is unsuitable, there is a very slow but more accurate
solution.
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">  &hellip;
  if (len &lt; MB_CUR_LEN)
    {
      mbstate_t temp_state;
      memcpy (&amp;temp_state, &amp;state, sizeof (state));
      if (wcrtomb (NULL, *ws, &amp;temp_state) &gt; len)
        {
          /* <span class="roman">We cannot guarantee that the next</span>
             <span class="roman">character fits into the buffer, so</span>
             <span class="roman">return an error.</span>  */
          errno = E2BIG;
          return NULL;
        }
    }
  &hellip;
</pre></td></tr></table>

<p>Here we perform the conversion that might overflow the buffer so that
we are afterwards in the position to make an exact decision about the
buffer size.  Please note the <code>NULL</code> argument for the destination
buffer in the new <code>wcrtomb</code> call; since we are not interested in the
converted text at this point, this is a nice way to express this.  The
most unusual thing about this piece of code certainly is the duplication
of the conversion state object, but if a change of the state is necessary
to emit the next multibyte character, we want to have the same shift state
change performed in the real conversion.  Therefore, we have to preserve
the initial shift state information.
</p>
<p>There are certainly many more and even better solutions to this problem.
This example is only provided for educational purposes.
</p>
<hr size="6">
<a name="Converting-Strings"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Converting-a-Character" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Multibyte-Conversion-Example" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Restartable-multibyte-conversion" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Converting-Multibyte-and-Wide-Character-Strings"></a>
<h3 class="subsection">6.3.4 Converting Multibyte and Wide Character Strings</h3>

<p>The functions described in the previous section only convert a single
character at a time.  Most operations to be performed in real-world
programs include strings and therefore the ISO C standard also
defines conversions on entire strings.  However, the defined set of
functions is quite limited; therefore, the GNU C library contains a few
extensions that can help in some important situations.
</p>
<dl>
<dt><a name="index-mbsrtowcs"></a><u>Function:</u> size_t <b>mbsrtowcs</b><i> (wchar_t *restrict <var>dst</var>, const char **restrict <var>src</var>, size_t <var>len</var>, mbstate_t *restrict <var>ps</var>)</i></dt>
<dd><p>The <code>mbsrtowcs</code> function (&ldquo;multibyte string restartable to wide
character string&rdquo;) converts an NUL-terminated multibyte character
string at <code>*<var>src</var></code> into an equivalent wide character string,
including the NUL wide character at the end.  The conversion is started
using the state information from the object pointed to by <var>ps</var> or
from an internal object of <code>mbsrtowcs</code> if <var>ps</var> is a null
pointer.  Before returning, the state object is updated to match the state
after the last converted character.  The state is the initial state if the
terminating NUL byte is reached and converted.
</p>
<p>If <var>dst</var> is not a null pointer, the result is stored in the array
pointed to by <var>dst</var>; otherwise, the conversion result is not
available since it is stored in an internal buffer.
</p>
<p>If <var>len</var> wide characters are stored in the array <var>dst</var> before
reaching the end of the input string, the conversion stops and <var>len</var>
is returned.  If <var>dst</var> is a null pointer, <var>len</var> is never checked.
</p>
<p>Another reason for a premature return from the function call is if the
input string contains an invalid multibyte sequence.  In this case the
global variable <code>errno</code> is set to <code>EILSEQ</code> and the function
returns <code>(size_t) -1</code>.
</p>

<p>In all other cases the function returns the number of wide characters
converted during this call.  If <var>dst</var> is not null, <code>mbsrtowcs</code>
stores in the pointer pointed to by <var>src</var> either a null pointer (if
the NUL byte in the input string was reached) or the address of the byte
following the last converted multibyte character.
</p>
<a name="index-wchar_002eh-11"></a>
<p><code>mbsrtowcs</code> was introduced in Amendment 1 to ISO C90 and is
declared in &lsquo;<tt>wchar.h</tt>&rsquo;.
</p></dd></dl>

<p>The definition of the <code>mbsrtowcs</code> function has one important
limitation.  The requirement that <var>dst</var> has to be a NUL-terminated
string provides problems if one wants to convert buffers with text.  A
buffer is normally no collection of NUL-terminated strings but instead a
continuous collection of lines, separated by newline characters.  Now
assume that a function to convert one line from a buffer is needed.  Since
the line is not NUL-terminated, the source pointer cannot directly point
into the unmodified text buffer.  This means, either one inserts the NUL
byte at the appropriate place for the time of the <code>mbsrtowcs</code>
function call (which is not doable for a read-only buffer or in a
multi-threaded application) or one copies the line in an extra buffer
where it can be terminated by a NUL byte.  Note that it is not in general
possible to limit the number of characters to convert by setting the
parameter <var>len</var> to any specific value.  Since it is not known how
many bytes each multibyte character sequence is in length, one can only
guess.
</p>
<a name="index-stateful-2"></a>
<p>There is still a problem with the method of NUL-terminating a line right
after the newline character, which could lead to very strange results.
As said in the description of the <code>mbsrtowcs</code> function above the
conversion state is guaranteed to be in the initial shift state after
processing the NUL byte at the end of the input string.  But this NUL
byte is not really part of the text (i.e., the conversion state after
the newline in the original text could be something different than the
initial shift state and therefore the first character of the next line
is encoded using this state).  But the state in question is never
accessible to the user since the conversion stops after the NUL byte
(which resets the state).  Most stateful character sets in use today
require that the shift state after a newline be the initial state&ndash;but
this is not a strict guarantee.  Therefore, simply NUL-terminating a
piece of a running text is not always an adequate solution and,
therefore, should never be used in generally used code.
</p>
<p>The generic conversion interface (see section <a href="#Generic-Charset-Conversion">Generic Charset Conversion</a>)
does not have this limitation (it simply works on buffers, not
strings), and the GNU C library contains a set of functions that take
additional parameters specifying the maximal number of bytes that are
consumed from the input string.  This way the problem of
<code>mbsrtowcs</code>&rsquo;s example above could be solved by determining the line
length and passing this length to the function.
</p>
<dl>
<dt><a name="index-wcsrtombs"></a><u>Function:</u> size_t <b>wcsrtombs</b><i> (char *restrict <var>dst</var>, const wchar_t **restrict <var>src</var>, size_t <var>len</var>, mbstate_t *restrict <var>ps</var>)</i></dt>
<dd><p>The <code>wcsrtombs</code> function (&ldquo;wide character string restartable to
multibyte string&rdquo;) converts the NUL-terminated wide character string at
<code>*<var>src</var></code> into an equivalent multibyte character string and
stores the result in the array pointed to by <var>dst</var>.  The NUL wide
character is also converted.  The conversion starts in the state
described in the object pointed to by <var>ps</var> or by a state object
locally to <code>wcsrtombs</code> in case <var>ps</var> is a null pointer.  If
<var>dst</var> is a null pointer, the conversion is performed as usual but the
result is not available.  If all characters of the input string were
successfully converted and if <var>dst</var> is not a null pointer, the
pointer pointed to by <var>src</var> gets assigned a null pointer.
</p>
<p>If one of the wide characters in the input string has no valid multibyte
character equivalent, the conversion stops early, sets the global
variable <code>errno</code> to <code>EILSEQ</code>, and returns <code>(size_t) -1</code>.
</p>
<p>Another reason for a premature stop is if <var>dst</var> is not a null
pointer and the next converted character would require more than
<var>len</var> bytes in total to the array <var>dst</var>.  In this case (and if
<var>dest</var> is not a null pointer) the pointer pointed to by <var>src</var> is
assigned a value pointing to the wide character right after the last one
successfully converted.
</p>
<p>Except in the case of an encoding error the return value of the
<code>wcsrtombs</code> function is the number of bytes in all the multibyte
character sequences stored in <var>dst</var>.  Before returning the state in
the object pointed to by <var>ps</var> (or the internal object in case
<var>ps</var> is a null pointer) is updated to reflect the state after the
last conversion.  The state is the initial shift state in case the
terminating NUL wide character was converted.
</p>
<a name="index-wchar_002eh-12"></a>
<p>The <code>wcsrtombs</code> function was introduced in Amendment 1 to
ISO C90 and is declared in &lsquo;<tt>wchar.h</tt>&rsquo;.
</p></dd></dl>

<p>The restriction mentioned above for the <code>mbsrtowcs</code> function applies
here also.  There is no possibility of directly controlling the number of
input characters.  One has to place the NUL wide character at the correct
place or control the consumed input indirectly via the available output
array size (the <var>len</var> parameter).
</p>
<dl>
<dt><a name="index-mbsnrtowcs"></a><u>Function:</u> size_t <b>mbsnrtowcs</b><i> (wchar_t *restrict <var>dst</var>, const char **restrict <var>src</var>, size_t <var>nmc</var>, size_t <var>len</var>, mbstate_t *restrict <var>ps</var>)</i></dt>
<dd><p>The <code>mbsnrtowcs</code> function is very similar to the <code>mbsrtowcs</code>
function.  All the parameters are the same except for <var>nmc</var>, which is
new.  The return value is the same as for <code>mbsrtowcs</code>.
</p>
<p>This new parameter specifies how many bytes at most can be used from the
multibyte character string.  In other words, the multibyte character
string <code>*<var>src</var></code> need not be NUL-terminated.  But if a NUL byte
is found within the <var>nmc</var> first bytes of the string, the conversion
stops here.
</p>
<p>This function is a GNU extension.  It is meant to work around the
problems mentioned above.  Now it is possible to convert a buffer with
multibyte character text piece for piece without having to care about
inserting NUL bytes and the effect of NUL bytes on the conversion state.
</p></dd></dl>

<p>A function to convert a multibyte string into a wide character string
and display it could be written like this (this is not a really useful
example):
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">void
showmbs (const char *src, FILE *fp)
{
  mbstate_t state;
  int cnt = 0;
  memset (&amp;state, '\0', sizeof (state));
  while (1)
    {
      wchar_t linebuf[100];
      const char *endp = strchr (src, '\n');
      size_t n;

      /* <span class="roman">Exit if there is no more line.</span>  */
      if (endp == NULL)
        break;

      n = mbsnrtowcs (linebuf, &amp;src, endp - src, 99, &amp;state);
      linebuf[n] = L'\0';
      fprintf (fp, &quot;line %d: \&quot;%S\&quot;\n&quot;, linebuf);
    }
}
</pre></td></tr></table>

<p>There is no problem with the state after a call to <code>mbsnrtowcs</code>.
Since we don&rsquo;t insert characters in the strings that were not in there
right from the beginning and we use <var>state</var> only for the conversion
of the given buffer, there is no problem with altering the state.
</p>
<dl>
<dt><a name="index-wcsnrtombs"></a><u>Function:</u> size_t <b>wcsnrtombs</b><i> (char *restrict <var>dst</var>, const wchar_t **restrict <var>src</var>, size_t <var>nwc</var>, size_t <var>len</var>, mbstate_t *restrict <var>ps</var>)</i></dt>
<dd><p>The <code>wcsnrtombs</code> function implements the conversion from wide
character strings to multibyte character strings.  It is similar to
<code>wcsrtombs</code> but, just like <code>mbsnrtowcs</code>, it takes an extra
parameter, which specifies the length of the input string.
</p>
<p>No more than <var>nwc</var> wide characters from the input string
<code>*<var>src</var></code> are converted.  If the input string contains a NUL
wide character in the first <var>nwc</var> characters, the conversion stops at
this place.
</p>
<p>The <code>wcsnrtombs</code> function is a GNU extension and just like
<code>mbsnrtowcs</code> helps in situations where no NUL-terminated input
strings are available.
</p></dd></dl>


