This file is indexed.

/usr/lib/ocaml/compiler-libs/typing/typecore.ml is in ocaml-compiler-libs 3.12.1-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id: typecore.ml 10624 2010-07-12 09:36:07Z garrigue $ *)

(* Typechecking for the core language *)

open Misc
open Asttypes
open Parsetree
open Types
open Typedtree
open Btype
open Ctype

type error =
    Polymorphic_label of Longident.t
  | Constructor_arity_mismatch of Longident.t * int * int
  | Label_mismatch of Longident.t * (type_expr * type_expr) list
  | Pattern_type_clash of (type_expr * type_expr) list
  | Multiply_bound_variable of string
  | Orpat_vars of Ident.t
  | Expr_type_clash of (type_expr * type_expr) list
  | Apply_non_function of type_expr
  | Apply_wrong_label of label * type_expr
  | Label_multiply_defined of Longident.t
  | Label_missing of string list
  | Label_not_mutable of Longident.t
  | Incomplete_format of string
  | Bad_conversion of string * int * char
  | Undefined_method of type_expr * string
  | Undefined_inherited_method of string
  | Virtual_class of Longident.t
  | Private_type of type_expr
  | Private_label of Longident.t * type_expr
  | Unbound_instance_variable of string
  | Instance_variable_not_mutable of bool * string
  | Not_subtype of (type_expr * type_expr) list * (type_expr * type_expr) list
  | Outside_class
  | Value_multiply_overridden of string
  | Coercion_failure of
      type_expr * type_expr * (type_expr * type_expr) list * bool
  | Too_many_arguments of bool * type_expr
  | Abstract_wrong_label of label * type_expr
  | Scoping_let_module of string * type_expr
  | Masked_instance_variable of Longident.t
  | Not_a_variant_type of Longident.t
  | Incoherent_label_order
  | Less_general of string * (type_expr * type_expr) list

exception Error of Location.t * error

(* Forward declaration, to be filled in by Typemod.type_module *)

let type_module =
  ref ((fun env md -> assert false) :
       Env.t -> Parsetree.module_expr -> Typedtree.module_expr)

(* Forward declaration, to be filled in by Typemod.type_open *)

let type_open =
  ref (fun _ -> assert false)


(* Forward declaration, to be filled in by Typeclass.class_structure *)
let type_object =
  ref (fun env s -> assert false :
       Env.t -> Location.t -> Parsetree.class_structure ->
         class_structure * class_signature * string list)

(*
  Saving and outputting type information.
  We keep these function names short, because they have to be
  called each time we create a record of type [Typedtree.expression]
  or [Typedtree.pattern] that will end up in the typed AST.
*)
let re node =
  Stypes.record (Stypes.Ti_expr node);
  node
;;
let rp node =
  Stypes.record (Stypes.Ti_pat node);
  node
;;


(* Typing of constants *)

let type_constant = function
    Const_int _ -> instance Predef.type_int
  | Const_char _ -> instance Predef.type_char
  | Const_string _ -> instance Predef.type_string
  | Const_float _ -> instance Predef.type_float
  | Const_int32 _ -> instance Predef.type_int32
  | Const_int64 _ -> instance Predef.type_int64
  | Const_nativeint _ -> instance Predef.type_nativeint

(* Specific version of type_option, using newty rather than newgenty *)

let type_option ty =
  newty (Tconstr(Predef.path_option,[ty], ref Mnil))

let option_none ty loc =
  let cnone = Env.lookup_constructor (Longident.Lident "None") Env.initial in
  { exp_desc = Texp_construct(cnone, []);
    exp_type = ty; exp_loc = loc; exp_env = Env.initial }

let option_some texp =
  let csome = Env.lookup_constructor (Longident.Lident "Some") Env.initial in
  { exp_desc = Texp_construct(csome, [texp]); exp_loc = texp.exp_loc;
    exp_type = type_option texp.exp_type; exp_env = texp.exp_env }

let extract_option_type env ty =
  match expand_head env ty with {desc = Tconstr(path, [ty], _)}
    when Path.same path Predef.path_option -> ty
  | _ -> assert false

let rec extract_label_names sexp env ty =
  let ty = repr ty in
  match ty.desc with
  | Tconstr (path, _, _) ->
      let td = Env.find_type path env in
      begin match td.type_kind with
      | Type_record (fields, _) ->
          List.map (fun (name, _, _) -> name) fields
      | Type_abstract when td.type_manifest <> None ->
          extract_label_names sexp env (expand_head env ty)
      | _ -> assert false
      end
  | _ ->
      assert false

(* Typing of patterns *)

(* Creating new conjunctive types is not allowed when typing patterns *)
let unify_pat env pat expected_ty =
  try
    unify env pat.pat_type expected_ty
  with
    Unify trace ->
      raise(Error(pat.pat_loc, Pattern_type_clash(trace)))
  | Tags(l1,l2) ->
      raise(Typetexp.Error(pat.pat_loc, Typetexp.Variant_tags (l1, l2)))

(* make all Reither present in open variants *)
let finalize_variant pat =
  match pat.pat_desc with
    Tpat_variant(tag, opat, r) ->
      let row =
        match expand_head pat.pat_env pat.pat_type with
          {desc = Tvariant row} -> r := row; row_repr row
        | _ -> assert false
      in
      begin match row_field tag row with
      | Rabsent -> assert false
      | Reither (true, [], _, e) when not row.row_closed ->
          set_row_field e (Rpresent None)
      | Reither (false, ty::tl, _, e) when not row.row_closed ->
          set_row_field e (Rpresent (Some ty));
          begin match opat with None -> assert false
          | Some pat -> List.iter (unify_pat pat.pat_env pat) (ty::tl)
          end
      | Reither (c, l, true, e) when not row.row_fixed ->
          set_row_field e (Reither (c, [], false, ref None))
      | _ -> ()
      end;
      (* Force check of well-formedness   WHY? *)
      (* unify_pat pat.pat_env pat
        (newty(Tvariant{row_fields=[]; row_more=newvar(); row_closed=false;
                        row_bound=(); row_fixed=false; row_name=None})); *)
  | _ -> ()

let rec iter_pattern f p =
  f p;
  iter_pattern_desc (iter_pattern f) p.pat_desc

let has_variants p =
  try
    iter_pattern (function {pat_desc=Tpat_variant _} -> raise Exit | _ -> ())
      p;
    false
  with Exit ->
    true


(* pattern environment *)
let pattern_variables = ref ([]: (Ident.t * type_expr * Location.t) list)
let pattern_force = ref ([] : (unit -> unit) list)
let pattern_scope = ref (None : Annot.ident option);;
let reset_pattern scope =
  pattern_variables := [];
  pattern_force := [];
  pattern_scope := scope;
;;

let enter_variable loc name ty =
  if List.exists (fun (id, _, _) -> Ident.name id = name) !pattern_variables
  then raise(Error(loc, Multiply_bound_variable name));
  let id = Ident.create name in
  pattern_variables := (id, ty, loc) :: !pattern_variables;
  begin match !pattern_scope with
  | None -> ()
  | Some s -> Stypes.record (Stypes.An_ident (loc, name, s));
  end;
  id

let sort_pattern_variables vs =
  List.sort
    (fun (x,_,_) (y,_,_) -> Pervasives.compare (Ident.name x) (Ident.name y))
    vs

let enter_orpat_variables loc env  p1_vs p2_vs =
  (* unify_vars operate on sorted lists *)

  let p1_vs = sort_pattern_variables p1_vs
  and p2_vs = sort_pattern_variables p2_vs in

  let rec unify_vars p1_vs p2_vs = match p1_vs, p2_vs with
      | (x1,t1,l1)::rem1, (x2,t2,l2)::rem2 when Ident.equal x1 x2 ->
          if x1==x2 then
            unify_vars rem1 rem2
          else begin
            begin try
              unify env t1 t2
            with
            | Unify trace ->
                raise(Error(loc, Pattern_type_clash(trace)))
            end ;
          (x2,x1)::unify_vars rem1 rem2
          end
      | [],[] -> []
      | (x,_,_)::_, [] -> raise (Error (loc, Orpat_vars x))
      | [],(x,_,_)::_  -> raise (Error (loc, Orpat_vars x))
      | (x,_,_)::_, (y,_,_)::_ ->
          let min_var =
            if Ident.name x < Ident.name y then x
            else y in
          raise (Error (loc, Orpat_vars min_var)) in
  unify_vars p1_vs p2_vs

let rec build_as_type env p =
  match p.pat_desc with
    Tpat_alias(p1, _) -> build_as_type env p1
  | Tpat_tuple pl ->
      let tyl = List.map (build_as_type env) pl in
      newty (Ttuple tyl)
  | Tpat_construct(cstr, pl) ->
      if cstr.cstr_private = Private then p.pat_type else
      let tyl = List.map (build_as_type env) pl in
      let ty_args, ty_res = instance_constructor cstr in
      List.iter2 (fun (p,ty) -> unify_pat env {p with pat_type = ty})
        (List.combine pl tyl) ty_args;
      ty_res
  | Tpat_variant(l, p', _) ->
      let ty = may_map (build_as_type env) p' in
      newty (Tvariant{row_fields=[l, Rpresent ty]; row_more=newvar();
                      row_bound=(); row_name=None;
                      row_fixed=false; row_closed=false})
  | Tpat_record lpl ->
      let lbl = fst(List.hd lpl) in
      if lbl.lbl_private = Private then p.pat_type else
      let ty = newvar () in
      let ppl = List.map (fun (l,p) -> l.lbl_pos, p) lpl in
      let do_label lbl =
        let _, ty_arg, ty_res = instance_label false lbl in
        unify_pat env {p with pat_type = ty} ty_res;
        let refinable =
          lbl.lbl_mut = Immutable && List.mem_assoc lbl.lbl_pos ppl &&
          match (repr lbl.lbl_arg).desc with Tpoly _ -> false | _ -> true in
        if refinable then begin
          let arg = List.assoc lbl.lbl_pos ppl in
          unify_pat env {arg with pat_type = build_as_type env arg} ty_arg
        end else begin
          let _, ty_arg', ty_res' = instance_label false lbl in
          unify env ty_arg ty_arg';
          unify_pat env p ty_res'
        end in
      Array.iter do_label lbl.lbl_all;
      ty
  | Tpat_or(p1, p2, row) ->
      begin match row with
        None ->
          let ty1 = build_as_type env p1 and ty2 = build_as_type env p2 in
          unify_pat env {p2 with pat_type = ty2} ty1;
          ty1
      | Some row ->
          let row = row_repr row in
          newty (Tvariant{row with row_closed=false; row_more=newvar()})
      end
  | Tpat_any | Tpat_var _ | Tpat_constant _
  | Tpat_array _ | Tpat_lazy _ -> p.pat_type

let build_or_pat env loc lid =
  let path, decl = Typetexp.find_type env loc lid
  in
  let tyl = List.map (fun _ -> newvar()) decl.type_params in
  let row0 =
    let ty = expand_head env (newty(Tconstr(path, tyl, ref Mnil))) in
    match ty.desc with
      Tvariant row when static_row row -> row
    | _ -> raise(Error(loc, Not_a_variant_type lid))
  in
  let pats, fields =
    List.fold_left
      (fun (pats,fields) (l,f) ->
        match row_field_repr f with
          Rpresent None ->
            (l,None) :: pats,
            (l, Reither(true,[], true, ref None)) :: fields
        | Rpresent (Some ty) ->
            (l, Some {pat_desc=Tpat_any; pat_loc=Location.none; pat_env=env;
                      pat_type=ty})
            :: pats,
            (l, Reither(false, [ty], true, ref None)) :: fields
        | _ -> pats, fields)
      ([],[]) (row_repr row0).row_fields in
  let row =
    { row_fields = List.rev fields; row_more = newvar(); row_bound = ();
      row_closed = false; row_fixed = false; row_name = Some (path, tyl) }
  in
  let ty = newty (Tvariant row) in
  let gloc = {loc with Location.loc_ghost=true} in
  let row' = ref {row with row_more=newvar()} in
  let pats =
    List.map (fun (l,p) -> {pat_desc=Tpat_variant(l,p,row'); pat_loc=gloc;
                            pat_env=env; pat_type=ty})
      pats
  in
  match pats with
    [] -> raise(Error(loc, Not_a_variant_type lid))
  | pat :: pats ->
      let r =
        List.fold_left
          (fun pat pat0 -> {pat_desc=Tpat_or(pat0,pat,Some row0);
                            pat_loc=gloc; pat_env=env; pat_type=ty})
          pat pats in
      rp { r with pat_loc = loc }

let rec find_record_qual = function
  | [] -> None
  | (Longident.Ldot (modname, _), _) :: _ -> Some modname
  | _ :: rest -> find_record_qual rest

let type_label_a_list type_lid_a lid_a_list =
  match find_record_qual lid_a_list with
  | None -> List.map type_lid_a lid_a_list
  | Some modname ->
      List.map
        (function
         | (Longident.Lident id), sarg ->
              type_lid_a (Longident.Ldot (modname, id), sarg)
         | lid_a -> type_lid_a lid_a)
        lid_a_list

