/usr/share/doc/deal.ii-examples/step-30/step-30.cc is in deal.ii-examples 6.3.1-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 | /* $Id: step-30.cc 16430 2008-07-08 15:25:01Z hartmann $ */
/* Author: Tobias Leicht, 2007 */
/* $Id: step-30.cc 16430 2008-07-08 15:25:01Z hartmann $ */
/* Version: $Name$ */
/* */
/* Copyright (C) 2007, 2008 by the deal.II authors */
/* */
/* This file is subject to QPL and may not be distributed */
/* without copyright and license information. Please refer */
/* to the file deal.II/doc/license.html for the text and */
/* further information on this license. */
// The deal.II include files have already
// been covered in previous examples
// and will thus not be further
// commented on.
#include <base/quadrature_lib.h>
#include <base/function.h>
#include <lac/vector.h>
#include <lac/sparse_matrix.h>
#include <grid/tria.h>
#include <grid/grid_generator.h>
#include <grid/grid_out.h>
#include <grid/grid_refinement.h>
#include <grid/tria_accessor.h>
#include <grid/tria_iterator.h>
#include <fe/fe_values.h>
#include <dofs/dof_handler.h>
#include <dofs/dof_accessor.h>
#include <dofs/dof_tools.h>
#include <numerics/data_out.h>
#include <fe/mapping_q1.h>
#include <fe/fe_dgq.h>
#include <lac/solver_richardson.h>
#include <lac/precondition_block.h>
#include <numerics/derivative_approximation.h>
#include <base/timer.h>
// And this again is C++:
#include <iostream>
#include <fstream>
// The last step is as in all
// previous programs:
using namespace dealii;
// @sect3{Equation data}
//
// The classes describing equation data and the
// actual assembly of individual terms are
// almost entirely copied from step-12. We will
// comment on differences.
template <int dim>
class RHS: public Function<dim>
{
public:
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component=0) const;
};
template <int dim>
class BoundaryValues: public Function<dim>
{
public:
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component=0) const;
};
template <int dim>
class Beta
{
public:
Beta () {}
void value_list (const std::vector<Point<dim> > &points,
std::vector<Point<dim> > &values) const;
};
template <int dim>
void RHS<dim>::value_list(const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int) const
{
Assert(values.size()==points.size(),
ExcDimensionMismatch(values.size(),points.size()));
for (unsigned int i=0; i<values.size(); ++i)
values[i]=0;
}
// The flow field is chosen to be a
// quarter circle with
// counterclockwise flow direction
// and with the origin as midpoint
// for the right half of the domain
// with positive $x$ values, whereas
// the flow simply goes to the left
// in the left part of the domain at
// a velocity that matches the one
// coming in from the right. In the
// circular part the magnitude of the
// flow velocity is proportional to
// the distance from the origin. This
// is a difference to step-12, where
// the magnitude was 1
// evereywhere. the new definition
// leads to a linear variation of
// $\beta$ along each given face of a
// cell. On the other hand, the
// solution $u(x,y)$ is exactly the
// same as before.
template <int dim>
void Beta<dim>::value_list(const std::vector<Point<dim> > &points,
std::vector<Point<dim> > &values) const
{
Assert(values.size()==points.size(),
ExcDimensionMismatch(values.size(),points.size()));
for (unsigned int i=0; i<points.size(); ++i)
{
if (points[i](0) > 0)
{
values[i](0) = -points[i](1);
values[i](1) = points[i](0);
}
else
{
values[i] = Point<dim>();
values[i](0) = -points[i](1);
}
}
}
template <int dim>
void BoundaryValues<dim>::value_list(const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int) const
{
Assert(values.size()==points.size(),
ExcDimensionMismatch(values.size(),points.size()));
for (unsigned int i=0; i<values.size(); ++i)
{
if (points[i](0)<0.5)
values[i]=1.;
else
values[i]=0.;
}
}
// @sect3{Class: DGTransportEquation}
//
// This declaration of this
// class is utterly unaffected by our
// current changes. The only
// substantial change is that we use
// only the second assembly scheme
// described in step-12.
template <int dim>
class DGTransportEquation
{
public:
DGTransportEquation();
void assemble_cell_term(const FEValues<dim>& fe_v,
FullMatrix<double> &ui_vi_matrix,
Vector<double> &cell_vector) const;
void assemble_boundary_term(const FEFaceValues<dim>& fe_v,
FullMatrix<double> &ui_vi_matrix,
Vector<double> &cell_vector) const;
void assemble_face_term2(const FEFaceValuesBase<dim>& fe_v,
const FEFaceValuesBase<dim>& fe_v_neighbor,
FullMatrix<double> &ui_vi_matrix,
FullMatrix<double> &ue_vi_matrix,
FullMatrix<double> &ui_ve_matrix,
FullMatrix<double> &ue_ve_matrix) const;
private:
const Beta<dim> beta_function;
const RHS<dim> rhs_function;
const BoundaryValues<dim> boundary_function;
};
// Likewise, the constructor of the
// class as well as the functions
// assembling the terms corresponding
// to cell interiors and boundary
// faces are unchanged from
// before. The function that
// assembles face terms between cells
// also did not change because all it
// does is operate on two objects of
// type FEFaceValuesBase (which is
// the base class of both
// FEFaceValues and
// FESubfaceValues). Where these
// objects come from, i.e. how they
// are initialized, is of no concern
// to this function: it simply
// assumes that the quadrature points
// on faces or subfaces represented
// by the two objects correspond to
// the same points in physical space.