<hr size="6">
<a name="Multibyte-Conversion-Example"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Converting-Strings" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Non_002dreentrant-Conversion" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Restartable-multibyte-conversion" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="A-Complete-Multibyte-Conversion-Example"></a>
<h3 class="subsection">6.3.5 A Complete Multibyte Conversion Example</h3>

<p>The example programs given in the last sections are only brief and do
not contain all the error checking, etc.  Presented here is a complete
and documented example.  It features the <code>mbrtowc</code> function but it
should be easy to derive versions using the other functions.
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">int
file_mbsrtowcs (int input, int output)
{
  /* <span class="roman">Note the use of <code>MB_LEN_MAX</code>.</span>
     <span class="roman"><code>MB_CUR_MAX</code> cannot portably be used here.</span>  */
  char buffer[BUFSIZ + MB_LEN_MAX];
  mbstate_t state;
  int filled = 0;
  int eof = 0;

  /* <span class="roman">Initialize the state.</span>  */
  memset (&amp;state, '\0', sizeof (state));

  while (!eof)
    {
      ssize_t nread;
      ssize_t nwrite;
      char *inp = buffer;
      wchar_t outbuf[BUFSIZ];
      wchar_t *outp = outbuf;

      /* <span class="roman">Fill up the buffer from the input file.</span>  */
      nread = read (input, buffer + filled, BUFSIZ);
      if (nread &lt; 0)
        {
          perror (&quot;read&quot;);
          return 0;
        }
      /* <span class="roman">If we reach end of file, make a note to read no more.</span> */
      if (nread == 0)
        eof = 1;

      /* <span class="roman"><code>filled</code> is now the number of bytes in <code>buffer</code>.</span> */
      filled += nread;

      /* <span class="roman">Convert those bytes to wide characters--as many as we can.</span> */
      while (1)
        {
          size_t thislen = mbrtowc (outp, inp, filled, &amp;state);
          /* <span class="roman">Stop converting at invalid character;</span>
             <span class="roman">this can mean we have read just the first part</span>
             <span class="roman">of a valid character.</span>  */
          if (thislen == (size_t) -1)
            break;
          /* <span class="roman">We want to handle embedded NUL bytes</span>
             <span class="roman">but the return value is 0.  Correct this.</span>  */
          if (thislen == 0)
            thislen = 1;
          /* <span class="roman">Advance past this character.</span> */
          inp += thislen;
          filled -= thislen;
          ++outp;
        }

      /* <span class="roman">Write the wide characters we just made.</span>  */
      nwrite = write (output, outbuf,
                      (outp - outbuf) * sizeof (wchar_t));
      if (nwrite &lt; 0)
        {
          perror (&quot;write&quot;);
          return 0;
        }

      /* <span class="roman">See if we have a <em>real</em> invalid character.</span> */
      if ((eof &amp;&amp; filled &gt; 0) || filled &gt;= MB_CUR_MAX)
        {
          error (0, 0, &quot;invalid multibyte character&quot;);
          return 0;
        }

      /* <span class="roman">If any characters must be carried forward,</span>
         <span class="roman">put them at the beginning of <code>buffer</code>.</span> */
      if (filled &gt; 0)
        memmove (buffer, inp, filled);
    }

  return 1;
}
</pre></td></tr></table>


<hr size="6">
<a name="Non_002dreentrant-Conversion"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Multibyte-Conversion-Example" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Non_002dreentrant-Character-Conversion" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Non_002dreentrant-Conversion-Function"></a>
<h2 class="section">6.4 Non-reentrant Conversion Function</h2>

<p>The functions described in the previous chapter are defined in
Amendment 1 to ISO C90, but the original ISO C90 standard
also contained functions for character set conversion.  The reason that
these original functions are not described first is that they are almost
entirely useless.
</p>
<p>The problem is that all the conversion functions described in the
original ISO C90 use a local state.  Using a local state implies that
multiple conversions at the same time (not only when using threads)
cannot be done, and that you cannot first convert single characters and
then strings since you cannot tell the conversion functions which state
to use.
</p>
<p>These original functions are therefore usable only in a very limited set
of situations.  One must complete converting the entire string before
starting a new one, and each string/text must be converted with the same
function (there is no problem with the library itself; it is guaranteed
that no library function changes the state of any of these functions).
<strong>For the above reasons it is highly requested that the functions
described in the previous section be used in place of non-reentrant
conversion functions.</strong>
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#Non_002dreentrant-Character-Conversion">6.4.1 Non-reentrant Conversion of Single Characters</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
<tr><td align="left" valign="top"><a href="#Non_002dreentrant-String-Conversion">6.4.2 Non-reentrant Conversion of Strings</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
<tr><td align="left" valign="top"><a href="#Shift-State">6.4.3 States in Non-reentrant Functions</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
</table>

<hr size="6">
<a name="Non_002dreentrant-Character-Conversion"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Non_002dreentrant-Conversion" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Non_002dreentrant-String-Conversion" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Non_002dreentrant-Conversion" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Non_002dreentrant-Conversion-of-Single-Characters"></a>
<h3 class="subsection">6.4.1 Non-reentrant Conversion of Single Characters</h3>

<dl>
<dt><a name="index-mbtowc"></a><u>Function:</u> int <b>mbtowc</b><i> (wchar_t *restrict <var>result</var>, const char *restrict <var>string</var>, size_t <var>size</var>)</i></dt>
<dd><p>The <code>mbtowc</code> (&ldquo;multibyte to wide character&rdquo;) function when called
with non-null <var>string</var> converts the first multibyte character
beginning at <var>string</var> to its corresponding wide character code.  It
stores the result in <code>*<var>result</var></code>.
</p>
<p><code>mbtowc</code> never examines more than <var>size</var> bytes.  (The idea is
to supply for <var>size</var> the number of bytes of data you have in hand.)
</p>
<p><code>mbtowc</code> with non-null <var>string</var> distinguishes three
possibilities: the first <var>size</var> bytes at <var>string</var> start with
valid multibyte characters, they start with an invalid byte sequence or
just part of a character, or <var>string</var> points to an empty string (a
null character).
</p>
<p>For a valid multibyte character, <code>mbtowc</code> converts it to a wide
character and stores that in <code>*<var>result</var></code>, and returns the
number of bytes in that character (always at least <em>1</em> and never
more than <var>size</var>).
</p>
<p>For an invalid byte sequence, <code>mbtowc</code> returns <em>-1</em>.  For an
empty string, it returns <em>0</em>, also storing <code>'\0'</code> in
<code>*<var>result</var></code>.
</p>
<p>If the multibyte character code uses shift characters, then
<code>mbtowc</code> maintains and updates a shift state as it scans.  If you
call <code>mbtowc</code> with a null pointer for <var>string</var>, that
initializes the shift state to its standard initial value.  It also
returns nonzero if the multibyte character code in use actually has a
shift state.  See section <a href="#Shift-State">States in Non-reentrant Functions</a>.
</p></dd></dl>

<dl>
<dt><a name="index-wctomb"></a><u>Function:</u> int <b>wctomb</b><i> (char *<var>string</var>, wchar_t <var>wchar</var>)</i></dt>
<dd><p>The <code>wctomb</code> (&ldquo;wide character to multibyte&rdquo;) function converts
the wide character code <var>wchar</var> to its corresponding multibyte
character sequence, and stores the result in bytes starting at
<var>string</var>.  At most <code>MB_CUR_MAX</code> characters are stored.
</p>
<p><code>wctomb</code> with non-null <var>string</var> distinguishes three
possibilities for <var>wchar</var>: a valid wide character code (one that can
be translated to a multibyte character), an invalid code, and
<code>L'\0'</code>.
</p>
<p>Given a valid code, <code>wctomb</code> converts it to a multibyte character,
storing the bytes starting at <var>string</var>.  Then it returns the number
of bytes in that character (always at least <em>1</em> and never more
than <code>MB_CUR_MAX</code>).
</p>
<p>If <var>wchar</var> is an invalid wide character code, <code>wctomb</code> returns
<em>-1</em>.  If <var>wchar</var> is <code>L'\0'</code>, it returns <code>0</code>, also
storing <code>'\0'</code> in <code>*<var>string</var></code>.
</p>
<p>If the multibyte character code uses shift characters, then
<code>wctomb</code> maintains and updates a shift state as it scans.  If you
call <code>wctomb</code> with a null pointer for <var>string</var>, that
initializes the shift state to its standard initial value.  It also
returns nonzero if the multibyte character code in use actually has a
shift state.  See section <a href="#Shift-State">States in Non-reentrant Functions</a>.
</p>
<p>Calling this function with a <var>wchar</var> argument of zero when
<var>string</var> is not null has the side-effect of reinitializing the
stored shift state <em>as well as</em> storing the multibyte character
<code>'\0'</code> and returning <em>0</em>.
</p></dd></dl>

<p>Similar to <code>mbrlen</code> there is also a non-reentrant function that
computes the length of a multibyte character.  It can be defined in
terms of <code>mbtowc</code>.
</p>
<dl>
<dt><a name="index-mblen"></a><u>Function:</u> int <b>mblen</b><i> (const char *<var>string</var>, size_t <var>size</var>)</i></dt>
<dd><p>The <code>mblen</code> function with a non-null <var>string</var> argument returns
the number of bytes that make up the multibyte character beginning at
<var>string</var>, never examining more than <var>size</var> bytes.  (The idea is
to supply for <var>size</var> the number of bytes of data you have in hand.)
</p>
<p>The return value of <code>mblen</code> distinguishes three possibilities: the
first <var>size</var> bytes at <var>string</var> start with valid multibyte
characters, they start with an invalid byte sequence or just part of a
character, or <var>string</var> points to an empty string (a null character).
</p>
<p>For a valid multibyte character, <code>mblen</code> returns the number of
bytes in that character (always at least <code>1</code> and never more than
<var>size</var>).  For an invalid byte sequence, <code>mblen</code> returns
<em>-1</em>.  For an empty string, it returns <em>0</em>.
</p>
<p>If the multibyte character code uses shift characters, then <code>mblen</code>
maintains and updates a shift state as it scans.  If you call
<code>mblen</code> with a null pointer for <var>string</var>, that initializes the
shift state to its standard initial value.  It also returns a nonzero
value if the multibyte character code in use actually has a shift state.
See section <a href="#Shift-State">States in Non-reentrant Functions</a>.
</p>
<a name="index-stdlib_002eh-7"></a>
<p>The function <code>mblen</code> is declared in &lsquo;<tt>stdlib.h</tt>&rsquo;.
</p></dd></dl>