(* Checks over the labels mentioned in a record pattern:
   no duplicate definitions (error); properly closed (warning) *)

let check_recordpat_labels loc lbl_pat_list closed =
  match lbl_pat_list with
  | [] -> ()                            (* should not happen *)
  | (label1, _) :: _ ->
      let all = label1.lbl_all in
      let defined = Array.make (Array.length all) false in
      let check_defined (label, _) =
        if defined.(label.lbl_pos)
        then raise(Error(loc, Label_multiply_defined
                                       (Longident.Lident label.lbl_name)))
        else defined.(label.lbl_pos) <- true in
      List.iter check_defined lbl_pat_list;
      if closed = Closed
      && Warnings.is_active (Warnings.Non_closed_record_pattern "")
      then begin
        let undefined = ref [] in
        for i = 0 to Array.length all - 1 do
          if not defined.(i) then undefined := all.(i).lbl_name :: !undefined
        done;
        if !undefined <> [] then begin
          let u = String.concat ", " (List.rev !undefined) in
          Location.prerr_warning loc (Warnings.Non_closed_record_pattern u)
        end
      end

(* Typing of patterns *)

let rec type_pat env sp =
  let loc = sp.ppat_loc in
  match sp.ppat_desc with
    Ppat_any ->
      rp {
        pat_desc = Tpat_any;
        pat_loc = loc;
        pat_type = newvar();
        pat_env = env }
  | Ppat_var name ->
      let ty = newvar() in
      let id = enter_variable loc name ty in
      rp {
        pat_desc = Tpat_var id;
        pat_loc = loc;
        pat_type = ty;
        pat_env = env }
  | Ppat_constraint({ppat_desc=Ppat_var name; ppat_loc=loc},
                    ({ptyp_desc=Ptyp_poly _} as sty)) ->
      (* explicitly polymorphic type *)
      let ty, force = Typetexp.transl_simple_type_delayed env sty in
      pattern_force := force :: !pattern_force;
      begin match ty.desc with
      | Tpoly (body, tyl) ->
          begin_def ();
          let _, ty' = instance_poly false tyl body in
          end_def ();
          generalize ty';
          let id = enter_variable loc name ty' in
          rp { pat_desc = Tpat_var id;
               pat_loc = loc;
               pat_type = ty;
               pat_env = env }
      | _ -> assert false
      end
  | Ppat_alias(sq, name) ->
      let q = type_pat env sq in
      begin_def ();
      let ty_var = build_as_type env q in
      end_def ();
      generalize ty_var;
      let id = enter_variable loc name ty_var in
      rp {
        pat_desc = Tpat_alias(q, id);
        pat_loc = loc;
        pat_type = q.pat_type;
        pat_env = env }
  | Ppat_constant cst ->
      rp {
        pat_desc = Tpat_constant cst;
        pat_loc = loc;
        pat_type = type_constant cst;
        pat_env = env }
  | Ppat_tuple spl ->
      let pl = List.map (type_pat env) spl in
      rp {
        pat_desc = Tpat_tuple pl;
        pat_loc = loc;
        pat_type = newty (Ttuple(List.map (fun p -> p.pat_type) pl));
        pat_env = env }
  | Ppat_construct(lid, sarg, explicit_arity) ->
      let constr = Typetexp.find_constructor env loc lid in
      let sargs =
        match sarg with
          None -> []
        | Some {ppat_desc = Ppat_tuple spl} when explicit_arity -> spl
        | Some {ppat_desc = Ppat_tuple spl} when constr.cstr_arity > 1 -> spl
        | Some({ppat_desc = Ppat_any} as sp) when constr.cstr_arity <> 1 ->
            if constr.cstr_arity = 0 then
              Location.prerr_warning sp.ppat_loc
                                     Warnings.Wildcard_arg_to_constant_constr;
            replicate_list sp constr.cstr_arity
        | Some sp -> [sp] in
      if List.length sargs <> constr.cstr_arity then
        raise(Error(loc, Constructor_arity_mismatch(lid,
                                     constr.cstr_arity, List.length sargs)));
      let args = List.map (type_pat env) sargs in
      let (ty_args, ty_res) = instance_constructor constr in
      List.iter2 (unify_pat env) args ty_args;
      rp {
        pat_desc = Tpat_construct(constr, args);
        pat_loc = loc;
        pat_type = ty_res;
        pat_env = env }
  | Ppat_variant(l, sarg) ->
      let arg = may_map (type_pat env) sarg in
      let arg_type = match arg with None -> [] | Some arg -> [arg.pat_type]  in
      let row = { row_fields =
                    [l, Reither(arg = None, arg_type, true, ref None)];
                  row_bound = ();
                  row_closed = false;
                  row_more = newvar ();
                  row_fixed = false;
                  row_name = None } in
      rp {
        pat_desc = Tpat_variant(l, arg, ref {row with row_more = newvar()});
        pat_loc = loc;
        pat_type = newty (Tvariant row);
        pat_env = env }
  | Ppat_record(lid_sp_list, closed) ->
      let ty = newvar() in
      let type_label_pat (lid, sarg) =
        let label = Typetexp.find_label env loc lid in
        begin_def ();
        let (vars, ty_arg, ty_res) = instance_label false label in
        if vars = [] then end_def ();
        begin try
          unify env ty_res ty
        with Unify trace ->
          raise(Error(loc, Label_mismatch(lid, trace)))
        end;
        let arg = type_pat env sarg in
        unify_pat env arg ty_arg;
        if vars <> [] then begin
          end_def ();
          generalize ty_arg;
          List.iter generalize vars;
          let instantiated tv =
            let tv = expand_head env tv in
            tv.desc <> Tvar || tv.level <> generic_level in
          if List.exists instantiated vars then
            raise (Error(loc, Polymorphic_label lid))
        end;
        (label, arg)
      in
      let lbl_pat_list = type_label_a_list type_label_pat lid_sp_list in
      check_recordpat_labels loc lbl_pat_list closed;
      rp {
        pat_desc = Tpat_record lbl_pat_list;
        pat_loc = loc;
        pat_type = ty;
        pat_env = env }
  | Ppat_array spl ->
      let pl = List.map (type_pat env) spl in
      let ty_elt = newvar() in
      List.iter (fun p -> unify_pat env p ty_elt) pl;
      rp {
        pat_desc = Tpat_array pl;
        pat_loc = loc;
        pat_type = instance (Predef.type_array ty_elt);
        pat_env = env }
  | Ppat_or(sp1, sp2) ->
      let initial_pattern_variables = !pattern_variables in
      let p1 = type_pat env sp1 in
      let p1_variables = !pattern_variables in
      pattern_variables := initial_pattern_variables ;
      let p2 = type_pat env sp2 in
      let p2_variables = !pattern_variables in
      unify_pat env p2 p1.pat_type;
      let alpha_env =
        enter_orpat_variables loc env p1_variables p2_variables in
      pattern_variables := p1_variables ;
      rp {
        pat_desc = Tpat_or(p1, alpha_pat alpha_env p2, None);
        pat_loc = loc;
        pat_type = p1.pat_type;
        pat_env = env }
  | Ppat_lazy sp1 ->
      let p1 = type_pat env sp1 in
      rp {
        pat_desc = Tpat_lazy p1;
        pat_loc = loc;
        pat_type = instance (Predef.type_lazy_t p1.pat_type);
        pat_env = env }
  | Ppat_constraint(sp, sty) ->
      let p = type_pat env sp in
      let ty, force = Typetexp.transl_simple_type_delayed env sty in
      unify_pat env p ty;
      pattern_force := force :: !pattern_force;
      p
  | Ppat_type lid ->
      build_or_pat env loc lid

let get_ref r =
  let v = !r in r := []; v

let add_pattern_variables env =
  let pv = get_ref pattern_variables in
  List.fold_right
    (fun (id, ty, loc) env ->
       let e1 = Env.add_value id {val_type = ty; val_kind = Val_reg} env in
       Env.add_annot id (Annot.Iref_internal loc) e1;
    )
    pv env

let type_pattern env spat scope =
  reset_pattern scope;
  let pat = type_pat env spat in
  let new_env = add_pattern_variables env in
  (pat, new_env, get_ref pattern_force)

let type_pattern_list env spatl scope =
  reset_pattern scope;
  let patl = List.map (type_pat env) spatl in
  let new_env = add_pattern_variables env in
  (patl, new_env, get_ref pattern_force)

let type_class_arg_pattern cl_num val_env met_env l spat =
  reset_pattern None;
  let pat = type_pat val_env spat in
  if has_variants pat then begin
    Parmatch.pressure_variants val_env [pat];
    iter_pattern finalize_variant pat
  end;
  List.iter (fun f -> f()) (get_ref pattern_force);
  if is_optional l then unify_pat val_env pat (type_option (newvar ()));
  let (pv, met_env) =
    List.fold_right
      (fun (id, ty, _loc) (pv, env) ->
         let id' = Ident.create (Ident.name id) in
         ((id', id, ty)::pv,
          Env.add_value id' {val_type = ty;
                             val_kind = Val_ivar (Immutable, cl_num)}
            env))
      !pattern_variables ([], met_env)
  in
  let val_env = add_pattern_variables val_env in
  (pat, pv, val_env, met_env)

let mkpat d = { ppat_desc = d; ppat_loc = Location.none }

let type_self_pattern cl_num privty val_env met_env par_env spat =
  let spat =
    mkpat (Ppat_alias (mkpat(Ppat_alias (spat, "selfpat-*")),
                       "selfpat-" ^ cl_num))
  in
  reset_pattern None;
  let pat = type_pat val_env spat in
  List.iter (fun f -> f()) (get_ref pattern_force);
  let meths = ref Meths.empty in
  let vars = ref Vars.empty in
  let pv = !pattern_variables in
  pattern_variables := [];
  let (val_env, met_env, par_env) =
    List.fold_right
      (fun (id, ty, _loc) (val_env, met_env, par_env) ->
         (Env.add_value id {val_type = ty; val_kind = Val_unbound} val_env,
          Env.add_value id {val_type = ty;
                            val_kind = Val_self (meths, vars, cl_num, privty)}
            met_env,
          Env.add_value id {val_type = ty; val_kind = Val_unbound} par_env))
      pv (val_env, met_env, par_env)
  in
  (pat, meths, vars, val_env, met_env, par_env)

let delayed_checks = ref []
let reset_delayed_checks () = delayed_checks := []
let add_delayed_check f = delayed_checks := f :: !delayed_checks
let force_delayed_checks () =
  (* checks may change type levels *)
  let snap = Btype.snapshot () in
  List.iter (fun f -> f ()) (List.rev !delayed_checks);
  reset_delayed_checks ();
  Btype.backtrack snap


(* Generalization criterion for expressions *)

let rec is_nonexpansive exp =
  match exp.exp_desc with
    Texp_ident(_,_) -> true
  | Texp_constant _ -> true
  | Texp_let(rec_flag, pat_exp_list, body) ->
      List.for_all (fun (pat, exp) -> is_nonexpansive exp) pat_exp_list &&
      is_nonexpansive body
  | Texp_function _ -> true
  | Texp_apply(e, (None,_)::el) ->
      is_nonexpansive e && List.for_all is_nonexpansive_opt (List.map fst el)
  | Texp_tuple el ->
      List.for_all is_nonexpansive el
  | Texp_construct(_, el) ->
      List.for_all is_nonexpansive el
  | Texp_variant(_, arg) -> is_nonexpansive_opt arg
  | Texp_record(lbl_exp_list, opt_init_exp) ->
      List.for_all
        (fun (lbl, exp) -> lbl.lbl_mut = Immutable && is_nonexpansive exp)
        lbl_exp_list
      && is_nonexpansive_opt opt_init_exp
  | Texp_field(exp, lbl) -> is_nonexpansive exp
  | Texp_array [] -> true
  | Texp_ifthenelse(cond, ifso, ifnot) ->
      is_nonexpansive ifso && is_nonexpansive_opt ifnot
  | Texp_sequence (e1, e2) -> is_nonexpansive e2  (* PR#4354 *)
  | Texp_new (_, cl_decl) when Ctype.class_type_arity cl_decl.cty_type > 0 ->
      true
  (* Note: nonexpansive only means no _observable_ side effects *)
  | Texp_lazy e -> is_nonexpansive e
  | Texp_object ({cl_field=fields}, {cty_vars=vars}, _) ->
      let count = ref 0 in
      List.for_all
        (function
            Cf_meth _ -> true
          | Cf_val (_,_,e,_) -> incr count; is_nonexpansive_opt e
          | Cf_init e -> is_nonexpansive e
          | Cf_inher _ | Cf_let _ -> false)
        fields &&
      Vars.fold (fun _ (mut,_,_) b -> decr count; b && mut = Immutable)
        vars true &&
      !count = 0
  | Texp_pack mexp ->
      is_nonexpansive_mod mexp
  | _ -> false

and is_nonexpansive_mod mexp =
  match mexp.mod_desc with
  | Tmod_ident _ -> true
  | Tmod_functor _ -> true
  | Tmod_unpack (e, _) -> is_nonexpansive e
  | Tmod_constraint (m, _, _) -> is_nonexpansive_mod m
  | Tmod_structure items ->
      List.for_all
        (function
          | Tstr_eval _ | Tstr_primitive _ | Tstr_type _ | Tstr_modtype _
          | Tstr_open _ | Tstr_cltype _ | Tstr_exn_rebind _ -> true
          | Tstr_value (_, pat_exp_list) ->
              List.for_all (fun (_, exp) -> is_nonexpansive exp) pat_exp_list
          | Tstr_module (_, m) | Tstr_include (m, _) -> is_nonexpansive_mod m
          | Tstr_recmodule id_mod_list ->
              List.for_all (fun (_, m) -> is_nonexpansive_mod m) id_mod_list
          | Tstr_exception _ -> false (* true would be unsound *)
          | Tstr_class _ -> false (* could be more precise *)
        )
        items
  | Tmod_apply _ -> false

and is_nonexpansive_opt = function
    None -> true
  | Some e -> is_nonexpansive e

(* Typing of printf formats.
   (Handling of * modifiers contributed by Thorsten Ohl.) *)

external string_to_format :
 string -> ('a, 'b, 'c, 'd, 'e, 'f) format6 = "%identity"
external format_to_string :
 ('a, 'b, 'c, 'd, 'e, 'f) format6 -> string = "%identity"

let type_format loc fmt =

  let ty_arrow gty ty = newty (Tarrow ("", instance gty, ty, Cok)) in

  let bad_conversion fmt i c =
    raise (Error (loc, Bad_conversion (fmt, i, c))) in
  let incomplete_format fmt =
    raise (Error (loc, Incomplete_format fmt)) in

  let range_closing_index fmt i =

    let len = String.length fmt in
    let find_closing j =
      if j >= len then incomplete_format fmt else
      try String.index_from fmt j ']' with
      | Not_found -> incomplete_format fmt in
    let skip_pos j =
      if j >= len then incomplete_format fmt else
      match fmt.[j] with
      | ']' -> find_closing (j + 1)
      | c -> find_closing j in
    let rec skip_neg j =
      if j >= len then incomplete_format fmt else
      match fmt.[j] with
      | '^' -> skip_pos (j + 1)
      | c -> skip_pos j in
    find_closing (skip_neg (i + 1)) in

  let rec type_in_format fmt =

    let len = String.length fmt in

    let ty_input = newvar ()
    and ty_result = newvar ()
    and ty_aresult = newvar ()
    and ty_uresult = newvar () in

    let meta = ref 0 in

    let rec scan_format i =
      if i >= len then
        if !meta = 0
        then ty_uresult, ty_result
        else incomplete_format fmt else
      match fmt.[i] with
      | '%' -> scan_opts i (i + 1)
      | _ -> scan_format (i + 1)
    and scan_opts i j =
      if j >= len then incomplete_format fmt else
      match fmt.[j] with
      | '_' -> scan_rest true i (j + 1)
      | _ -> scan_rest false i j
    and scan_rest skip i j =
      let rec scan_flags i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '#' | '0' | '-' | ' ' | '+' -> scan_flags i (j + 1)
        | _ -> scan_width i j
      and scan_width i j = scan_width_or_prec_value scan_precision i j
      and scan_decimal_string scan i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '0' .. '9' -> scan_decimal_string scan i (j + 1)
        | _ -> scan i j
      and scan_width_or_prec_value scan i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '*' ->
          let ty_uresult, ty_result = scan i (j + 1) in
          ty_uresult, ty_arrow Predef.type_int ty_result
        | '-' | '+' -> scan_decimal_string scan i (j + 1)
        | _ -> scan_decimal_string scan i j
      and scan_precision i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '.' -> scan_width_or_prec_value scan_conversion i (j + 1)
        | _ -> scan_conversion i j

      and conversion j ty_arg =
        let ty_uresult, ty_result = scan_format (j + 1) in
        ty_uresult,
        if skip then ty_result else ty_arrow ty_arg ty_result

      and conversion_a j ty_e ty_arg =
        let ty_uresult, ty_result = conversion j ty_arg in
        let ty_a = ty_arrow ty_input (ty_arrow ty_e ty_aresult) in
        ty_uresult, ty_arrow ty_a ty_result

      and conversion_r j ty_e ty_arg =
        let ty_uresult, ty_result = conversion j ty_arg in
        let ty_r = ty_arrow ty_input ty_e in
        ty_arrow ty_r ty_uresult, ty_result

      and scan_conversion i j =
        if j >= len then incomplete_format fmt else
        match fmt.[j] with
        | '%' | '!' | ',' -> scan_format (j + 1)
        | 's' | 'S' -> conversion j Predef.type_string
        | '[' ->
          let j = range_closing_index fmt j in
          conversion j Predef.type_string
        | 'c' | 'C' -> conversion j Predef.type_char
        | 'd' | 'i' | 'o' | 'x' | 'X' | 'u' | 'N' ->
          conversion j Predef.type_int
        | 'f' | 'e' | 'E' | 'g' | 'G' | 'F' -> conversion j Predef.type_float
        | 'B' | 'b' -> conversion j Predef.type_bool
        | 'a' | 'r' as conv ->
          let conversion =
            if conv = 'a' then conversion_a else conversion_r in
          let ty_e = newvar () in
          let j = j + 1 in
          if j >= len then conversion (j - 1) ty_e ty_e else begin
            match fmt.[j] with
(*            | 'a' | 'A' -> conversion j ty_e (Predef.type_array ty_e)
            | 'l' | 'L' -> conversion j ty_e (Predef.type_list ty_e)
            | 'o' | 'O' -> conversion j ty_e (Predef.type_option ty_e)*)
            | _ -> conversion (j - 1) ty_e ty_e end
(*        | 'r' ->
          let ty_e = newvar () in
          let j = j + 1 in
          if j >= len then conversion_r (j - 1) ty_e ty_e else begin
            match fmt.[j] with
            | 'a' | 'A' -> conversion_r j ty_e (Pref.type_array ty_e)
            | 'l' | 'L' -> conversion_r j ty_e (Pref.type_list ty_e)
            | 'o' | 'O' -> conversion_r j ty_e (Pref.type_option ty_e)
            | _ -> conversion_r (j - 1) ty_e ty_e end *)
        | 't' -> conversion j (ty_arrow ty_input ty_aresult)
        | 'l' | 'n' | 'L' as c ->
          let j = j + 1 in
          if j >= len then conversion (j - 1) Predef.type_int else begin
            match fmt.[j] with
            | 'd' | 'i' | 'o' | 'x' | 'X' | 'u' ->
              let ty_arg =
                match c with
                | 'l' -> Predef.type_int32
                | 'n' -> Predef.type_nativeint
                | _ -> Predef.type_int64 in
              conversion j ty_arg
            | c -> conversion (j - 1) Predef.type_int
          end
        | '{' | '(' as c ->
          let j = j + 1 in
          if j >= len then incomplete_format fmt else
          let sj =
            Printf.CamlinternalPr.Tformat.sub_format
              (fun fmt -> incomplete_format (format_to_string fmt))
              (fun fmt -> bad_conversion (format_to_string fmt))
              c (string_to_format fmt) j in
          let sfmt = String.sub fmt j (sj - 2 - j) in
          let ty_sfmt = type_in_format sfmt in
          begin match c with
          | '{' -> conversion (sj - 1) ty_sfmt
          | _ -> incr meta; conversion (j - 1) ty_sfmt end
        | ')' when !meta > 0 -> decr meta; scan_format (j + 1)
        | c -> bad_conversion fmt i c in
      scan_flags i j in

    let ty_ureader, ty_args = scan_format 0 in
    newty
      (Tconstr
         (Predef.path_format6,
          [ty_args; ty_input; ty_aresult; ty_ureader; ty_uresult; ty_result],
          ref Mnil)) in

  type_in_format fmt

(* Approximate the type of an expression, for better recursion *)