<hr size="6">
<a name="Non_002dreentrant-String-Conversion"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Non_002dreentrant-Character-Conversion" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Shift-State" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Non_002dreentrant-Conversion" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Non_002dreentrant-Conversion-of-Strings"></a>
<h3 class="subsection">6.4.2 Non-reentrant Conversion of Strings</h3>

<p>For convenience the ISO C90 standard also defines functions to
convert entire strings instead of single characters.  These functions
suffer from the same problems as their reentrant counterparts from
Amendment 1 to ISO C90; see <a href="#Converting-Strings">Converting Multibyte and Wide Character Strings</a>.
</p>
<dl>
<dt><a name="index-mbstowcs"></a><u>Function:</u> size_t <b>mbstowcs</b><i> (wchar_t *<var>wstring</var>, const char *<var>string</var>, size_t <var>size</var>)</i></dt>
<dd><p>The <code>mbstowcs</code> (&ldquo;multibyte string to wide character string&rdquo;)
function converts the null-terminated string of multibyte characters
<var>string</var> to an array of wide character codes, storing not more than
<var>size</var> wide characters into the array beginning at <var>wstring</var>.
The terminating null character counts towards the size, so if <var>size</var>
is less than the actual number of wide characters resulting from
<var>string</var>, no terminating null character is stored.
</p>
<p>The conversion of characters from <var>string</var> begins in the initial
shift state.
</p>
<p>If an invalid multibyte character sequence is found, the <code>mbstowcs</code>
function returns a value of <em>-1</em>.  Otherwise, it returns the number
of wide characters stored in the array <var>wstring</var>.  This number does
not include the terminating null character, which is present if the
number is less than <var>size</var>.
</p>
<p>Here is an example showing how to convert a string of multibyte
characters, allocating enough space for the result.
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">wchar_t *
mbstowcs_alloc (const char *string)
{
  size_t size = strlen (string) + 1;
  wchar_t *buf = xmalloc (size * sizeof (wchar_t));

  size = mbstowcs (buf, string, size);
  if (size == (size_t) -1)
    return NULL;
  buf = xrealloc (buf, (size + 1) * sizeof (wchar_t));
  return buf;
}
</pre></td></tr></table>

</dd></dl>

<dl>
<dt><a name="index-wcstombs"></a><u>Function:</u> size_t <b>wcstombs</b><i> (char *<var>string</var>, const wchar_t *<var>wstring</var>, size_t <var>size</var>)</i></dt>
<dd><p>The <code>wcstombs</code> (&ldquo;wide character string to multibyte string&rdquo;)
function converts the null-terminated wide character array <var>wstring</var>
into a string containing multibyte characters, storing not more than
<var>size</var> bytes starting at <var>string</var>, followed by a terminating
null character if there is room.  The conversion of characters begins in
the initial shift state.
</p>
<p>The terminating null character counts towards the size, so if <var>size</var>
is less than or equal to the number of bytes needed in <var>wstring</var>, no
terminating null character is stored.
</p>
<p>If a code that does not correspond to a valid multibyte character is
found, the <code>wcstombs</code> function returns a value of <em>-1</em>.
Otherwise, the return value is the number of bytes stored in the array
<var>string</var>.  This number does not include the terminating null character,
which is present if the number is less than <var>size</var>.
</p></dd></dl>

<hr size="6">
<a name="Shift-State"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Non_002dreentrant-String-Conversion" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Generic-Charset-Conversion" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Non_002dreentrant-Conversion" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="States-in-Non_002dreentrant-Functions"></a>
<h3 class="subsection">6.4.3 States in Non-reentrant Functions</h3>

<p>In some multibyte character codes, the <em>meaning</em> of any particular
byte sequence is not fixed; it depends on what other sequences have come
earlier in the same string.  Typically there are just a few sequences that
can change the meaning of other sequences; these few are called
<em>shift sequences</em> and we say that they set the <em>shift state</em> for
other sequences that follow.
</p>
<p>To illustrate shift state and shift sequences, suppose we decide that
the sequence <code>0200</code> (just one byte) enters Japanese mode, in which
pairs of bytes in the range from <code>0240</code> to <code>0377</code> are single
characters, while <code>0201</code> enters Latin-1 mode, in which single bytes
in the range from <code>0240</code> to <code>0377</code> are characters, and
interpreted according to the ISO Latin-1 character set.  This is a
multibyte code that has two alternative shift states (&ldquo;Japanese mode&rdquo;
and &ldquo;Latin-1 mode&rdquo;), and two shift sequences that specify particular
shift states.
</p>
<p>When the multibyte character code in use has shift states, then
<code>mblen</code>, <code>mbtowc</code>, and <code>wctomb</code> must maintain and update
the current shift state as they scan the string.  To make this work
properly, you must follow these rules:
</p>
<ul>
<li>
Before starting to scan a string, call the function with a null pointer
for the multibyte character address&mdash;for example, <code>mblen (NULL,
0)</code>.  This initializes the shift state to its standard initial value.

</li><li>
Scan the string one character at a time, in order.  Do not &ldquo;back up&rdquo;
and rescan characters already scanned, and do not intersperse the
processing of different strings.
</li></ul>

<p>Here is an example of using <code>mblen</code> following these rules:
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">void
scan_string (char *s)
{
  int length = strlen (s);

  /* <span class="roman">Initialize shift state.</span>  */
  mblen (NULL, 0);

  while (1)
    {
      int thischar = mblen (s, length);
      /* <span class="roman">Deal with end of string and invalid characters.</span>  */
      if (thischar == 0)
        break;
      if (thischar == -1)
        {
          error (&quot;invalid multibyte character&quot;);
          break;
        }
      /* <span class="roman">Advance past this character.</span>  */
      s += thischar;
      length -= thischar;
    }
}
</pre></td></tr></table>

<p>The functions <code>mblen</code>, <code>mbtowc</code> and <code>wctomb</code> are not
reentrant when using a multibyte code that uses a shift state.  However,
no other library functions call these functions, so you don&rsquo;t have to
worry that the shift state will be changed mysteriously.
</p>

<hr size="6">
<a name="Generic-Charset-Conversion"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Shift-State" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Generic-Conversion-Interface" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Generic-Charset-Conversion-1"></a>
<h2 class="section">6.5 Generic Charset Conversion</h2>

<p>The conversion functions mentioned so far in this chapter all had in
common that they operate on character sets that are not directly
specified by the functions.  The multibyte encoding used is specified by
the currently selected locale for the <code>LC_CTYPE</code> category.  The
wide character set is fixed by the implementation (in the case of GNU C
library it is always UCS-4 encoded ISO 10646.
</p>
<p>This has of course several problems when it comes to general character
conversion:
</p>
<ul>
<li>
For every conversion where neither the source nor the destination
character set is the character set of the locale for the <code>LC_CTYPE</code>
category, one has to change the <code>LC_CTYPE</code> locale using
<code>setlocale</code>.

<p>Changing the <code>LC_TYPE</code> locale introduces major problems for the rest
of the programs since several more functions (e.g., the character
classification functions, see section <a href="libc_4.html#Classification-of-Characters">Classification of Characters</a>) use the
<code>LC_CTYPE</code> category.
</p>
</li><li>
Parallel conversions to and from different character sets are not
possible since the <code>LC_CTYPE</code> selection is global and shared by all
threads.

</li><li>
If neither the source nor the destination character set is the character
set used for <code>wchar_t</code> representation, there is at least a two-step
process necessary to convert a text using the functions above.  One would
have to select the source character set as the multibyte encoding,
convert the text into a <code>wchar_t</code> text, select the destination
character set as the multibyte encoding, and convert the wide character
text to the multibyte (<em>=</em> destination) character set.

<p>Even if this is possible (which is not guaranteed) it is a very tiring
work.  Plus it suffers from the other two raised points even more due to
the steady changing of the locale.
</p></li></ul>

<p>The XPG2 standard defines a completely new set of functions, which has
none of these limitations.  They are not at all coupled to the selected
locales, and they have no constraints on the character sets selected for
source and destination.  Only the set of available conversions limits
them.  The standard does not specify that any conversion at all must be
available.  Such availability is a measure of the quality of the
implementation.
</p>
<p>In the following text first the interface to <code>iconv</code> and then the
conversion function, will be described.  Comparisons with other
implementations will show what obstacles stand in the way of portable
applications.  Finally, the implementation is described in so far as might
interest the advanced user who wants to extend conversion capabilities.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#Generic-Conversion-Interface">6.5.1 Generic Character Set Conversion Interface</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
<tr><td align="left" valign="top"><a href="#iconv-Examples">6.5.2 A complete <code>iconv</code> example</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
<tr><td align="left" valign="top"><a href="#Other-iconv-Implementations">6.5.3 Some Details about other <code>iconv</code> Implementations</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
<tr><td align="left" valign="top"><a href="#glibc-iconv-Implementation">6.5.4 The <code>iconv</code> Implementation in the GNU C library</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top"></td></tr>
</table>

<hr size="6">
<a name="Generic-Conversion-Interface"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Generic-Charset-Conversion" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#iconv-Examples" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Generic-Charset-Conversion" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Generic-Character-Set-Conversion-Interface"></a>
<h3 class="subsection">6.5.1 Generic Character Set Conversion Interface</h3>

<p>This set of functions follows the traditional cycle of using a resource:
open&ndash;use&ndash;close.  The interface consists of three functions, each of
which implements one step.
</p>
<p>Before the interfaces are described it is necessary to introduce a
data type.  Just like other open&ndash;use&ndash;close interfaces the functions
introduced here work using handles and the &lsquo;<tt>iconv.h</tt>&rsquo; header
defines a special type for the handles used.
</p>
<dl>
<dt><a name="index-iconv_005ft"></a><u>Data Type:</u> <b>iconv_t</b></dt>
<dd><p>This data type is an abstract type defined in &lsquo;<tt>iconv.h</tt>&rsquo;.  The user
must not assume anything about the definition of this type; it must be
completely opaque.
</p>
<p>Objects of this type can get assigned handles for the conversions using
the <code>iconv</code> functions.  The objects themselves need not be freed, but
the conversions for which the handles stand for have to.
</p></dd></dl>

<p>The first step is the function to create a handle.
</p>
<dl>
<dt><a name="index-iconv_005fopen"></a><u>Function:</u> iconv_t <b>iconv_open</b><i> (const char *<var>tocode</var>, const char *<var>fromcode</var>)</i></dt>
<dd><p>The <code>iconv_open</code> function has to be used before starting a
conversion.  The two parameters this function takes determine the
source and destination character set for the conversion, and if the
implementation has the possibility to perform such a conversion, the
function returns a handle.
</p>
<p>If the wanted conversion is not available, the <code>iconv_open</code> function
returns <code>(iconv_t) -1</code>. In this case the global variable
<code>errno</code> can have the following values:
</p>
<dl compact="compact">
<dt> <code>EMFILE</code></dt>
<dd><p>The process already has <code>OPEN_MAX</code> file descriptors open.
</p></dd>
<dt> <code>ENFILE</code></dt>
<dd><p>The system limit of open file is reached.
</p></dd>
<dt> <code>ENOMEM</code></dt>
<dd><p>Not enough memory to carry out the operation.
</p></dd>
<dt> <code>EINVAL</code></dt>
<dd><p>The conversion from <var>fromcode</var> to <var>tocode</var> is not supported.
</p></dd>
</dl>

<p>It is not possible to use the same descriptor in different threads to
perform independent conversions.  The data structures associated
with the descriptor include information about the conversion state.
This must not be messed up by using it in different conversions.
</p>
<p>An <code>iconv</code> descriptor is like a file descriptor as for every use a
new descriptor must be created.  The descriptor does not stand for all
of the conversions from <var>fromset</var> to <var>toset</var>.
</p>
<p>The GNU C library implementation of <code>iconv_open</code> has one
significant extension to other implementations.  To ease the extension
of the set of available conversions, the implementation allows storing
the necessary files with data and code in an arbitrary number of
directories.  How this extension must be written will be explained below
(see section <a href="#glibc-iconv-Implementation">The <code>iconv</code> Implementation in the GNU C library</a>).  Here it is only important to say
that all directories mentioned in the <code>GCONV_PATH</code> environment
variable are considered only if they contain a file &lsquo;<tt>gconv-modules</tt>&rsquo;.
These directories need not necessarily be created by the system
administrator.  In fact, this extension is introduced to help users
writing and using their own, new conversions.  Of course, this does not
work for security reasons in SUID binaries; in this case only the system
directory is considered and this normally is
&lsquo;<tt><var>prefix</var>/lib/gconv</tt>&rsquo;.  The <code>GCONV_PATH</code> environment
variable is examined exactly once at the first call of the
<code>iconv_open</code> function.  Later modifications of the variable have no
effect.
</p>
<a name="index-iconv_002eh"></a>
<p>The <code>iconv_open</code> function was introduced early in the X/Open
Portability Guide, version 2.  It is supported by all commercial
Unices as it is required for the Unix branding.  However, the quality and
completeness of the implementation varies widely.  The <code>iconv_open</code>
function is declared in &lsquo;<tt>iconv.h</tt>&rsquo;.
</p></dd></dl>

<p>The <code>iconv</code> implementation can associate large data structure with
the handle returned by <code>iconv_open</code>.  Therefore, it is crucial to
free all the resources once all conversions are carried out and the
conversion is not needed anymore.
</p>
<dl>
<dt><a name="index-iconv_005fclose"></a><u>Function:</u> int <b>iconv_close</b><i> (iconv_t <var>cd</var>)</i></dt>
<dd><p>The <code>iconv_close</code> function frees all resources associated with the
handle <var>cd</var>, which must have been returned by a successful call to
the <code>iconv_open</code> function.
</p>
<p>If the function call was successful the return value is <em>0</em>.
Otherwise it is <em>-1</em> and <code>errno</code> is set appropriately.
Defined error are:
</p>
<dl compact="compact">
<dt> <code>EBADF</code></dt>
<dd><p>The conversion descriptor is invalid.
</p></dd>
</dl>

<a name="index-iconv_002eh-1"></a>
<p>The <code>iconv_close</code> function was introduced together with the rest
of the <code>iconv</code> functions in XPG2 and is declared in &lsquo;<tt>iconv.h</tt>&rsquo;.
</p></dd></dl>

<p>The standard defines only one actual conversion function.  This has,
therefore, the most general interface: it allows conversion from one
buffer to another.  Conversion from a file to a buffer, vice versa, or
even file to file can be implemented on top of it.
</p>
<dl>
<dt><a name="index-iconv"></a><u>Function:</u> size_t <b>iconv</b><i> (iconv_t <var>cd</var>, char **<var>inbuf</var>, size_t *<var>inbytesleft</var>, char **<var>outbuf</var>, size_t *<var>outbytesleft</var>)</i></dt>
<dd><a name="index-stateful-3"></a>
<p>The <code>iconv</code> function converts the text in the input buffer
according to the rules associated with the descriptor <var>cd</var> and
stores the result in the output buffer.  It is possible to call the
function for the same text several times in a row since for stateful
character sets the necessary state information is kept in the data
structures associated with the descriptor.
</p>
<p>The input buffer is specified by <code>*<var>inbuf</var></code> and it contains
<code>*<var>inbytesleft</var></code> bytes.  The extra indirection is necessary for
communicating the used input back to the caller (see below).  It is
important to note that the buffer pointer is of type <code>char</code> and the
length is measured in bytes even if the input text is encoded in wide
characters.
</p>
<p>The output buffer is specified in a similar way.  <code>*<var>outbuf</var></code>
points to the beginning of the buffer with at least
<code>*<var>outbytesleft</var></code> bytes room for the result.  The buffer
pointer again is of type <code>char</code> and the length is measured in
bytes.  If <var>outbuf</var> or <code>*<var>outbuf</var></code> is a null pointer, the
conversion is performed but no output is available.
</p>
<p>If <var>inbuf</var> is a null pointer, the <code>iconv</code> function performs the
necessary action to put the state of the conversion into the initial
state.  This is obviously a no-op for non-stateful encodings, but if the
encoding has a state, such a function call might put some byte sequences
in the output buffer, which perform the necessary state changes.  The
next call with <var>inbuf</var> not being a null pointer then simply goes on
from the initial state.  It is important that the programmer never makes
any assumption as to whether the conversion has to deal with states.
Even if the input and output character sets are not stateful, the
implementation might still have to keep states.  This is due to the
implementation chosen for the GNU C library as it is described below.
Therefore an <code>iconv</code> call to reset the state should always be
performed if some protocol requires this for the output text.
</p>
<p>The conversion stops for one of three reasons. The first is that all
characters from the input buffer are converted.  This actually can mean
two things: either all bytes from the input buffer are consumed or
there are some bytes at the end of the buffer that possibly can form a
complete character but the input is incomplete.  The second reason for a
stop is that the output buffer is full.  And the third reason is that
the input contains invalid characters.
</p>
<p>In all of these cases the buffer pointers after the last successful
conversion, for input and output buffer, are stored in <var>inbuf</var> and
<var>outbuf</var>, and the available room in each buffer is stored in
<var>inbytesleft</var> and <var>outbytesleft</var>.
</p>
<p>Since the character sets selected in the <code>iconv_open</code> call can be
almost arbitrary, there can be situations where the input buffer contains
valid characters, which have no identical representation in the output
character set.  The behavior in this situation is undefined.  The
<em>current</em> behavior of the GNU C library in this situation is to
return with an error immediately.  This certainly is not the most
desirable solution; therefore, future versions will provide better ones,
but they are not yet finished.
</p>
<p>If all input from the input buffer is successfully converted and stored
in the output buffer, the function returns the number of non-reversible
conversions performed.  In all other cases the return value is
<code>(size_t) -1</code> and <code>errno</code> is set appropriately.  In such cases
the value pointed to by <var>inbytesleft</var> is nonzero.
</p>
<dl compact="compact">
<dt> <code>EILSEQ</code></dt>
<dd><p>The conversion stopped because of an invalid byte sequence in the input.
After the call, <code>*<var>inbuf</var></code> points at the first byte of the
invalid byte sequence.
</p>
</dd>
<dt> <code>E2BIG</code></dt>
<dd><p>The conversion stopped because it ran out of space in the output buffer.
</p>
</dd>
<dt> <code>EINVAL</code></dt>
<dd><p>The conversion stopped because of an incomplete byte sequence at the end
of the input buffer.
</p>
</dd>
<dt> <code>EBADF</code></dt>
<dd><p>The <var>cd</var> argument is invalid.
</p></dd>
</dl>

<a name="index-iconv_002eh-2"></a>
<p>The <code>iconv</code> function was introduced in the XPG2 standard and is
declared in the &lsquo;<tt>iconv.h</tt>&rsquo; header.
</p></dd></dl>

<p>The definition of the <code>iconv</code> function is quite good overall.  It
provides quite flexible functionality.  The only problems lie in the
boundary cases, which are incomplete byte sequences at the end of the
input buffer and invalid input.  A third problem, which is not really
a design problem, is the way conversions are selected.  The standard
does not say anything about the legitimate names, a minimal set of
available conversions.  We will see how this negatively impacts other
implementations, as demonstrated below.
</p>
<hr size="6">
<a name="iconv-Examples"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Generic-Conversion-Interface" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Other-iconv-Implementations" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Generic-Charset-Conversion" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="A-complete-iconv-example"></a>
<h3 class="subsection">6.5.2 A complete <code>iconv</code> example</h3>

<p>The example below features a solution for a common problem.  Given that
one knows the internal encoding used by the system for <code>wchar_t</code>
strings, one often is in the position to read text from a file and store
it in wide character buffers.  One can do this using <code>mbsrtowcs</code>,
but then we run into the problems discussed above.
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">int
file2wcs (int fd, const char *charset, wchar_t *outbuf, size_t avail)
{
  char inbuf[BUFSIZ];
  size_t insize = 0;
  char *wrptr = (char *) outbuf;
  int result = 0;
  iconv_t cd;

  cd = iconv_open (&quot;WCHAR_T&quot;, charset);
  if (cd == (iconv_t) -1)
    {
      /* <span class="roman">Something went wrong.</span>  */
      if (errno == EINVAL)
        error (0, 0, &quot;conversion from '%s' to wchar_t not available&quot;,
               charset);
      else
        perror (&quot;iconv_open&quot;);

      /* <span class="roman">Terminate the output string.</span>  */
      *outbuf = L'\0';

      return -1;
    }

  while (avail &gt; 0)
    {
      size_t nread;
      size_t nconv;
      char *inptr = inbuf;

      /* <span class="roman">Read more input.</span>  */
      nread = read (fd, inbuf + insize, sizeof (inbuf) - insize);
      if (nread == 0)
        {
          /* <span class="roman">When we come here the file is completely read.</span>
             <span class="roman">This still could mean there are some unused</span>
             <span class="roman">characters in the <code>inbuf</code>.  Put them back.</span>  */
          if (lseek (fd, -insize, SEEK_CUR) == -1)
            result = -1;

          /* <span class="roman">Now write out the byte sequence to get into the</span>
             <span class="roman">initial state if this is necessary.</span>  */
          iconv (cd, NULL, NULL, &amp;wrptr, &amp;avail);

          break;
        }
      insize += nread;

      /* <span class="roman">Do the conversion.</span>  */
      nconv = iconv (cd, &amp;inptr, &amp;insize, &amp;wrptr, &amp;avail);
      if (nconv == (size_t) -1)
        {
          /* <span class="roman">Not everything went right.  It might only be</span>
             <span class="roman">an unfinished byte sequence at the end of the</span>
             <span class="roman">buffer.  Or it is a real problem.</span>  */
          if (errno == EINVAL)
            /* <span class="roman">This is harmless.  Simply move the unused</span>
               <span class="roman">bytes to the beginning of the buffer so that</span>
               <span class="roman">they can be used in the next round.</span>  */
            memmove (inbuf, inptr, insize);
          else
            {
              /* <span class="roman">It is a real problem.  Maybe we ran out of</span>
                 <span class="roman">space in the output buffer or we have invalid</span>
                 <span class="roman">input.  In any case back the file pointer to</span>
                 <span class="roman">the position of the last processed byte.</span>  */
              lseek (fd, -insize, SEEK_CUR);
              result = -1;
              break;
            }
        }
    }