let rec approx_type env sty =
  match sty.ptyp_desc with
    Ptyp_arrow (p, _, sty) ->
      let ty1 = if is_optional p then type_option (newvar ()) else newvar () in
      newty (Tarrow (p, ty1, approx_type env sty, Cok))
  | Ptyp_tuple args ->
      newty (Ttuple (List.map (approx_type env) args))
  | Ptyp_constr (lid, ctl) ->
      begin try
        let (path, decl) = Env.lookup_type lid env in
        if List.length ctl <> decl.type_arity then raise Not_found;
        let tyl = List.map (approx_type env) ctl in
        newconstr path tyl
      with Not_found -> newvar ()
      end
  | Ptyp_poly (_, sty) ->
      approx_type env sty
  | _ -> newvar ()

let rec type_approx env sexp =
  match sexp.pexp_desc with
    Pexp_let (_, _, e) -> type_approx env e
  | Pexp_function (p,_,(_,e)::_) when is_optional p ->
       newty (Tarrow(p, type_option (newvar ()), type_approx env e, Cok))
  | Pexp_function (p,_,(_,e)::_) ->
       newty (Tarrow(p, newvar (), type_approx env e, Cok))
  | Pexp_match (_, (_,e)::_) -> type_approx env e
  | Pexp_try (e, _) -> type_approx env e
  | Pexp_tuple l -> newty (Ttuple(List.map (type_approx env) l))
  | Pexp_ifthenelse (_,e,_) -> type_approx env e
  | Pexp_sequence (_,e) -> type_approx env e
  | Pexp_constraint (e, sty1, sty2) ->
      let approx_ty_opt = function
        | None -> newvar ()
        | Some sty -> approx_type env sty
      in
      let ty = type_approx env e
      and ty1 = approx_ty_opt sty1
      and ty2 = approx_ty_opt sty2 in
      begin try unify env ty ty1 with Unify trace ->
        raise(Error(sexp.pexp_loc, Expr_type_clash trace))
      end;
      if sty2 = None then ty1 else ty2
  | _ -> newvar ()

(* List labels in a function type, and whether return type is a variable *)
let rec list_labels_aux env visited ls ty_fun =
  let ty = expand_head env ty_fun in
  if List.memq ty visited then
    List.rev ls, false
  else match ty.desc with
    Tarrow (l, _, ty_res, _) ->
      list_labels_aux env (ty::visited) (l::ls) ty_res
  | _ ->
      List.rev ls, ty.desc = Tvar

let list_labels env ty = list_labels_aux env [] [] ty

(* Check that all univars are safe in a type *)
let check_univars env expans kind exp ty_expected vars =
  if expans && not (is_nonexpansive exp) then
    generalize_expansive env exp.exp_type;
  (* need to expand twice? cf. Ctype.unify2 *)
  let vars = List.map (expand_head env) vars in
  let vars = List.map (expand_head env) vars in
  let vars' =
    List.filter
      (fun t ->
        let t = repr t in
        generalize t;
        if t.desc = Tvar && t.level = generic_level then
          (log_type t; t.desc <- Tunivar; true)
        else false)
      vars in
  if List.length vars = List.length vars' then () else
  let ty = newgenty (Tpoly(repr exp.exp_type, vars'))
  and ty_expected = repr ty_expected in
  raise (Error (exp.exp_loc,
                Less_general(kind, [ty, ty; ty_expected, ty_expected])))

(* Check that a type is not a function *)
let check_application_result env statement exp =
  let loc = exp.exp_loc in
  match (expand_head env exp.exp_type).desc with
  | Tarrow _ ->
      Location.prerr_warning exp.exp_loc Warnings.Partial_application
  | Tvar -> ()
  | Tconstr (p, _, _) when Path.same p Predef.path_unit -> ()
  | _ ->
      if statement then
        Location.prerr_warning loc Warnings.Statement_type

(* Check that a type is generalizable at some level *)
let generalizable level ty =
  let rec check ty =
    let ty = repr ty in
    if ty.level < lowest_level then () else
    if ty.level <= level then raise Exit else
    (mark_type_node ty; iter_type_expr check ty)
  in
  try check ty; unmark_type ty; true
  with Exit -> unmark_type ty; false

(* Hack to allow coercion of self. Will clean-up later. *)
let self_coercion = ref ([] : (Path.t * Location.t list ref) list)

(* Helpers for packaged modules. *)
let create_package_type loc env (p, l) =
  let s = !Typetexp.transl_modtype_longident loc env p in
  newty (Tpackage (s,
                   List.map fst l,
                   List.map (Typetexp.transl_simple_type env false) (List.map snd l)))

(* Typing of expressions *)

let unify_exp env exp expected_ty =
  (* Format.eprintf "@[%a@ %a@]@." Printtyp.raw_type_expr exp.exp_type
    Printtyp.raw_type_expr expected_ty; *)
  try
    unify env exp.exp_type expected_ty
  with
    Unify trace ->
      raise(Error(exp.exp_loc, Expr_type_clash(trace)))
  | Tags(l1,l2) ->
      raise(Typetexp.Error(exp.exp_loc, Typetexp.Variant_tags (l1, l2)))