  /* <span class="roman">Terminate the output string.</span>  */
  if (avail &gt;= sizeof (wchar_t))
    *((wchar_t *) wrptr) = L'\0';

  if (iconv_close (cd) != 0)
    perror (&quot;iconv_close&quot;);

  return (wchar_t *) wrptr - outbuf;
}
</pre></td></tr></table>

<a name="index-stateful-4"></a>
<p>This example shows the most important aspects of using the <code>iconv</code>
functions.  It shows how successive calls to <code>iconv</code> can be used to
convert large amounts of text.  The user does not have to care about
stateful encodings as the functions take care of everything.
</p>
<p>An interesting point is the case where <code>iconv</code> returns an error and
<code>errno</code> is set to <code>EINVAL</code>.  This is not really an error in the
transformation.  It can happen whenever the input character set contains
byte sequences of more than one byte for some character and texts are not
processed in one piece.  In this case there is a chance that a multibyte
sequence is cut.  The caller can then simply read the remainder of the
takes and feed the offending bytes together with new character from the
input to <code>iconv</code> and continue the work.  The internal state kept in
the descriptor is <em>not</em> unspecified after such an event as is the
case with the conversion functions from the ISO C standard.
</p>
<p>The example also shows the problem of using wide character strings with
<code>iconv</code>.  As explained in the description of the <code>iconv</code>
function above, the function always takes a pointer to a <code>char</code>
array and the available space is measured in bytes.  In the example, the
output buffer is a wide character buffer; therefore, we use a local
variable <var>wrptr</var> of type <code>char *</code>, which is used in the
<code>iconv</code> calls.
</p>
<p>This looks rather innocent but can lead to problems on platforms that
have tight restriction on alignment.  Therefore the caller of <code>iconv</code>
has to make sure that the pointers passed are suitable for access of
characters from the appropriate character set.  Since, in the
above case, the input parameter to the function is a <code>wchar_t</code>
pointer, this is the case (unless the user violates alignment when
computing the parameter).  But in other situations, especially when
writing generic functions where one does not know what type of character
set one uses and, therefore, treats text as a sequence of bytes, it might
become tricky.
</p>
<hr size="6">
<a name="Other-iconv-Implementations"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#iconv-Examples" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#glibc-iconv-Implementation" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Generic-Charset-Conversion" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Some-Details-about-other-iconv-Implementations"></a>
<h3 class="subsection">6.5.3 Some Details about other <code>iconv</code> Implementations</h3>

<p>This is not really the place to discuss the <code>iconv</code> implementation
of other systems but it is necessary to know a bit about them to write
portable programs.  The above mentioned problems with the specification
of the <code>iconv</code> functions can lead to portability issues.
</p>
<p>The first thing to notice is that, due to the large number of character
sets in use, it is certainly not practical to encode the conversions
directly in the C library.  Therefore, the conversion information must
come from files outside the C library.  This is usually done in one or
both of the following ways:
</p>
<ul>
<li>
The C library contains a set of generic conversion functions that can
read the needed conversion tables and other information from data files.
These files get loaded when necessary.

<p>This solution is problematic as it requires a great deal of effort to
apply to all character sets (potentially an infinite set).  The
differences in the structure of the different character sets is so large
that many different variants of the table-processing functions must be
developed.  In addition, the generic nature of these functions make them
slower than specifically implemented functions.
</p>
</li><li>
The C library only contains a framework that can dynamically load
object files and execute the conversion functions contained therein.

<p>This solution provides much more flexibility.  The C library itself
contains only very little code and therefore reduces the general memory
footprint.  Also, with a documented interface between the C library and
the loadable modules it is possible for third parties to extend the set
of available conversion modules.  A drawback of this solution is that
dynamic loading must be available.
</p></li></ul>

<p>Some implementations in commercial Unices implement a mixture of these
possibilities; the majority implement only the second solution.  Using
loadable modules moves the code out of the library itself and keeps
the door open for extensions and improvements, but this design is also
limiting on some platforms since not many platforms support dynamic
loading in statically linked programs.  On platforms without this
capability it is therefore not possible to use this interface in
statically linked programs.  The GNU C library has, on ELF platforms, no
problems with dynamic loading in these situations; therefore, this
point is moot.  The danger is that one gets acquainted with this
situation and forgets about the restrictions on other systems.
</p>
<p>A second thing to know about other <code>iconv</code> implementations is that
the number of available conversions is often very limited.  Some
implementations provide, in the standard release (not special
international or developer releases), at most 100 to 200 conversion
possibilities.  This does not mean 200 different character sets are
supported; for example, conversions from one character set to a set of 10
others might count as 10 conversions.  Together with the other direction
this makes 20 conversion possibilities used up by one character set.  One
can imagine the thin coverage these platform provide.  Some Unix vendors
even provide only a handful of conversions, which renders them useless for
almost all uses.
</p>
<p>This directly leads to a third and probably the most problematic point.
The way the <code>iconv</code> conversion functions are implemented on all
known Unix systems and the availability of the conversion functions from
character set <em>A</em> to <em>B</em> and the conversion from
<em>B</em> to <em>C</em> does <em>not</em> imply that the
conversion from <em>A</em> to <em>C</em> is available.
</p>
<p>This might not seem unreasonable and problematic at first, but it is a
quite big problem as one will notice shortly after hitting it.  To show
the problem we assume to write a program that has to convert from
<em>A</em> to <em>C</em>.  A call like
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">cd = iconv_open (&quot;<em>C</em>&quot;, &quot;<em>A</em>&quot;);
</pre></td></tr></table>

<p>fails according to the assumption above.  But what does the program
do now?  The conversion is necessary; therefore, simply giving up is not
an option.
</p>
<p>This is a nuisance.  The <code>iconv</code> function should take care of this.
But how should the program proceed from here on?  If it tries to convert
to character set <em>B</em>, first the two <code>iconv_open</code>
calls
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">cd1 = iconv_open (&quot;<em>B</em>&quot;, &quot;<em>A</em>&quot;);
</pre></td></tr></table>

<p>and
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">cd2 = iconv_open (&quot;<em>C</em>&quot;, &quot;<em>B</em>&quot;);
</pre></td></tr></table>

<p>will succeed, but how to find <em>B</em>?
</p>
<p>Unfortunately, the answer is: there is no general solution.  On some
systems guessing might help.  On those systems most character sets can
convert to and from UTF-8 encoded ISO 10646 or Unicode text. Beside
this only some very system-specific methods can help.  Since the
conversion functions come from loadable modules and these modules must
be stored somewhere in the filesystem, one <em>could</em> try to find them
and determine from the available file which conversions are available
and whether there is an indirect route from <em>A</em> to
<em>C</em>.
</p>
<p>This example shows one of the design errors of <code>iconv</code> mentioned
above.  It should at least be possible to determine the list of available
conversion programmatically so that if <code>iconv_open</code> says there is no
such conversion, one could make sure this also is true for indirect
routes.
</p>
<hr size="6">
<a name="glibc-iconv-Implementation"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Other-iconv-Implementations" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Format-of-gconv_002dmodules-files" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Generic-Charset-Conversion" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="The-iconv-Implementation-in-the-GNU-C-library"></a>
<h3 class="subsection">6.5.4 The <code>iconv</code> Implementation in the GNU C library</h3>

<p>After reading about the problems of <code>iconv</code> implementations in the
last section it is certainly good to note that the implementation in
the GNU C library has none of the problems mentioned above.  What
follows is a step-by-step analysis of the points raised above.  The
evaluation is based on the current state of the development (as of
January 1999).  The development of the <code>iconv</code> functions is not
complete, but basic functionality has solidified.
</p>
<p>The GNU C library&rsquo;s <code>iconv</code> implementation uses shared loadable
modules to implement the conversions.  A very small number of
conversions are built into the library itself but these are only rather
trivial conversions.
</p>
<p>All the benefits of loadable modules are available in the GNU C library
implementation.  This is especially appealing since the interface is
well documented (see below), and it, therefore, is easy to write new
conversion modules.  The drawback of using loadable objects is not a
problem in the GNU C library, at least on ELF systems.  Since the
library is able to load shared objects even in statically linked
binaries, static linking need not be forbidden in case one wants to use
<code>iconv</code>.
</p>
<p>The second mentioned problem is the number of supported conversions.
Currently, the GNU C library supports more than 150 character sets.  The
way the implementation is designed the number of supported conversions
is greater than 22350 (<em>150</em> times <em>149</em>).  If any conversion
from or to a character set is missing, it can be added easily.
</p>
<p>Particularly impressive as it may be, this high number is due to the
fact that the GNU C library implementation of <code>iconv</code> does not have
the third problem mentioned above (i.e., whenever there is a conversion
from a character set <em>A</em> to <em>B</em> and from
<em>B</em> to <em>C</em> it is always possible to convert from
<em>A</em> to <em>C</em> directly).  If the <code>iconv_open</code>
returns an error and sets <code>errno</code> to <code>EINVAL</code>, there is no
known way, directly or indirectly, to perform the wanted conversion.
</p>
<a name="index-triangulation"></a>
<p>Triangulation is achieved by providing for each character set a
conversion from and to UCS-4 encoded ISO 10646.  Using ISO 10646
as an intermediate representation it is possible to <em>triangulate</em>
(i.e., convert with an intermediate representation).
</p>
<p>There is no inherent requirement to provide a conversion to ISO
10646 for a new character set, and it is also possible to provide other
conversions where neither source nor destination character set is ISO
10646.  The existing set of conversions is simply meant to cover all
conversions that might be of interest.
</p>
<a name="index-ISO_002d2022_002dJP"></a>
<a name="index-EUC_002dJP"></a>
<p>All currently available conversions use the triangulation method above,
making conversion run unnecessarily slow.  If, for example, somebody
often needs the conversion from ISO-2022-JP to EUC-JP, a quicker solution
would involve direct conversion between the two character sets, skipping
the input to ISO 10646 first.  The two character sets of interest
are much more similar to each other than to ISO 10646.
</p>
<p>In such a situation one easily can write a new conversion and provide it
as a better alternative.  The GNU C library <code>iconv</code> implementation
would automatically use the module implementing the conversion if it is
specified to be more efficient.
</p>
<hr size="6">
<a name="Format-of-gconv_002dmodules-files"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#glibc-iconv-Implementation" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#Finding-the-conversion-path-in-iconv" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#glibc-iconv-Implementation" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h4 class="subsubsection">6.5.4.1 Format of &lsquo;<tt>gconv-modules</tt>&rsquo; files</h4>

<p>All information about the available conversions comes from a file named
&lsquo;<tt>gconv-modules</tt>&rsquo;, which can be found in any of the directories along
the <code>GCONV_PATH</code>.  The &lsquo;<tt>gconv-modules</tt>&rsquo; files are line-oriented
text files, where each of the lines has one of the following formats:
</p>
<ul>
<li>
If the first non-whitespace character is a <kbd>#</kbd> the line contains only
comments and is ignored.

</li><li>
Lines starting with <code>alias</code> define an alias name for a character
set.  Two more words are expected on the line.  The first word
defines the alias name, and the second defines the original name of the
character set.  The effect is that it is possible to use the alias name
in the <var>fromset</var> or <var>toset</var> parameters of <code>iconv_open</code> and
achieve the same result as when using the real character set name.

<p>This is quite important as a character set has often many different
names.  There is normally an official name but this need not correspond to
the most popular name.  Beside this many character sets have special
names that are somehow constructed.  For example, all character sets
specified by the ISO have an alias of the form <code>ISO-IR-<var>nnn</var></code>
where <var>nnn</var> is the registration number.  This allows programs that
know about the registration number to construct character set names and
use them in <code>iconv_open</code> calls.  More on the available names and
aliases follows below.
</p>
</li><li>
Lines starting with <code>module</code> introduce an available conversion
module.  These lines must contain three or four more words.

<p>The first word specifies the source character set, the second word the
destination character set of conversion implemented in this module, and
the third word is the name of the loadable module.  The filename is
constructed by appending the usual shared object suffix (normally
&lsquo;<tt>.so</tt>&rsquo;) and this file is then supposed to be found in the same
directory the &lsquo;<tt>gconv-modules</tt>&rsquo; file is in.  The last word on the line,
which is optional, is a numeric value representing the cost of the
conversion.  If this word is missing, a cost of <em>1</em> is assumed.  The
numeric value itself does not matter that much; what counts are the
relative values of the sums of costs for all possible conversion paths.
Below is a more precise description of the use of the cost value.
</p></li></ul>

<p>Returning to the example above where one has written a module to directly
convert from ISO-2022-JP to EUC-JP and back.  All that has to be done is
to put the new module, let its name be ISO2022JP-EUCJP.so, in a directory
and add a file &lsquo;<tt>gconv-modules</tt>&rsquo; with the following content in the
same directory:
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">module  ISO-2022-JP//   EUC-JP//        ISO2022JP-EUCJP    1
module  EUC-JP//        ISO-2022-JP//   ISO2022JP-EUCJP    1
</pre></td></tr></table>

<p>To see why this is sufficient, it is necessary to understand how the
conversion used by <code>iconv</code> (and described in the descriptor) is
selected.  The approach to this problem is quite simple.
</p>
<p>At the first call of the <code>iconv_open</code> function the program reads
all available &lsquo;<tt>gconv-modules</tt>&rsquo; files and builds up two tables: one
containing all the known aliases and another that contains the
information about the conversions and which shared object implements
them.
</p>
<hr size="6">
<a name="Finding-the-conversion-path-in-iconv"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Format-of-gconv_002dmodules-files" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#iconv-module-data-structures" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#glibc-iconv-Implementation" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h4 class="subsubsection">6.5.4.2 Finding the conversion path in <code>iconv</code></h4>

<p>The set of available conversions form a directed graph with weighted
edges.  The weights on the edges are the costs specified in the
&lsquo;<tt>gconv-modules</tt>&rsquo; files.  The <code>iconv_open</code> function uses an
algorithm suitable for search for the best path in such a graph and so
constructs a list of conversions that must be performed in succession
to get the transformation from the source to the destination character
set.
</p>
<p>Explaining why the above &lsquo;<tt>gconv-modules</tt>&rsquo; files allows the
<code>iconv</code> implementation to resolve the specific ISO-2022-JP to
EUC-JP conversion module instead of the conversion coming with the
library itself is straightforward.  Since the latter conversion takes two
steps (from ISO-2022-JP to ISO 10646 and then from ISO 10646 to
EUC-JP), the cost is <em>1+1 = 2</em>.  The above &lsquo;<tt>gconv-modules</tt>&rsquo;
file, however, specifies that the new conversion modules can perform this
conversion with only the cost of <em>1</em>.
</p>
<p>A mysterious item about the &lsquo;<tt>gconv-modules</tt>&rsquo; file above (and also
the file coming with the GNU C library) are the names of the character
sets specified in the <code>module</code> lines.  Why do almost all the names
end in <code>//</code>?  And this is not all: the names can actually be
regular expressions.  At this point in time this mystery should not be
revealed, unless you have the relevant spell-casting materials: ashes
from an original DOS 6.2 boot disk burnt in effigy, a crucifix
blessed by St. Emacs, assorted herbal roots from Central America, sand
from Cebu, etc.  Sorry!  <strong>The part of the implementation where
this is used is not yet finished.  For now please simply follow the
existing examples.  It&rsquo;ll become clearer once it is. &ndash;drepper</strong>
</p>
<p>A last remark about the &lsquo;<tt>gconv-modules</tt>&rsquo; is about the names not
ending with <code>//</code>.  A character set named <code>INTERNAL</code> is often
mentioned.  From the discussion above and the chosen name it should have
become clear that this is the name for the representation used in the
intermediate step of the triangulation.  We have said that this is UCS-4
but actually that is not quite right.  The UCS-4 specification also
includes the specification of the byte ordering used.  Since a UCS-4 value
consists of four bytes, a stored value is effected by byte ordering.  The
internal representation is <em>not</em> the same as UCS-4 in case the byte
ordering of the processor (or at least the running process) is not the
same as the one required for UCS-4.  This is done for performance reasons
as one does not want to perform unnecessary byte-swapping operations if
one is not interested in actually seeing the result in UCS-4.  To avoid
trouble with endianness, the internal representation consistently is named
<code>INTERNAL</code> even on big-endian systems where the representations are
identical.
</p>
<hr size="6">
<a name="iconv-module-data-structures"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Finding-the-conversion-path-in-iconv" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#iconv-module-interfaces" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#glibc-iconv-Implementation" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h4 class="subsubsection">6.5.4.3 <code>iconv</code> module data structures</h4>

<p>So far this section has described how modules are located and considered
to be used.  What remains to be described is the interface of the modules
so that one can write new ones. This section describes the interface as
it is in use in January 1999.  The interface will change a bit in the
future but, with luck, only in an upwardly compatible way.
</p>
<p>The definitions necessary to write new modules are publicly available
in the non-standard header &lsquo;<tt>gconv.h</tt>&rsquo;.  The following text,
therefore, describes the definitions from this header file.  First,
however, it is necessary to get an overview.
</p>
<p>From the perspective of the user of <code>iconv</code> the interface is quite
simple: the <code>iconv_open</code> function returns a handle that can be used
in calls to <code>iconv</code>, and finally the handle is freed with a call to
<code>iconv_close</code>.  The problem is that the handle has to be able to
represent the possibly long sequences of conversion steps and also the
state of each conversion since the handle is all that is passed to the
<code>iconv</code> function.  Therefore, the data structures are really the
elements necessary to understanding the implementation.
</p>
<p>We need two different kinds of data structures.  The first describes the
conversion and the second describes the state etc.  There are really two
type definitions like this in &lsquo;<tt>gconv.h</tt>&rsquo;.
<a name="index-gconv_002eh"></a>
</p>
<dl>
<dt><a name="index-struct-_005f_005fgconv_005fstep"></a><u>Data type:</u> <b>struct __gconv_step</b></dt>
<dd><p>This data structure describes one conversion a module can perform.  For
each function in a loaded module with conversion functions there is
exactly one object of this type.  This object is shared by all users of
the conversion (i.e., this object does not contain any information
corresponding to an actual conversion; it only describes the conversion
itself).
</p>
<dl compact="compact">
<dt> <code>struct __gconv_loaded_object *__shlib_handle</code></dt>
<dt> <code>const char *__modname</code></dt>
<dt> <code>int __counter</code></dt>
<dd><p>All these elements of the structure are used internally in the C library
to coordinate loading and unloading the shared.  One must not expect any
of the other elements to be available or initialized.
</p>
</dd>
<dt> <code>const char *__from_name</code></dt>
<dt> <code>const char *__to_name</code></dt>
<dd><p><code>__from_name</code> and <code>__to_name</code> contain the names of the source and
destination character sets.  They can be used to identify the actual
conversion to be carried out since one module might implement conversions
for more than one character set and/or direction.
</p>
</dd>
<dt> <code>gconv_fct __fct</code></dt>
<dt> <code>gconv_init_fct __init_fct</code></dt>
<dt> <code>gconv_end_fct __end_fct</code></dt>
<dd><p>These elements contain pointers to the functions in the loadable module.
The interface will be explained below.
</p>
</dd>
<dt> <code>int __min_needed_from</code></dt>
<dt> <code>int __max_needed_from</code></dt>
<dt> <code>int __min_needed_to</code></dt>
<dt> <code>int __max_needed_to;</code></dt>
<dd><p>These values have to be supplied in the init function of the module.  The
<code>__min_needed_from</code> value specifies how many bytes a character of
the source character set at least needs.  The <code>__max_needed_from</code>
specifies the maximum value that also includes possible shift sequences.
</p>
<p>The <code>__min_needed_to</code> and <code>__max_needed_to</code> values serve the
same purpose as <code>__min_needed_from</code> and <code>__max_needed_from</code> but
this time for the destination character set.
</p>
<p>It is crucial that these values be accurate since otherwise the
conversion functions will have problems or not work at all.
</p>
</dd>
<dt> <code>int __stateful</code></dt>
<dd><p>This element must also be initialized by the init function.
<code>int __stateful</code> is nonzero if the source character set is stateful.
Otherwise it is zero.
</p>
</dd>
<dt> <code>void *__data</code></dt>
<dd><p>This element can be used freely by the conversion functions in the
module.  <code>void *__data</code> can be used to communicate extra information
from one call to another.  <code>void *__data</code> need not be initialized if
not needed at all.  If <code>void *__data</code> element is assigned a pointer
to dynamically allocated memory (presumably in the init function) it has
to be made sure that the end function deallocates the memory.  Otherwise
the application will leak memory.
</p>
<p>It is important to be aware that this data structure is shared by all
users of this specification conversion and therefore the <code>__data</code>
element must not contain data specific to one specific use of the
conversion function.
</p></dd>
</dl>
</dd></dl>

<dl>
<dt><a name="index-struct-_005f_005fgconv_005fstep_005fdata"></a><u>Data type:</u> <b>struct __gconv_step_data</b></dt>
<dd><p>This is the data structure that contains the information specific to
each use of the conversion functions.
</p>