let rec type_exp env sexp =
  let loc = sexp.pexp_loc in
  match sexp.pexp_desc with
  | Pexp_ident lid ->
      begin
        if !Clflags.annotations then begin
          try let (path, annot) = Env.lookup_annot lid env in
              let rec name_of_path = function
                | Path.Pident id -> Ident.name id
                | Path.Pdot(p, s, pos) ->
                    if Oprint.parenthesized_ident s then
                      name_of_path p ^ ".( " ^ s ^ " )"
                    else
                      name_of_path p ^ "." ^ s
                | Path.Papply(p1, p2) -> name_of_path p1 ^ "(" ^ name_of_path p2 ^ ")" in
              Stypes.record
                (Stypes.An_ident (loc, name_of_path path, annot))
          with _ -> ()
        end;
        let (path, desc) = Typetexp.find_value env loc lid in
        re {
          exp_desc =
            begin match desc.val_kind with
              Val_ivar (_, cl_num) ->
                let (self_path, _) =
                  Env.lookup_value (Longident.Lident ("self-" ^ cl_num)) env
                in
                Texp_instvar(self_path, path)
            | Val_self (_, _, cl_num, _) ->
                let (path, _) =
                  Env.lookup_value (Longident.Lident ("self-" ^ cl_num)) env
                in
                Texp_ident(path, desc)
            | Val_unbound ->
                raise(Error(loc, Masked_instance_variable lid))
            | _ ->
                Texp_ident(path, desc)
            end;
          exp_loc = loc;
          exp_type = instance desc.val_type;
          exp_env = env }
      end
  | Pexp_constant cst ->
      re {
        exp_desc = Texp_constant cst;
        exp_loc = loc;
        exp_type = type_constant cst;
        exp_env = env }
  | Pexp_let(rec_flag, spat_sexp_list, sbody) ->
      let scp =
        match rec_flag with
        | Recursive -> Some (Annot.Idef loc)
        | Nonrecursive -> Some (Annot.Idef sbody.pexp_loc)
        | Default -> None
      in
      let (pat_exp_list, new_env) = type_let env rec_flag spat_sexp_list scp in
      let body = type_exp new_env sbody in
      re {
        exp_desc = Texp_let(rec_flag, pat_exp_list, body);
        exp_loc = loc;
        exp_type = body.exp_type;
        exp_env = env }
  | Pexp_function _ ->     (* defined in type_expect *)
      type_expect env sexp (newvar())
  | Pexp_apply(sfunct, sargs) ->
      begin_def (); (* one more level for non-returning functions *)
      if !Clflags.principal then begin_def ();
      let funct = type_exp env sfunct in
      if !Clflags.principal then begin
        end_def ();
        generalize_structure funct.exp_type
      end;
      let rec lower_args seen ty_fun =
        let ty = expand_head env ty_fun in
        if List.memq ty seen then () else
        match ty.desc with
          Tarrow (l, ty_arg, ty_fun, com) ->
            unify_var env (newvar()) ty_arg;
            lower_args (ty::seen) ty_fun
        | _ -> ()
      in
      let ty = instance funct.exp_type in
      end_def ();
      lower_args [] ty;
      begin_def ();
      let (args, ty_res) = type_application env funct sargs in
      end_def ();
      unify_var env (newvar()) funct.exp_type;
      re {
        exp_desc = Texp_apply(funct, args);
        exp_loc = loc;
        exp_type = ty_res;
        exp_env = env }
  | Pexp_match(sarg, caselist) ->
      let arg = type_exp env sarg in
      let ty_res = newvar() in
      let cases, partial =
        type_cases env arg.exp_type ty_res (Some loc) caselist
      in
      re {
        exp_desc = Texp_match(arg, cases, partial);
        exp_loc = loc;
        exp_type = ty_res;
        exp_env = env }
  | Pexp_try(sbody, caselist) ->
      let body = type_exp env sbody in
      let cases, _ =
        type_cases
          env (instance Predef.type_exn) body.exp_type None caselist in
      re {
        exp_desc = Texp_try(body, cases);
        exp_loc = loc;
        exp_type = body.exp_type;
        exp_env = env }
  | Pexp_tuple sexpl ->
      let expl = List.map (type_exp env) sexpl in
      re {
        exp_desc = Texp_tuple expl;
        exp_loc = loc;
        exp_type = newty (Ttuple(List.map (fun exp -> exp.exp_type) expl));
        exp_env = env }
  | Pexp_construct(lid, sarg, explicit_arity) ->
      type_construct env loc lid sarg explicit_arity (newvar ())
  | Pexp_variant(l, sarg) ->
      let arg = may_map (type_exp env) sarg in
      let arg_type = may_map (fun arg -> arg.exp_type) arg in
      re {
        exp_desc = Texp_variant(l, arg);
        exp_loc = loc;
        exp_type= newty (Tvariant{row_fields = [l, Rpresent arg_type];
                                  row_more = newvar ();
                                  row_bound = ();
                                  row_closed = false;
                                  row_fixed = false;
                                  row_name = None});
        exp_env = env }
  | Pexp_record(lid_sexp_list, opt_sexp) ->
      let ty = newvar () in
      let lbl_exp_list =
        type_label_a_list (type_label_exp true env loc ty) lid_sexp_list in
      let rec check_duplicates seen_pos lid_sexp lbl_exp =
        match (lid_sexp, lbl_exp) with
          ((lid, _) :: rem1, (lbl, _) :: rem2) ->
            if List.mem lbl.lbl_pos seen_pos
            then raise(Error(loc, Label_multiply_defined lid))
            else check_duplicates (lbl.lbl_pos :: seen_pos) rem1 rem2
        | (_, _) -> () in
      check_duplicates [] lid_sexp_list lbl_exp_list;
      let opt_exp =
        match opt_sexp, lbl_exp_list with
          None, _ -> None
        | Some sexp, (lbl, _) :: _ ->
            let ty_exp = newvar () in
            let unify_kept lbl =
              if List.for_all (fun (lbl',_) -> lbl'.lbl_pos <> lbl.lbl_pos)
                  lbl_exp_list
              then begin
                let _, ty_arg1, ty_res1 = instance_label false lbl
                and _, ty_arg2, ty_res2 = instance_label false lbl in
                unify env ty_exp ty_res1;
                unify env ty ty_res2;
                unify env ty_arg1 ty_arg2
              end in
            Array.iter unify_kept lbl.lbl_all;
            Some(type_expect env sexp ty_exp)
        | _ -> assert false
      in
      let num_fields =
        match lbl_exp_list with [] -> assert false
        | (lbl,_)::_ -> Array.length lbl.lbl_all in
      if opt_sexp = None && List.length lid_sexp_list <> num_fields then begin
        let present_indices =
          List.map (fun (lbl, _) -> lbl.lbl_pos) lbl_exp_list in
        let label_names = extract_label_names sexp env ty in
        let rec missing_labels n = function
            [] -> []
          | lbl :: rem ->
              if List.mem n present_indices then missing_labels (n + 1) rem
              else lbl :: missing_labels (n + 1) rem
        in
        let missing = missing_labels 0 label_names in
        raise(Error(loc, Label_missing missing))
      end
      else if opt_sexp <> None && List.length lid_sexp_list = num_fields then
        Location.prerr_warning loc Warnings.Useless_record_with;
      re {
        exp_desc = Texp_record(lbl_exp_list, opt_exp);
        exp_loc = loc;
        exp_type = ty;
        exp_env = env }
  | Pexp_field(sarg, lid) ->
      let arg = type_exp env sarg in
      let label = Typetexp.find_label env loc lid in
      let (_, ty_arg, ty_res) = instance_label false label in
      unify_exp env arg ty_res;
      re {
        exp_desc = Texp_field(arg, label);
        exp_loc = loc;
        exp_type = ty_arg;
        exp_env = env }
  | Pexp_setfield(srecord, lid, snewval) ->
      let record = type_exp env srecord in
      let (label, newval) =
        type_label_exp false env loc record.exp_type (lid, snewval) in
      if label.lbl_mut = Immutable then
        raise(Error(loc, Label_not_mutable lid));
      re {
        exp_desc = Texp_setfield(record, label, newval);
        exp_loc = loc;
        exp_type = instance Predef.type_unit;
        exp_env = env }
  | Pexp_array(sargl) ->
      let ty = newvar() in
      let argl = List.map (fun sarg -> type_expect env sarg ty) sargl in
      re {
        exp_desc = Texp_array argl;
        exp_loc = loc;
        exp_type = instance (Predef.type_array ty);
        exp_env = env }
  | Pexp_ifthenelse(scond, sifso, sifnot) ->
      let cond = type_expect env scond (instance Predef.type_bool) in
      begin match sifnot with
        None ->
          let ifso = type_expect env sifso (instance Predef.type_unit) in
          re {
            exp_desc = Texp_ifthenelse(cond, ifso, None);
            exp_loc = loc;
            exp_type = instance Predef.type_unit;
            exp_env = env }
      | Some sifnot ->
          let ifso = type_exp env sifso in
          let ifnot = type_expect env sifnot ifso.exp_type in
          re {
            exp_desc = Texp_ifthenelse(cond, ifso, Some ifnot);
            exp_loc = loc;
            exp_type = ifso.exp_type;
            exp_env = env }
      end
  | Pexp_sequence(sexp1, sexp2) ->
      let exp1 = type_statement env sexp1 in
      let exp2 = type_exp env sexp2 in
      re {
        exp_desc = Texp_sequence(exp1, exp2);
        exp_loc = loc;
        exp_type = exp2.exp_type;
        exp_env = env }
  | Pexp_while(scond, sbody) ->
      let cond = type_expect env scond (instance Predef.type_bool) in
      let body = type_statement env sbody in
      re {
        exp_desc = Texp_while(cond, body);
        exp_loc = loc;
        exp_type = instance Predef.type_unit;
        exp_env = env }
  | Pexp_for(param, slow, shigh, dir, sbody) ->
      let low = type_expect env slow (instance Predef.type_int) in
      let high = type_expect env shigh (instance Predef.type_int) in
      let (id, new_env) =
        Env.enter_value param {val_type = instance Predef.type_int;
                                val_kind = Val_reg} env in
      let body = type_statement new_env sbody in
      re {
        exp_desc = Texp_for(id, low, high, dir, body);
        exp_loc = loc;
        exp_type = instance Predef.type_unit;
        exp_env = env }
  | Pexp_constraint(sarg, sty, sty') ->
      let (arg, ty') =
        match (sty, sty') with
          (None, None) ->               (* Case actually unused *)
            let arg = type_exp env sarg in
            (arg, arg.exp_type)
        | (Some sty, None) ->
            if !Clflags.principal then begin_def ();
            let ty = Typetexp.transl_simple_type env false sty in
            if !Clflags.principal then begin
              end_def ();
              generalize_structure ty;
              let ty1 = instance ty and ty2 = instance ty in
              (type_expect env sarg ty1, ty2)
            end else
              (type_expect env sarg ty, ty)
        | (None, Some sty') ->
            let (ty', force) =
              Typetexp.transl_simple_type_delayed env sty'
            in
            if !Clflags.principal then begin_def ();
            let arg = type_exp env sarg in
            let gen =
              if !Clflags.principal then begin
                end_def ();
                let tv = newvar () in
                let gen = generalizable tv.level arg.exp_type in
                unify_var env tv arg.exp_type;
                gen
              end else true
            in
            begin match arg.exp_desc, !self_coercion, (repr ty').desc with
              Texp_ident(_, {val_kind=Val_self _}), (path,r) :: _,
              Tconstr(path',_,_) when Path.same path path' ->
                (* prerr_endline "self coercion"; *)
                r := loc :: !r;
                force ()
            | _ when free_variables ~env arg.exp_type = []
                  && free_variables ~env ty' = [] ->
                if not gen && (* first try a single coercion *)
                  let snap = snapshot () in
                  let ty, b = enlarge_type env ty' in
                  try
                    force (); Ctype.unify env arg.exp_type ty; true
                  with Unify _ ->
                    backtrack snap; false
                then ()
                else begin try
                  let force' = subtype env arg.exp_type ty' in
                  force (); force' ();
                  if not gen then
                    Location.prerr_warning loc
                      (Warnings.Not_principal "this ground coercion");
                with Subtype (tr1, tr2) ->
                  (* prerr_endline "coercion failed"; *)
                  raise(Error(loc, Not_subtype(tr1, tr2)))
                end;
            | _ ->
                let ty, b = enlarge_type env ty' in
                force ();
                begin try Ctype.unify env arg.exp_type ty with Unify trace ->
                  raise(Error(sarg.pexp_loc,
                        Coercion_failure(ty', full_expand env ty', trace, b)))
                end
            end;
            (arg, ty')
        | (Some sty, Some sty') ->
            let (ty, force) =
              Typetexp.transl_simple_type_delayed env sty
            and (ty', force') =
              Typetexp.transl_simple_type_delayed env sty'
            in
            begin try
              let force'' = subtype env ty ty' in
              force (); force' (); force'' ()
            with Subtype (tr1, tr2) ->
              raise(Error(loc, Not_subtype(tr1, tr2)))
            end;
            (type_expect env sarg ty, ty')
      in
      re {
        exp_desc = arg.exp_desc;
        exp_loc = arg.exp_loc;
        exp_type = ty';
        exp_env = env }
  | Pexp_when(scond, sbody) ->
      let cond = type_expect env scond (instance Predef.type_bool) in
      let body = type_exp env sbody in
      re {
        exp_desc = Texp_when(cond, body);
        exp_loc = loc;
        exp_type = body.exp_type;
        exp_env = env }
  | Pexp_send (e, met) ->
      if !Clflags.principal then begin_def ();
      let obj = type_exp env e in
      begin try
        let (exp, typ) =
          match obj.exp_desc with
            Texp_ident(path, {val_kind = Val_self (meths, _, _, privty)}) ->
              let (id, typ) =
                filter_self_method env met Private meths privty
              in
              if (repr typ).desc = Tvar then
                Location.prerr_warning loc
                  (Warnings.Undeclared_virtual_method met);
              (Texp_send(obj, Tmeth_val id), typ)
          | Texp_ident(path, {val_kind = Val_anc (methods, cl_num)}) ->
              let method_id =
                begin try List.assoc met methods with Not_found ->
                  raise(Error(e.pexp_loc, Undefined_inherited_method met))
                end
              in
              begin match
                Env.lookup_value (Longident.Lident ("selfpat-" ^ cl_num)) env,
                Env.lookup_value (Longident.Lident ("self-" ^cl_num)) env
              with
                (_, ({val_kind = Val_self (meths, _, _, privty)} as desc)),
                (path, _) ->
                  let (_, typ) =
                    filter_self_method env met Private meths privty
                  in
                  let method_type = newvar () in
                  let (obj_ty, res_ty) = filter_arrow env method_type "" in
                  unify env obj_ty desc.val_type;
                  unify env res_ty (instance typ);
                  (Texp_apply({ exp_desc = Texp_ident(Path.Pident method_id,
                                                     {val_type = method_type;
                                                       val_kind = Val_reg});
                                exp_loc = loc;
                                exp_type = method_type;
                                exp_env = env },
                              [Some {exp_desc = Texp_ident(path, desc);
                                     exp_loc = obj.exp_loc;
                                     exp_type = desc.val_type;
                                     exp_env = env },
                               Required]),
                   typ)
              |  _ ->
                  assert false
              end
          | _ ->
              (Texp_send(obj, Tmeth_name met),
               filter_method env met Public obj.exp_type)
        in
        if !Clflags.principal then begin
          end_def ();
          generalize_structure typ;
        end;
        let typ =
          match repr typ with
            {desc = Tpoly (ty, [])} ->
              instance ty
          | {desc = Tpoly (ty, tl); level = l} ->
              if !Clflags.principal && l <> generic_level then
                Location.prerr_warning loc
                  (Warnings.Not_principal "this use of a polymorphic method");
              snd (instance_poly false tl ty)
          | {desc = Tvar} as ty ->
              let ty' = newvar () in
              unify env (instance ty) (newty(Tpoly(ty',[])));
              (* if not !Clflags.nolabels then
                 Location.prerr_warning loc (Warnings.Unknown_method met); *)
              ty'
          | _ ->
              assert false
        in
          re {
            exp_desc = exp;
            exp_loc = loc;
            exp_type = typ;
            exp_env = env }
      with Unify _ ->
        raise(Error(e.pexp_loc, Undefined_method (obj.exp_type, met)))
      end
  | Pexp_new cl ->
      let (cl_path, cl_decl) = Typetexp.find_class env loc cl in
        begin match cl_decl.cty_new with
          None ->
            raise(Error(loc, Virtual_class cl))
        | Some ty ->
            re {
              exp_desc = Texp_new (cl_path, cl_decl);
              exp_loc = loc;
              exp_type = instance ty;
              exp_env = env }
        end
  | Pexp_setinstvar (lab, snewval) ->
      begin try
        let (path, desc) = Env.lookup_value (Longident.Lident lab) env in
        match desc.val_kind with
          Val_ivar (Mutable, cl_num) ->
            let newval = type_expect env snewval (instance desc.val_type) in
            let (path_self, _) =
              Env.lookup_value (Longident.Lident ("self-" ^ cl_num)) env
            in
            re {
              exp_desc = Texp_setinstvar(path_self, path, newval);
              exp_loc = loc;
              exp_type = instance Predef.type_unit;
              exp_env = env }
        | Val_ivar _ ->
            raise(Error(loc,Instance_variable_not_mutable(true,lab)))
        | _ ->
            raise(Error(loc,Instance_variable_not_mutable(false,lab)))
      with
        Not_found ->
          raise(Error(loc, Unbound_instance_variable lab))
      end
  | Pexp_override lst ->
      let _ =
       List.fold_right
        (fun (lab, _) l ->
           if List.exists ((=) lab) l then
             raise(Error(loc,
                         Value_multiply_overridden lab));
           lab::l)
        lst
        [] in
      begin match
        try
          Env.lookup_value (Longident.Lident "selfpat-*") env,
          Env.lookup_value (Longident.Lident "self-*") env
        with Not_found ->
          raise(Error(loc, Outside_class))
      with
        (_, {val_type = self_ty; val_kind = Val_self (_, vars, _, _)}),
        (path_self, _) ->
          let type_override (lab, snewval) =
            begin try
              let (id, _, _, ty) = Vars.find lab !vars in
              (Path.Pident id, type_expect env snewval (instance ty))
            with
              Not_found ->
                raise(Error(loc, Unbound_instance_variable lab))
            end
          in
          let modifs = List.map type_override lst in
          re {
            exp_desc = Texp_override(path_self, modifs);
            exp_loc = loc;
            exp_type = self_ty;
            exp_env = env }
      | _ ->
          assert false
      end
  | Pexp_letmodule(name, smodl, sbody) ->
      let ty = newvar() in
      Ident.set_current_time ty.level;
      let context = Typetexp.narrow () in
      let modl = !type_module env smodl in
      let (id, new_env) = Env.enter_module name modl.mod_type env in
      Ctype.init_def(Ident.current_time());
      Typetexp.widen context;
      let body = type_exp new_env sbody in
      (* Unification of body.exp_type with the fresh variable ty
         fails if and only if the prefix condition is violated,
         i.e. if generative types rooted at id show up in the
         type body.exp_type.  Thus, this unification enforces the
         scoping condition on "let module". *)
      begin try
        Ctype.unify new_env body.exp_type ty
      with Unify _ ->
        raise(Error(loc, Scoping_let_module(name, body.exp_type)))
      end;
      re {
        exp_desc = Texp_letmodule(id, modl, body);
        exp_loc = loc;
        exp_type = ty;
        exp_env = env }
  | Pexp_assert (e) ->
       let cond = type_expect env e (instance Predef.type_bool) in
       re {
         exp_desc = Texp_assert (cond);
         exp_loc = loc;
         exp_type = instance Predef.type_unit;
         exp_env = env;
       }
  | Pexp_assertfalse ->
       re {
         exp_desc = Texp_assertfalse;
         exp_loc = loc;
         exp_type = newvar ();
         exp_env = env;
       }
  | Pexp_lazy e ->
       let arg = type_exp env e in
       re {
         exp_desc = Texp_lazy arg;
         exp_loc = loc;
         exp_type = instance (Predef.type_lazy_t arg.exp_type);
         exp_env = env;
       }
  | Pexp_object s ->
      let desc, sign, meths = !type_object env loc s in
      re {
        exp_desc = Texp_object (desc, sign, meths);
        exp_loc = loc;
        exp_type = sign.cty_self;
        exp_env = env;
      }
  | Pexp_poly _ ->
      assert false
  | Pexp_newtype(name, sbody) ->
      (* Create a fake abstract type declaration for name. *)
      let decl = {
        type_params = [];
        type_arity = 0;
        type_kind = Type_abstract;
        type_private = Public;
        type_manifest = None;
        type_variance = [];
      }
      in