<dl compact="compact">
<dt> <code>char *__outbuf</code></dt>
<dt> <code>char *__outbufend</code></dt>
<dd><p>These elements specify the output buffer for the conversion step.  The
<code>__outbuf</code> element points to the beginning of the buffer, and
<code>__outbufend</code> points to the byte following the last byte in the
buffer.  The conversion function must not assume anything about the size
of the buffer but it can be safely assumed the there is room for at
least one complete character in the output buffer.
</p>
<p>Once the conversion is finished, if the conversion is the last step, the
<code>__outbuf</code> element must be modified to point after the last byte
written into the buffer to signal how much output is available.  If this
conversion step is not the last one, the element must not be modified.
The <code>__outbufend</code> element must not be modified.
</p>
</dd>
<dt> <code>int __is_last</code></dt>
<dd><p>This element is nonzero if this conversion step is the last one.  This
information is necessary for the recursion.  See the description of the
conversion function internals below.  This element must never be
modified.
</p>
</dd>
<dt> <code>int __invocation_counter</code></dt>
<dd><p>The conversion function can use this element to see how many calls of
the conversion function already happened.  Some character sets require a
certain prolog when generating output, and by comparing this value with
zero, one can find out whether it is the first call and whether,
therefore, the prolog should be emitted.  This element must never be
modified.
</p>
</dd>
<dt> <code>int __internal_use</code></dt>
<dd><p>This element is another one rarely used but needed in certain
situations.  It is assigned a nonzero value in case the conversion
functions are used to implement <code>mbsrtowcs</code> et.al. (i.e., the
function is not used directly through the <code>iconv</code> interface).
</p>
<p>This sometimes makes a difference as it is expected that the
<code>iconv</code> functions are used to translate entire texts while the
<code>mbsrtowcs</code> functions are normally used only to convert single
strings and might be used multiple times to convert entire texts.
</p>
<p>But in this situation we would have problem complying with some rules of
the character set specification.  Some character sets require a prolog,
which must appear exactly once for an entire text.  If a number of
<code>mbsrtowcs</code> calls are used to convert the text, only the first call
must add the prolog.  However, because there is no communication between the
different calls of <code>mbsrtowcs</code>, the conversion functions have no
possibility to find this out.  The situation is different for sequences
of <code>iconv</code> calls since the handle allows access to the needed
information.
</p>
<p>The <code>int __internal_use</code> element is mostly used together with
<code>__invocation_counter</code> as follows:
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">if (!data-&gt;__internal_use
     &amp;&amp; data-&gt;__invocation_counter == 0)
  /* <span class="roman">Emit prolog.</span>  */
  &hellip;
</pre></td></tr></table>

<p>This element must never be modified.
</p>
</dd>
<dt> <code>mbstate_t *__statep</code></dt>
<dd><p>The <code>__statep</code> element points to an object of type <code>mbstate_t</code>
(see section <a href="#Keeping-the-state">Representing the state of the conversion</a>).  The conversion of a stateful character
set must use the object pointed to by <code>__statep</code> to store
information about the conversion state.  The <code>__statep</code> element
itself must never be modified.
</p>
</dd>
<dt> <code>mbstate_t __state</code></dt>
<dd><p>This element must <em>never</em> be used directly.  It is only part of
this structure to have the needed space allocated.
</p></dd>
</dl>
</dd></dl>

<hr size="6">
<a name="iconv-module-interfaces"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#iconv-module-data-structures" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#glibc-iconv-Implementation" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h4 class="subsubsection">6.5.4.4 <code>iconv</code> module interfaces</h4>

<p>With the knowledge about the data structures we now can describe the
conversion function itself.  To understand the interface a bit of
knowledge is necessary about the functionality in the C library that
loads the objects with the conversions.
</p>
<p>It is often the case that one conversion is used more than once (i.e.,
there are several <code>iconv_open</code> calls for the same set of character
sets during one program run).  The <code>mbsrtowcs</code> et.al. functions in
the GNU C library also use the <code>iconv</code> functionality, which
increases the number of uses of the same functions even more.
</p>
<p>Because of this multiple use of conversions, the modules do not get
loaded exclusively for one conversion.  Instead a module once loaded can
be used by an arbitrary number of <code>iconv</code> or <code>mbsrtowcs</code> calls
at the same time.  The splitting of the information between conversion-
function-specific information and conversion data makes this possible.
The last section showed the two data structures used to do this.
</p>
<p>This is of course also reflected in the interface and semantics of the
functions that the modules must provide.  There are three functions that
must have the following names:
</p>
<dl compact="compact">
<dt> <code>gconv_init</code></dt>
<dd><p>The <code>gconv_init</code> function initializes the conversion function
specific data structure.  This very same object is shared by all
conversions that use this conversion and, therefore, no state information
about the conversion itself must be stored in here.  If a module
implements more than one conversion, the <code>gconv_init</code> function will
be called multiple times.
</p>
</dd>
<dt> <code>gconv_end</code></dt>
<dd><p>The <code>gconv_end</code> function is responsible for freeing all resources
allocated by the <code>gconv_init</code> function.  If there is nothing to do,
this function can be missing.  Special care must be taken if the module
implements more than one conversion and the <code>gconv_init</code> function
does not allocate the same resources for all conversions.
</p>
</dd>
<dt> <code>gconv</code></dt>
<dd><p>This is the actual conversion function.  It is called to convert one
block of text.  It gets passed the conversion step information
initialized by <code>gconv_init</code> and the conversion data, specific to
this use of the conversion functions.
</p></dd>
</dl>

<p>There are three data types defined for the three module interface
functions and these define the interface.
</p>
<dl>
<dt><a name="index-_0028_002a_005f_005fgconv_005finit_005ffct_0029"></a><u>Data type:</u> int <b>(*__gconv_init_fct)</b><i> (struct __gconv_step *)</i></dt>
<dd><p>This specifies the interface of the initialization function of the
module.  It is called exactly once for each conversion the module
implements.
</p>
<p>As explained in the description of the <code>struct __gconv_step</code> data
structure above the initialization function has to initialize parts of
it.
</p>
<dl compact="compact">
<dt> <code>__min_needed_from</code></dt>
<dt> <code>__max_needed_from</code></dt>
<dt> <code>__min_needed_to</code></dt>
<dt> <code>__max_needed_to</code></dt>
<dd><p>These elements must be initialized to the exact numbers of the minimum
and maximum number of bytes used by one character in the source and
destination character sets, respectively.  If the characters all have the
same size, the minimum and maximum values are the same.
</p>
</dd>
<dt> <code>__stateful</code></dt>
<dd><p>This element must be initialized to an nonzero value if the source
character set is stateful.  Otherwise it must be zero.
</p></dd>
</dl>

<p>If the initialization function needs to communicate some information
to the conversion function, this communication can happen using the
<code>__data</code> element of the <code>__gconv_step</code> structure.  But since
this data is shared by all the conversions, it must not be modified by
the conversion function.  The example below shows how this can be used.
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">#define MIN_NEEDED_FROM         1
#define MAX_NEEDED_FROM         4
#define MIN_NEEDED_TO           4
#define MAX_NEEDED_TO           4

int
gconv_init (struct __gconv_step *step)
{
  /* <span class="roman">Determine which direction.</span>  */
  struct iso2022jp_data *new_data;
  enum direction dir = illegal_dir;
  enum variant var = illegal_var;
  int result;

  if (__strcasecmp (step-&gt;__from_name, &quot;ISO-2022-JP//&quot;) == 0)
    {
      dir = from_iso2022jp;
      var = iso2022jp;
    }
  else if (__strcasecmp (step-&gt;__to_name, &quot;ISO-2022-JP//&quot;) == 0)
    {
      dir = to_iso2022jp;
      var = iso2022jp;
    }
  else if (__strcasecmp (step-&gt;__from_name, &quot;ISO-2022-JP-2//&quot;) == 0)
    {
      dir = from_iso2022jp;
      var = iso2022jp2;
    }
  else if (__strcasecmp (step-&gt;__to_name, &quot;ISO-2022-JP-2//&quot;) == 0)
    {
      dir = to_iso2022jp;
      var = iso2022jp2;
    }

  result = __GCONV_NOCONV;
  if (dir != illegal_dir)
    {
      new_data = (struct iso2022jp_data *)
        malloc (sizeof (struct iso2022jp_data));

      result = __GCONV_NOMEM;
      if (new_data != NULL)
        {
          new_data-&gt;dir = dir;
          new_data-&gt;var = var;
          step-&gt;__data = new_data;

          if (dir == from_iso2022jp)
            {
              step-&gt;__min_needed_from = MIN_NEEDED_FROM;
              step-&gt;__max_needed_from = MAX_NEEDED_FROM;
              step-&gt;__min_needed_to = MIN_NEEDED_TO;
              step-&gt;__max_needed_to = MAX_NEEDED_TO;
            }
          else
            {
              step-&gt;__min_needed_from = MIN_NEEDED_TO;
              step-&gt;__max_needed_from = MAX_NEEDED_TO;
              step-&gt;__min_needed_to = MIN_NEEDED_FROM;
              step-&gt;__max_needed_to = MAX_NEEDED_FROM + 2;
            }

          /* <span class="roman">Yes, this is a stateful encoding.</span>  */
          step-&gt;__stateful = 1;

          result = __GCONV_OK;
        }
    }

  return result;
}
</pre></td></tr></table>

<p>The function first checks which conversion is wanted.  The module from
which this function is taken implements four different conversions;
which one is selected can be determined by comparing the names.  The
comparison should always be done without paying attention to the case.
</p>
<p>Next, a data structure, which contains the necessary information about
which conversion is selected, is allocated.  The data structure
<code>struct iso2022jp_data</code> is locally defined since, outside the
module, this data is not used at all.  Please note that if all four
conversions this modules supports are requested there are four data
blocks.
</p>
<p>One interesting thing is the initialization of the <code>__min_</code> and
<code>__max_</code> elements of the step data object.  A single ISO-2022-JP
character can consist of one to four bytes.  Therefore the
<code>MIN_NEEDED_FROM</code> and <code>MAX_NEEDED_FROM</code> macros are defined
this way.  The output is always the <code>INTERNAL</code> character set (aka
UCS-4) and therefore each character consists of exactly four bytes.  For
the conversion from <code>INTERNAL</code> to ISO-2022-JP we have to take into
account that escape sequences might be necessary to switch the character
sets.  Therefore the <code>__max_needed_to</code> element for this direction
gets assigned <code>MAX_NEEDED_FROM + 2</code>.  This takes into account the
two bytes needed for the escape sequences to single the switching.  The
asymmetry in the maximum values for the two directions can be explained
easily: when reading ISO-2022-JP text, escape sequences can be handled
alone (i.e., it is not necessary to process a real character since the
effect of the escape sequence can be recorded in the state information).
The situation is different for the other direction.  Since it is in
general not known which character comes next, one cannot emit escape
sequences to change the state in advance.  This means the escape
sequences that have to be emitted together with the next character.
Therefore one needs more room than only for the character itself.
</p>
<p>The possible return values of the initialization function are:
</p>
<dl compact="compact">
<dt> <code>__GCONV_OK</code></dt>
<dd><p>The initialization succeeded
</p></dd>
<dt> <code>__GCONV_NOCONV</code></dt>
<dd><p>The requested conversion is not supported in the module.  This can
happen if the &lsquo;<tt>gconv-modules</tt>&rsquo; file has errors.
</p></dd>
<dt> <code>__GCONV_NOMEM</code></dt>
<dd><p>Memory required to store additional information could not be allocated.
</p></dd>
</dl>
</dd></dl>