      let ty = newvar () in
      Ident.set_current_time ty.level;
      let (id, new_env) = Env.enter_type name decl env in
      Ctype.init_def(Ident.current_time());

      let body = type_exp new_env sbody in
      (* Replace every instance of this type constructor in the resulting type. *)
      let seen = Hashtbl.create 8 in
      let rec replace t =
        if Hashtbl.mem seen t.id then ()
        else begin
          Hashtbl.add seen t.id ();
          match t.desc with
          | Tconstr (Path.Pident id', _, _) when id == id' -> link_type t ty
          | _ -> Btype.iter_type_expr replace t
        end
      in
      let ety = Subst.type_expr Subst.identity body.exp_type in
      replace ety;

      (* non-expansive if the body is non-expansive, so we don't introduce
         any new extra node in the typed AST. *)
      re { body with exp_loc = sexp.pexp_loc; exp_type = ety }
  | Pexp_pack (m, (p, l)) ->
      let loc = sexp.pexp_loc in
      let l, mty = Typetexp.create_package_mty loc env (p, l) in
      let m = {pmod_desc = Pmod_constraint (m, mty); pmod_loc = loc} in
      let context = Typetexp.narrow () in
      let modl = !type_module env m in
      Typetexp.widen context;
      re {
        exp_desc = Texp_pack modl;
        exp_loc = loc;
        exp_type = create_package_type loc env (p, l);
        exp_env = env }
  | Pexp_open (lid, e) ->
      type_exp (!type_open env sexp.pexp_loc lid) e

and type_label_exp create env loc ty (lid, sarg) =
  let label = Typetexp.find_label env sarg.pexp_loc lid in
  begin_def ();
  if !Clflags.principal then begin_def ();
  let (vars, ty_arg, ty_res) = instance_label true label in
  if !Clflags.principal then begin
    end_def ();
    generalize_structure ty_arg;
    generalize_structure ty_res
  end;
  begin try
    unify env (instance ty_res) ty
  with Unify trace ->
    raise(Error(loc , Label_mismatch(lid, trace)))
  end;
  if label.lbl_private = Private then
    raise(Error(loc, if create then Private_type ty else Private_label (lid, ty)));
  let arg =
    let snap = if vars = [] then None else Some (Btype.snapshot ()) in
    let arg = type_argument env sarg ty_arg in
    end_def ();
    try
      check_univars env (vars <> []) "field value" arg label.lbl_arg vars;
      arg
    with exn when not (is_nonexpansive arg) -> try
      (* Try to retype without propagating ty_arg, cf PR#4862 *)
      may Btype.backtrack snap;
      begin_def ();
      let arg = type_exp env sarg in
      end_def ();
      generalize_expansive env arg.exp_type;
      unify_exp env arg ty_arg;
      check_univars env false "field value" arg label.lbl_arg vars;
      arg
    with Error (_, Less_general _) as e -> raise e
    | _ -> raise exn    (* In case of failure return the first error *)
  in
  (label, {arg with exp_type = instance arg.exp_type})

and type_argument env sarg ty_expected' =
  (* ty_expected' may be generic *)
  let no_labels ty =
    let ls, tvar = list_labels env ty in
    not tvar && List.for_all ((=) "") ls
  in
  let ty_expected = instance ty_expected' in
  match expand_head env ty_expected', sarg with
  | _, {pexp_desc = Pexp_function(l,_,_)} when not (is_optional l) ->
      type_expect env sarg ty_expected
  | {desc = Tarrow("",ty_arg,ty_res,_); level = lv}, _ ->
      (* apply optional arguments when expected type is "" *)
      (* we must be very careful about not breaking the semantics *)
      if !Clflags.principal then begin_def ();
      let texp = type_exp env sarg in
      if !Clflags.principal then begin
        end_def ();
        generalize_structure texp.exp_type
      end;
      let rec make_args args ty_fun =
        match (expand_head env ty_fun).desc with
        | Tarrow (l,ty_arg,ty_fun,_) when is_optional l ->
            make_args
              ((Some(option_none (instance ty_arg) sarg.pexp_loc), Optional)
               :: args)
              ty_fun
        | Tarrow (l,_,ty_res',_) when l = "" || !Clflags.classic ->
            args, ty_fun, no_labels ty_res'
        | Tvar ->  args, ty_fun, false
        |  _ -> [], texp.exp_type, false
      in
      let args, ty_fun', simple_res = make_args [] texp.exp_type in
      let warn = !Clflags.principal &&
        (lv <> generic_level || (repr ty_fun').level <> generic_level)
      and texp = {texp with exp_type = instance texp.exp_type}
      and ty_fun = instance ty_fun' in
      if not (simple_res || no_labels ty_res) then begin
        unify_exp env texp ty_expected;
        texp
      end else begin
      unify_exp env {texp with exp_type = ty_fun} ty_expected;
      if args = [] then texp else
      (* eta-expand to avoid side effects *)
      let var_pair name ty =
        let id = Ident.create name in
        {pat_desc = Tpat_var id; pat_type = ty;
         pat_loc = Location.none; pat_env = env},
        {exp_type = ty; exp_loc = Location.none; exp_env = env; exp_desc =
         Texp_ident(Path.Pident id,{val_type = ty; val_kind = Val_reg})}
      in
      let eta_pat, eta_var = var_pair "eta" ty_arg in
      let func texp =
        { texp with exp_type = ty_fun; exp_desc =
          Texp_function([eta_pat, {texp with exp_type = ty_res; exp_desc =
                                   Texp_apply (texp, args@
                                               [Some eta_var, Required])}],
                        Total) } in
      if warn then Location.prerr_warning texp.exp_loc
          (Warnings.Without_principality "eliminated optional argument");
      if is_nonexpansive texp then func texp else
      (* let-expand to have side effects *)
      let let_pat, let_var = var_pair "let" texp.exp_type in
      re { texp with exp_type = ty_fun; exp_desc =
           Texp_let (Nonrecursive, [let_pat, texp], func let_var) }
      end
  | _ ->
      type_expect env sarg ty_expected

and type_application env funct sargs =
  (* funct.exp_type may be generic *)
  let result_type omitted ty_fun =
    List.fold_left
      (fun ty_fun (l,ty,lv) -> newty2 lv (Tarrow(l,ty,ty_fun,Cok)))
      ty_fun omitted
  in
  let has_label l ty_fun =
    let ls, tvar = list_labels env ty_fun in
    tvar || List.mem l ls
  in
  let ignored = ref [] in
  let rec type_unknown_args args omitted ty_fun = function
      [] ->
        (List.map
           (function None, x -> None, x | Some f, x -> Some (f ()), x)
           (List.rev args),
         instance (result_type omitted ty_fun))
    | (l1, sarg1) :: sargl ->
        let (ty1, ty2) =
          let ty_fun = expand_head env ty_fun in
          match ty_fun.desc with
            Tvar ->
              let t1 = newvar () and t2 = newvar () in
              let not_identity = function
                  Texp_ident(_,{val_kind=Val_prim
                                  {Primitive.prim_name="%identity"}}) ->
                    false
                | _ -> true
              in
              if ty_fun.level >= t1.level && not_identity funct.exp_desc then
                Location.prerr_warning sarg1.pexp_loc Warnings.Unused_argument;
              unify env ty_fun (newty (Tarrow(l1,t1,t2,Clink(ref Cunknown))));
              (t1, t2)
          | Tarrow (l,t1,t2,_) when l = l1
            || !Clflags.classic && l1 = "" && not (is_optional l) ->
              (t1, t2)
          | td ->
              let ty_fun =
                match td with Tarrow _ -> newty td | _ -> ty_fun in
              let ty_res = result_type (omitted @ !ignored) ty_fun in
              match ty_res.desc with
                Tarrow _ ->
                  if (!Clflags.classic || not (has_label l1 ty_fun)) then
                    raise(Error(sarg1.pexp_loc, Apply_wrong_label(l1, ty_res)))
                  else
                    raise(Error(funct.exp_loc, Incoherent_label_order))
              | _ ->
                  raise(Error(funct.exp_loc, Apply_non_function
                                (expand_head env funct.exp_type)))
        in
        let optional = if is_optional l1 then Optional else Required in
        let arg1 () =
          let arg1 = type_expect env sarg1 ty1 in
          if optional = Optional then
            unify_exp env arg1 (type_option(newvar()));
          arg1
        in
        type_unknown_args ((Some arg1, optional) :: args) omitted ty2 sargl
  in
  let ignore_labels =
    !Clflags.classic ||
    begin
      let ls, tvar = list_labels env funct.exp_type in
      not tvar &&
      let labels = List.filter (fun l -> not (is_optional l)) ls in
      List.length labels = List.length sargs &&
      List.for_all (fun (l,_) -> l = "") sargs &&
      List.exists (fun l -> l <> "") labels &&
      (Location.prerr_warning funct.exp_loc Warnings.Labels_omitted;
       true)
    end
  in
  let warned = ref false in
  let rec type_args args omitted ty_fun ty_old sargs more_sargs =
    match expand_head env ty_fun with
      {desc=Tarrow (l, ty, ty_fun, com); level=lv} as ty_fun'
      when (sargs <> [] || more_sargs <> []) && commu_repr com = Cok ->
        let may_warn loc w =
          if not !warned && !Clflags.principal && lv <> generic_level
          then begin
            warned := true;
            Location.prerr_warning loc w
          end
        in
        let name = label_name l
        and optional = if is_optional l then Optional else Required in
        let sargs, more_sargs, arg =
          if ignore_labels && not (is_optional l) then begin
            (* In classic mode, omitted = [] *)
            match sargs, more_sargs with
              (l', sarg0) :: _, _ ->
                raise(Error(sarg0.pexp_loc, Apply_wrong_label(l', ty_old)))
            | _, (l', sarg0) :: more_sargs ->
                if l <> l' && l' <> "" then
                  raise(Error(sarg0.pexp_loc, Apply_wrong_label(l', ty_fun')))
                else
                  ([], more_sargs, Some (fun () -> type_argument env sarg0 ty))
            | _ ->
                assert false
          end else try
            let (l', sarg0, sargs, more_sargs) =
              try
                let (l', sarg0, sargs1, sargs2) = extract_label name sargs in
                if sargs1 <> [] then
                  may_warn sarg0.pexp_loc
                    (Warnings.Not_principal "commuting this argument");
                (l', sarg0, sargs1 @ sargs2, more_sargs)
              with Not_found ->
                let (l', sarg0, sargs1, sargs2) =
                  extract_label name more_sargs in
                if sargs1 <> [] || sargs <> [] then
                  may_warn sarg0.pexp_loc
                    (Warnings.Not_principal "commuting this argument");
                (l', sarg0, sargs @ sargs1, sargs2)
            in
            sargs, more_sargs,
            if optional = Required || is_optional l' then
              Some (fun () -> type_argument env sarg0 ty)
            else begin
              may_warn sarg0.pexp_loc
                (Warnings.Not_principal "using an optional argument here");
              Some (fun () -> option_some (type_argument env sarg0
                                             (extract_option_type env ty)))
            end
          with Not_found ->
            sargs, more_sargs,
            if optional = Optional &&
              (List.mem_assoc "" sargs || List.mem_assoc "" more_sargs)
            then begin
              may_warn funct.exp_loc
                (Warnings.Without_principality "eliminated optional argument");
              ignored := (l,ty,lv) :: !ignored;
              Some (fun () -> option_none (instance ty) Location.none)
            end else begin
              may_warn funct.exp_loc
                (Warnings.Without_principality "commuted an argument");
              None
            end
        in
        let omitted =
          if arg = None then (l,ty,lv) :: omitted else omitted in
        let ty_old = if sargs = [] then ty_fun else ty_old in
        type_args ((arg,optional)::args) omitted ty_fun ty_old sargs more_sargs
    | _ ->
        match sargs with
          (l, sarg0) :: _ when ignore_labels ->
            raise(Error(sarg0.pexp_loc, Apply_wrong_label(l, ty_old)))
        | _ ->
            type_unknown_args args omitted (instance ty_fun)
              (sargs @ more_sargs)
  in
  match funct.exp_desc, sargs with
    (* Special case for ignore: avoid discarding warning *)
    Texp_ident (_, {val_kind=Val_prim{Primitive.prim_name="%ignore"}}),
    ["", sarg] ->
      let ty_arg, ty_res = filter_arrow env (instance funct.exp_type) "" in
      let exp = type_expect env sarg ty_arg in
      begin match (expand_head env exp.exp_type).desc with
      | Tarrow _ ->
          Location.prerr_warning exp.exp_loc Warnings.Partial_application
      | Tvar ->
          add_delayed_check (fun () -> check_application_result env false exp)
      | _ -> ()
      end;
      ([Some exp, Required], ty_res)
  | _ ->
      let ty = funct.exp_type in
      if ignore_labels then
        type_args [] [] ty ty [] sargs
      else
        type_args [] [] ty ty sargs []

and type_construct env loc lid sarg explicit_arity ty_expected =
  let constr = Typetexp.find_constructor env loc lid in
  let sargs =
    match sarg with
      None -> []
    | Some {pexp_desc = Pexp_tuple sel} when explicit_arity -> sel
    | Some {pexp_desc = Pexp_tuple sel} when constr.cstr_arity > 1 -> sel
    | Some se -> [se] in
  if List.length sargs <> constr.cstr_arity then
    raise(Error(loc, Constructor_arity_mismatch
                  (lid, constr.cstr_arity, List.length sargs)));
  if !Clflags.principal then begin_def ();
  let (ty_args, ty_res) = instance_constructor constr in
  if !Clflags.principal then begin
    end_def ();
    List.iter generalize_structure ty_args;
    generalize_structure ty_res
  end;
  let texp =
    re {
      exp_desc = Texp_construct(constr, []);
      exp_loc = loc;
      exp_type = instance ty_res;
      exp_env = env } in
  unify_exp env texp ty_expected;
  let args = List.map2 (type_argument env) sargs ty_args in
  if constr.cstr_private = Private then
    raise(Error(loc, Private_type ty_res));
  { texp with exp_desc = Texp_construct(constr, args) }

(* Typing of an expression with an expected type.
   Some constructs are treated specially to provide better error messages. *)

and type_expect ?in_function env sexp ty_expected =
  let loc = sexp.pexp_loc in
  match sexp.pexp_desc with
    Pexp_constant(Const_string s as cst) ->
      let exp =
        re {
          exp_desc = Texp_constant cst;
          exp_loc = loc;
          exp_type =
            (* Terrible hack for format strings *)
            begin match (repr (expand_head env ty_expected)).desc with
              Tconstr(path, _, _) when Path.same path Predef.path_format6 ->
                type_format loc s
            | _ -> instance Predef.type_string
            end;
          exp_env = env } in
      unify_exp env exp ty_expected;
      exp
  | Pexp_construct(lid, sarg, explicit_arity) ->
      type_construct env loc lid sarg explicit_arity ty_expected
  | Pexp_let(rec_flag, spat_sexp_list, sbody) ->
      let (pat_exp_list, new_env) = type_let env rec_flag spat_sexp_list None in
      let body = type_expect new_env sbody ty_expected in
      re {
        exp_desc = Texp_let(rec_flag, pat_exp_list, body);
        exp_loc = loc;
        exp_type = body.exp_type;
        exp_env = env }
  | Pexp_sequence(sexp1, sexp2) ->
      let exp1 = type_statement env sexp1 in
      let exp2 = type_expect env sexp2 ty_expected in
      re {
        exp_desc = Texp_sequence(exp1, exp2);
        exp_loc = loc;
        exp_type = exp2.exp_type;
        exp_env = env }
  | Pexp_function (l, Some default, [spat, sbody]) ->
      let default_loc = default.pexp_loc in
      let scases = [
         {ppat_loc = default_loc;
          ppat_desc =
            Ppat_construct
              (Longident.(Ldot (Lident "*predef*", "Some")),
               Some {ppat_loc = default_loc; ppat_desc = Ppat_var "*sth*"},
               false)},
         {pexp_loc = default_loc;
          pexp_desc = Pexp_ident(Longident.Lident "*sth*")};
         {ppat_loc = default_loc;
          ppat_desc = Ppat_construct
            (Longident.(Ldot (Lident "*predef*", "None")), None, false)},
         default;
      ] in
      let smatch = {
        pexp_loc = loc;
        pexp_desc =
          Pexp_match ({
            pexp_loc = loc;
            pexp_desc =
              Pexp_ident(Longident.Lident "*opt*")
            },
            scases
          )
      } in
      let sfun = {
        pexp_loc = loc;
        pexp_desc =
         Pexp_function (
           l,
           None,
           [ {ppat_loc = loc;
              ppat_desc = Ppat_var "*opt*"},
             {pexp_loc = loc;
              pexp_desc =
                Pexp_let(Default, [spat, smatch], sbody);
             }
           ]
         )
      } in
      type_expect ?in_function env sfun ty_expected
  | Pexp_function (l, _, caselist) ->
      let (loc_fun, ty_fun) =
        match in_function with Some p -> p
        | None -> (loc, ty_expected)
      in
      let (ty_arg, ty_res) =
        try filter_arrow env ty_expected l
        with Unify _ ->
          match expand_head env ty_expected with
            {desc = Tarrow _} as ty ->
              raise(Error(loc, Abstract_wrong_label(l, ty)))
          | _ ->
              raise(Error(loc_fun,
                          Too_many_arguments (in_function <> None, ty_fun)))
      in
      let ty_arg =
        if is_optional l then
          let tv = newvar() in
          begin
            try unify env ty_arg (type_option tv)
            with Unify _ -> assert false
          end;
          type_option tv
        else ty_arg
      in
      let cases, partial =
        type_cases ~in_function:(loc_fun,ty_fun) env ty_arg ty_res
          (Some loc) caselist in
      let not_function ty =
        let ls, tvar = list_labels env ty in
        ls = [] && not tvar
      in
      if is_optional l && not_function ty_res then
        Location.prerr_warning (fst (List.hd cases)).pat_loc
          Warnings.Unerasable_optional_argument;
      re {
        exp_desc = Texp_function(cases, partial);
        exp_loc = loc;
        exp_type = newty (Tarrow(l, ty_arg, ty_res, Cok));
        exp_env = env }
  | Pexp_when(scond, sbody) ->
      let cond = type_expect env scond (instance Predef.type_bool) in
      let body = type_expect env sbody ty_expected in
      re {
        exp_desc = Texp_when(cond, body);
        exp_loc = loc;
        exp_type = body.exp_type;
        exp_env = env }
  | Pexp_poly(sbody, sty) ->
      let ty =
        match sty with None -> repr ty_expected
        | Some sty ->
            let ty = Typetexp.transl_simple_type env false sty in
            repr ty
      in
      let set_type ty =
        unify_exp env
          { exp_desc = Texp_tuple [];
            exp_loc = loc;
            exp_type = ty; exp_env = env } ty_expected in
      begin
        match ty.desc with
          Tpoly (ty', []) ->
            if sty <> None then set_type ty;
            let exp = type_expect env sbody ty' in
            re { exp with exp_type = ty }
        | Tpoly (ty', tl) ->
            if sty <> None then set_type ty;
            (* One more level to generalize locally *)
            begin_def ();
            let vars, ty'' = instance_poly true tl ty' in
            let exp = type_expect env sbody ty'' in
            end_def ();
            check_univars env false "method" exp ty_expected vars;
            re { exp with exp_type = ty }
        | _ -> assert false
      end
  | _ ->
      let exp = type_exp env sexp in
      unify_exp env exp ty_expected;
      exp