<p>The function called before the module is unloaded is significantly
easier.  It often has nothing at all to do; in which case it can be left
out completely.
</p>
<dl>
<dt><a name="index-_0028_002a_005f_005fgconv_005fend_005ffct_0029"></a><u>Data type:</u> void <b>(*__gconv_end_fct)</b><i> (struct gconv_step *)</i></dt>
<dd><p>The task of this function is to free all resources allocated in the
initialization function.  Therefore only the <code>__data</code> element of
the object pointed to by the argument is of interest.  Continuing the
example from the initialization function, the finalization function
looks like this:
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">void
gconv_end (struct __gconv_step *data)
{
  free (data-&gt;__data);
}
</pre></td></tr></table>
</dd></dl>

<p>The most important function is the conversion function itself, which can
get quite complicated for complex character sets.  But since this is not
of interest here, we will only describe a possible skeleton for the
conversion function.
</p>
<dl>
<dt><a name="index-_0028_002a_005f_005fgconv_005ffct_0029"></a><u>Data type:</u> int <b>(*__gconv_fct)</b><i> (struct __gconv_step *, struct __gconv_step_data *, const char **, const char *, size_t *, int)</i></dt>
<dd><p>The conversion function can be called for two basic reason: to convert
text or to reset the state.  From the description of the <code>iconv</code>
function it can be seen why the flushing mode is necessary.  What mode
is selected is determined by the sixth argument, an integer.  This
argument being nonzero means that flushing is selected.
</p>
<p>Common to both modes is where the output buffer can be found.  The
information about this buffer is stored in the conversion step data.  A
pointer to this information is passed as the second argument to this
function.  The description of the <code>struct __gconv_step_data</code>
structure has more information on the conversion step data.
</p>
<a name="index-stateful-5"></a>
<p>What has to be done for flushing depends on the source character set.
If the source character set is not stateful, nothing has to be done.
Otherwise the function has to emit a byte sequence to bring the state
object into the initial state.  Once this all happened the other
conversion modules in the chain of conversions have to get the same
chance.  Whether another step follows can be determined from the
<code>__is_last</code> element of the step data structure to which the first
parameter points.
</p>
<p>The more interesting mode is when actual text has to be converted.  The
first step in this case is to convert as much text as possible from the
input buffer and store the result in the output buffer.  The start of the
input buffer is determined by the third argument, which is a pointer to a
pointer variable referencing the beginning of the buffer.  The fourth
argument is a pointer to the byte right after the last byte in the buffer.
</p>
<p>The conversion has to be performed according to the current state if the
character set is stateful.  The state is stored in an object pointed to
by the <code>__statep</code> element of the step data (second argument).  Once
either the input buffer is empty or the output buffer is full the
conversion stops.  At this point, the pointer variable referenced by the
third parameter must point to the byte following the last processed
byte (i.e., if all of the input is consumed, this pointer and the fourth
parameter have the same value).
</p>
<p>What now happens depends on whether this step is the last one.  If it is
the last step, the only thing that has to be done is to update the
<code>__outbuf</code> element of the step data structure to point after the
last written byte.  This update gives the caller the information on how
much text is available in the output buffer.  In addition, the variable
pointed to by the fifth parameter, which is of type <code>size_t</code>, must
be incremented by the number of characters (<em>not bytes</em>) that were
converted in a non-reversible way.  Then, the function can return.
</p>
<p>In case the step is not the last one, the later conversion functions have
to get a chance to do their work.  Therefore, the appropriate conversion
function has to be called.  The information about the functions is
stored in the conversion data structures, passed as the first parameter.
This information and the step data are stored in arrays, so the next
element in both cases can be found by simple pointer arithmetic:
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">int
gconv (struct __gconv_step *step, struct __gconv_step_data *data,
       const char **inbuf, const char *inbufend, size_t *written,
       int do_flush)
{
  struct __gconv_step *next_step = step + 1;
  struct __gconv_step_data *next_data = data + 1;
  &hellip;
</pre></td></tr></table>

<p>The <code>next_step</code> pointer references the next step information and
<code>next_data</code> the next data record.  The call of the next function
therefore will look similar to this:
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">  next_step-&gt;__fct (next_step, next_data, &amp;outerr, outbuf,
                    written, 0)
</pre></td></tr></table>

<p>But this is not yet all.  Once the function call returns the conversion
function might have some more to do.  If the return value of the function
is <code>__GCONV_EMPTY_INPUT</code>, more room is available in the output
buffer.  Unless the input buffer is empty the conversion, functions start
all over again and process the rest of the input buffer.  If the return
value is not <code>__GCONV_EMPTY_INPUT</code>, something went wrong and we have
to recover from this.
</p>
<p>A requirement for the conversion function is that the input buffer
pointer (the third argument) always point to the last character that
was put in converted form into the output buffer.  This is trivially
true after the conversion performed in the current step, but if the
conversion functions deeper downstream stop prematurely, not all
characters from the output buffer are consumed and, therefore, the input
buffer pointers must be backed off to the right position.
</p>
<p>Correcting the input buffers is easy to do if the input and output
character sets have a fixed width for all characters.  In this situation
we can compute how many characters are left in the output buffer and,
therefore, can correct the input buffer pointer appropriately with a
similar computation.  Things are getting tricky if either character set
has characters represented with variable length byte sequences, and it
gets even more complicated if the conversion has to take care of the
state.  In these cases the conversion has to be performed once again, from
the known state before the initial conversion (i.e., if necessary the
state of the conversion has to be reset and the conversion loop has to be
executed again).  The difference now is that it is known how much input
must be created, and the conversion can stop before converting the first
unused character.  Once this is done the input buffer pointers must be
updated again and the function can return.
</p>
<p>One final thing should be mentioned.  If it is necessary for the
conversion to know whether it is the first invocation (in case a prolog
has to be emitted), the conversion function should increment the
<code>__invocation_counter</code> element of the step data structure just
before returning to the caller.  See the description of the <code>struct
__gconv_step_data</code> structure above for more information on how this can
be used.
</p>
<p>The return value must be one of the following values:
</p>
<dl compact="compact">
<dt> <code>__GCONV_EMPTY_INPUT</code></dt>
<dd><p>All input was consumed and there is room left in the output buffer.
</p></dd>
<dt> <code>__GCONV_FULL_OUTPUT</code></dt>
<dd><p>No more room in the output buffer.  In case this is not the last step
this value is propagated down from the call of the next conversion
function in the chain.
</p></dd>
<dt> <code>__GCONV_INCOMPLETE_INPUT</code></dt>
<dd><p>The input buffer is not entirely empty since it contains an incomplete
character sequence.
</p></dd>
</dl>

<p>The following example provides a framework for a conversion function.
In case a new conversion has to be written the holes in this
implementation have to be filled and that is it.
</p>
<table><tr><td>&nbsp;</td><td><pre class="smallexample">int
gconv (struct __gconv_step *step, struct __gconv_step_data *data,
       const char **inbuf, const char *inbufend, size_t *written,
       int do_flush)
{
  struct __gconv_step *next_step = step + 1;
  struct __gconv_step_data *next_data = data + 1;
  gconv_fct fct = next_step-&gt;__fct;
  int status;

  /* <span class="roman">If the function is called with no input this means we have</span>
     <span class="roman">to reset to the initial state.  The possibly partly</span>
     <span class="roman">converted input is dropped.</span>  */
  if (do_flush)
    {
      status = __GCONV_OK;

      /* <span class="roman">Possible emit a byte sequence which put the state object</span>
         <span class="roman">into the initial state.</span>  */

      /* <span class="roman">Call the steps down the chain if there are any but only</span>
         <span class="roman">if we successfully emitted the escape sequence.</span>  */
      if (status == __GCONV_OK &amp;&amp; ! data-&gt;__is_last)
        status = fct (next_step, next_data, NULL, NULL,
                      written, 1);
    }
  else
    {
      /* <span class="roman">We preserve the initial values of the pointer variables.</span>  */
      const char *inptr = *inbuf;
      char *outbuf = data-&gt;__outbuf;
      char *outend = data-&gt;__outbufend;
      char *outptr;

      do
        {
          /* <span class="roman">Remember the start value for this round.</span>  */
          inptr = *inbuf;
          /* <span class="roman">The outbuf buffer is empty.</span>  */
          outptr = outbuf;

          /* <span class="roman">For stateful encodings the state must be safe here.</span>  */

          /* <span class="roman">Run the conversion loop.  <code>status</code> is set</span>
             <span class="roman">appropriately afterwards.</span>  */

          /* <span class="roman">If this is the last step, leave the loop. There is</span>
             <span class="roman">nothing we can do.</span>  */
          if (data-&gt;__is_last)
            {
              /* <span class="roman">Store information about how many bytes are</span>
                 <span class="roman">available.</span>  */
              data-&gt;__outbuf = outbuf;

             /* <span class="roman">If any non-reversible conversions were performed,</span>
                <span class="roman">add the number to <code>*written</code>.</span>  */

             break;
           }

          /* <span class="roman">Write out all output that was produced.</span>  */
          if (outbuf &gt; outptr)
            {
              const char *outerr = data-&gt;__outbuf;
              int result;

              result = fct (next_step, next_data, &amp;outerr,
                            outbuf, written, 0);

              if (result != __GCONV_EMPTY_INPUT)
                {
                  if (outerr != outbuf)
                    {
                      /* <span class="roman">Reset the input buffer pointer.  We</span>
                         <span class="roman">document here the complex case.</span>  */
                      size_t nstatus;

                      /* <span class="roman">Reload the pointers.</span>  */
                      *inbuf = inptr;
                      outbuf = outptr;

                      /* <span class="roman">Possibly reset the state.</span>  */

                      /* <span class="roman">Redo the conversion, but this time</span>
                         <span class="roman">the end of the output buffer is at</span>
                         <span class="roman"><code>outerr</code>.</span>  */
                    }

                  /* <span class="roman">Change the status.</span>  */
                  status = result;
                }
              else
                /* <span class="roman">All the output is consumed, we can make</span>
                   <span class="roman"> another run if everything was ok.</span>  */
                if (status == __GCONV_FULL_OUTPUT)
                  status = __GCONV_OK;
           }
        }
      while (status == __GCONV_OK);

      /* <span class="roman">We finished one use of this step.</span>  */
      ++data-&gt;__invocation_counter;
    }

  return status;
}
</pre></td></tr></table>
</dd></dl>

<p>This information should be sufficient to write new modules.  Anybody
doing so should also take a look at the available source code in the GNU
C library sources.  It contains many examples of working and optimized
modules.
</p>
<hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Character-Set-Handling" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="libc_7.html#Locales" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="libc.html#Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="libc_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="libc_42.html#Concept-Index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="libc_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
 <font size="-1">
  This document was generated by <em>root</em> on <em>April 20, 2012</em> using <a href="http://www.nongnu.org/texi2html/"><em>texi2html 1.82</em></a>.
 </font>
 <br>

</p>
</body>
</html>