(* Typing of statements (expressions whose values are discarded) *)

and type_statement env sexp =
  let loc = sexp.pexp_loc in
  begin_def();
  let exp = type_exp env sexp in
  end_def();
  if !Clflags.strict_sequence then
    let expected_ty = instance Predef.type_unit in
    unify_exp env exp expected_ty;
    exp else
  let ty = expand_head env exp.exp_type and tv = newvar() in
  begin match ty.desc with
  | Tarrow _ ->
      Location.prerr_warning loc Warnings.Partial_application
  | Tconstr (p, _, _) when Path.same p Predef.path_unit -> ()
  | Tvar when ty.level > tv.level ->
      Location.prerr_warning loc Warnings.Nonreturning_statement
  | Tvar ->
      add_delayed_check (fun () -> check_application_result env true exp)
  | _ ->
      Location.prerr_warning loc Warnings.Statement_type
  end;
  unify_var env tv ty;
  exp

(* Typing of match cases *)

and type_cases ?in_function env ty_arg ty_res partial_loc caselist =
  let ty_arg' = newvar () in
  let pattern_force = ref [] in
  let pat_env_list =
    List.map
      (fun (spat, sexp) ->
        let loc = sexp.pexp_loc in
        if !Clflags.principal then begin_def ();
        let scope = Some (Annot.Idef loc) in
        let (pat, ext_env, force) = type_pattern env spat scope in
        pattern_force := force @ !pattern_force;
        let pat =
          if !Clflags.principal then begin
            end_def ();
            iter_pattern (fun {pat_type=t} -> generalize_structure t) pat;
            { pat with pat_type = instance pat.pat_type }
          end else pat
        in
        unify_pat env pat ty_arg';
        (pat, ext_env))
      caselist in
  (* Check for polymorphic variants to close *)
  let patl = List.map fst pat_env_list in
  if List.exists has_variants patl then begin
    Parmatch.pressure_variants env patl;
    List.iter (iter_pattern finalize_variant) patl
  end;
  (* `Contaminating' unifications start here *)
  List.iter (fun f -> f()) !pattern_force;
  begin match pat_env_list with [] -> ()
  | (pat, _) :: _ -> unify_pat env pat ty_arg
  end;
  let in_function = if List.length caselist = 1 then in_function else None in
  let cases =
    List.map2
      (fun (pat, ext_env) (spat, sexp) ->
        let exp = type_expect ?in_function ext_env sexp ty_res in
        (pat, exp))
      pat_env_list caselist
  in
  let partial =
    match partial_loc with
    | None -> Partial
    | Some partial_loc -> Parmatch.check_partial partial_loc cases
  in
  add_delayed_check (fun () -> Parmatch.check_unused env cases);
  cases, partial

(* Typing of let bindings *)

and type_let env rec_flag spat_sexp_list scope =
  begin_def();
  if !Clflags.principal then begin_def ();
  let spatl = List.map (fun (spat, sexp) -> spat) spat_sexp_list in
  let (pat_list, new_env, force) = type_pattern_list env spatl scope in
  if rec_flag = Recursive then
    List.iter2
      (fun pat (_, sexp) ->
        let pat =
          match pat.pat_type.desc with
          | Tpoly (ty, tl) ->
              {pat with pat_type = snd (instance_poly false tl ty)}
          | _ -> pat
        in unify_pat env pat (type_approx env sexp))
      pat_list spat_sexp_list;
  let pat_list =
    if !Clflags.principal then begin
      end_def ();
      List.map
        (fun pat ->
          iter_pattern (fun pat -> generalize_structure pat.pat_type) pat;
          {pat with pat_type = instance pat.pat_type})
        pat_list
    end else pat_list in
  (* Polymoprhic variant processing *)
  List.iter
    (fun pat ->
      if has_variants pat then begin
        Parmatch.pressure_variants env [pat];
        iter_pattern finalize_variant pat
      end)
    pat_list;
  (* Only bind pattern variables after generalizing *)
  List.iter (fun f -> f()) force;
  let exp_env =
    match rec_flag with Nonrecursive | Default -> env | Recursive -> new_env in
  let exp_list =
    List.map2
      (fun (spat, sexp) pat ->
        match pat.pat_type.desc with
        | Tpoly (ty, tl) ->
            begin_def ();
            let vars, ty' = instance_poly true tl ty in
            let exp = type_expect exp_env sexp ty' in
            end_def ();
            check_univars env true "definition" exp pat.pat_type vars;
            {exp with exp_type = instance exp.exp_type}
        | _ -> type_expect exp_env sexp pat.pat_type)
      spat_sexp_list pat_list in
  List.iter2
    (fun pat exp -> ignore(Parmatch.check_partial pat.pat_loc [pat, exp]))
    pat_list exp_list;
  end_def();
  List.iter2
    (fun pat exp ->
       if not (is_nonexpansive exp) then
         iter_pattern (fun pat -> generalize_expansive env pat.pat_type) pat)
    pat_list exp_list;
  List.iter
    (fun pat -> iter_pattern (fun pat -> generalize pat.pat_type) pat)
    pat_list;
  (List.combine pat_list exp_list, new_env)

(* Typing of toplevel bindings *)

let type_binding env rec_flag spat_sexp_list scope =
  Typetexp.reset_type_variables();
  type_let env rec_flag spat_sexp_list scope

(* Typing of toplevel expressions *)

let type_expression env sexp =
  Typetexp.reset_type_variables();
  begin_def();
  let exp = type_exp env sexp in
  end_def();
  if is_nonexpansive exp then generalize exp.exp_type
  else generalize_expansive env exp.exp_type;
  exp

(* Error report *)

open Format
open Printtyp

let report_error ppf = function
  | Polymorphic_label lid ->
      fprintf ppf "@[The record field label %a is polymorphic.@ %s@]"
        longident lid "You cannot instantiate it in a pattern."
  | Constructor_arity_mismatch(lid, expected, provided) ->
      fprintf ppf
       "@[The constructor %a@ expects %i argument(s),@ \
        but is applied here to %i argument(s)@]"
       longident lid expected provided
  | Label_mismatch(lid, trace) ->
      report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "The record field label %a@ belongs to the type"
                   longident lid)
        (function ppf ->
           fprintf ppf "but is mixed here with labels of type")
  | Pattern_type_clash trace ->
      report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "This pattern matches values of type")
        (function ppf ->
           fprintf ppf "but a pattern was expected which matches values of type")
  | Multiply_bound_variable name ->
      fprintf ppf "Variable %s is bound several times in this matching" name
  | Orpat_vars id ->
      fprintf ppf "Variable %s must occur on both sides of this | pattern"
        (Ident.name id)
  | Expr_type_clash trace ->
      report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "This expression has type")
        (function ppf ->
           fprintf ppf "but an expression was expected of type")
  | Apply_non_function typ ->
      begin match (repr typ).desc with
        Tarrow _ ->
          fprintf ppf "This function is applied to too many arguments;@ ";
          fprintf ppf "maybe you forgot a `;'"
      | _ ->
          fprintf ppf
            "This expression is not a function; it cannot be applied"
      end
  | Apply_wrong_label (l, ty) ->
      let print_label ppf = function
        | "" -> fprintf ppf "without label"
        | l ->
            fprintf ppf "with label %s%s" (if is_optional l then "" else "~") l
      in
      reset_and_mark_loops ty;
      fprintf ppf
        "@[<v>@[<2>The function applied to this argument has type@ %a@]@.\
          This argument cannot be applied %a@]"
        type_expr ty print_label l
  | Label_multiply_defined lid ->
      fprintf ppf "The record field label %a is defined several times"
              longident lid
  | Label_missing labels ->
      let print_labels ppf = List.iter (fun lbl -> fprintf ppf "@ %s" lbl) in
      fprintf ppf "@[<hov>Some record field labels are undefined:%a@]"
        print_labels labels
  | Label_not_mutable lid ->
      fprintf ppf "The record field label %a is not mutable" longident lid
  | Incomplete_format s ->
      fprintf ppf "Premature end of format string ``%S''" s
  | Bad_conversion (fmt, i, c) ->
      fprintf ppf
        "Bad conversion %%%c, at char number %d \
         in format string ``%s''" c i fmt
  | Undefined_method (ty, me) ->
      reset_and_mark_loops ty;
      fprintf ppf
        "@[<v>@[This expression has type@;<1 2>%a@]@,\
         It has no method %s@]" type_expr ty me
  | Undefined_inherited_method me ->
      fprintf ppf "This expression has no method %s" me
  | Virtual_class cl ->
      fprintf ppf "Cannot instantiate the virtual class %a"
        longident cl
  | Unbound_instance_variable v ->
      fprintf ppf "Unbound instance variable %s" v
  | Instance_variable_not_mutable (b, v) ->
      if b then
        fprintf ppf "The instance variable %s is not mutable" v
      else
        fprintf ppf "The value %s is not an instance variable" v
  | Not_subtype(tr1, tr2) ->
      report_subtyping_error ppf tr1 "is not a subtype of" tr2
  | Outside_class ->
      fprintf ppf "This object duplication occurs outside a method definition"
  | Value_multiply_overridden v ->
      fprintf ppf "The instance variable %s is overridden several times" v
  | Coercion_failure (ty, ty', trace, b) ->
      report_unification_error ppf trace
        (function ppf ->
           let ty, ty' = prepare_expansion (ty, ty') in
           fprintf ppf
             "This expression cannot be coerced to type@;<1 2>%a;@ it has type"
           (type_expansion ty) ty')
        (function ppf ->
           fprintf ppf "but is here used with type");
      if b then
        fprintf ppf ".@.@[<hov>%s@ %s@]"
          "This simple coercion was not fully general."
          "Consider using a double coercion."
  | Too_many_arguments (in_function, ty) ->
      reset_and_mark_loops ty;
      if in_function then begin
        fprintf ppf "This function expects too many arguments,@ ";
        fprintf ppf "it should have type@ %a"
          type_expr ty
      end else begin
        fprintf ppf "This expression should not be a function,@ ";
        fprintf ppf "the expected type is@ %a"
          type_expr ty
      end
  | Abstract_wrong_label (l, ty) ->
      let label_mark = function
        | "" -> "but its first argument is not labelled"
        |  l -> sprintf "but its first argument is labelled ~%s" l in
      reset_and_mark_loops ty;
      fprintf ppf "@[<v>@[<2>This function should have type@ %a@]@,%s@]"
      type_expr ty (label_mark l)
  | Scoping_let_module(id, ty) ->
      reset_and_mark_loops ty;
      fprintf ppf
       "This `let module' expression has type@ %a@ " type_expr ty;
      fprintf ppf
       "In this type, the locally bound module name %s escapes its scope" id
  | Masked_instance_variable lid ->
      fprintf ppf
        "The instance variable %a@ \
         cannot be accessed from the definition of another instance variable"
        longident lid
  | Private_type ty ->
      fprintf ppf "Cannot create values of the private type %a" type_expr ty
  | Private_label (lid, ty) ->
      fprintf ppf "Cannot assign field %a of the private type %a"
        longident lid type_expr ty
  | Not_a_variant_type lid ->
      fprintf ppf "The type %a@ is not a variant type" longident lid
  | Incoherent_label_order ->
      fprintf ppf "This function is applied to arguments@ ";
      fprintf ppf "in an order different from other calls.@ ";
      fprintf ppf "This is only allowed when the real type is known."
  | Less_general (kind, trace) ->
      report_unification_error ppf trace
        (fun ppf -> fprintf ppf "This %s has type" kind)
        (fun ppf -> fprintf ppf "which is less general than")