template <int dim>
DGTransportEquation<dim>::DGTransportEquation ()
:
beta_function (),
rhs_function (),
boundary_function ()
{}
template <int dim>
void DGTransportEquation<dim>::assemble_cell_term(
const FEValues<dim> &fe_v,
FullMatrix<double> &ui_vi_matrix,
Vector<double> &cell_vector) const
{
const std::vector<double> &JxW = fe_v.get_JxW_values ();
std::vector<Point<dim> > beta (fe_v.n_quadrature_points);
std::vector<double> rhs (fe_v.n_quadrature_points);
beta_function.value_list (fe_v.get_quadrature_points(), beta);
rhs_function.value_list (fe_v.get_quadrature_points(), rhs);
for (unsigned int point=0; point<fe_v.n_quadrature_points; ++point)
for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)
{
for (unsigned int j=0; j<fe_v.dofs_per_cell; ++j)
ui_vi_matrix(i,j) -= beta[point]*fe_v.shape_grad(i,point)*
fe_v.shape_value(j,point) *
JxW[point];
cell_vector(i) += rhs[point] * fe_v.shape_value(i,point) * JxW[point];
}
}
template <int dim>
void DGTransportEquation<dim>::assemble_boundary_term(
const FEFaceValues<dim>& fe_v,
FullMatrix<double> &ui_vi_matrix,
Vector<double> &cell_vector) const
{
const std::vector<double> &JxW = fe_v.get_JxW_values ();
const std::vector<Point<dim> > &normals = fe_v.get_normal_vectors ();
std::vector<Point<dim> > beta (fe_v.n_quadrature_points);
std::vector<double> g(fe_v.n_quadrature_points);
beta_function.value_list (fe_v.get_quadrature_points(), beta);
boundary_function.value_list (fe_v.get_quadrature_points(), g);
for (unsigned int point=0; point<fe_v.n_quadrature_points; ++point)
{
const double beta_n=beta[point] * normals[point];
if (beta_n>0)
for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)
for (unsigned int j=0; j<fe_v.dofs_per_cell; ++j)
ui_vi_matrix(i,j) += beta_n *
fe_v.shape_value(j,point) *
fe_v.shape_value(i,point) *
JxW[point];
else
for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)
cell_vector(i) -= beta_n *
g[point] *
fe_v.shape_value(i,point) *
JxW[point];
}
}
template <int dim>
void DGTransportEquation<dim>::assemble_face_term2(
const FEFaceValuesBase<dim>& fe_v,
const FEFaceValuesBase<dim>& fe_v_neighbor,
FullMatrix<double> &ui_vi_matrix,
FullMatrix<double> &ue_vi_matrix,
FullMatrix<double> &ui_ve_matrix,
FullMatrix<double> &ue_ve_matrix) const
{
const std::vector<double> &JxW = fe_v.get_JxW_values ();
const std::vector<Point<dim> > &normals = fe_v.get_normal_vectors ();
std::vector<Point<dim> > beta (fe_v.n_quadrature_points);
beta_function.value_list (fe_v.get_quadrature_points(), beta);
for (unsigned int point=0; point<fe_v.n_quadrature_points; ++point)
{
const double beta_n=beta[point] * normals[point];
if (beta_n>0)
{
for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)
for (unsigned int j=0; j<fe_v.dofs_per_cell; ++j)
ui_vi_matrix(i,j) += beta_n *
fe_v.shape_value(j,point) *
fe_v.shape_value(i,point) *
JxW[point];
for (unsigned int k=0; k<fe_v_neighbor.dofs_per_cell; ++k)
for (unsigned int j=0; j<fe_v.dofs_per_cell; ++j)
ui_ve_matrix(k,j) -= beta_n *
fe_v.shape_value(j,point) *
fe_v_neighbor.shape_value(k,point) *
JxW[point];
}
else
{
for (unsigned int i=0; i<fe_v.dofs_per_cell; ++i)
for (unsigned int l=0; l<fe_v_neighbor.dofs_per_cell; ++l)
ue_vi_matrix(i,l) += beta_n *
fe_v_neighbor.shape_value(l,point) *
fe_v.shape_value(i,point) *
JxW[point];
for (unsigned int k=0; k<fe_v_neighbor.dofs_per_cell; ++k)
for (unsigned int l=0; l<fe_v_neighbor.dofs_per_cell; ++l)
ue_ve_matrix(k,l) -= beta_n *
fe_v_neighbor.shape_value(l,point) *
fe_v_neighbor.shape_value(k,point) *
JxW[point];
}
}
}
// @sect3{Class: DGMethod}
//
// Even the main class of this
// program stays more or less the
// same. We omit one of the assembly
// routines and use only the second,
// more effective one of the two
// presented in step-12. However, we
// introduce a new routine
// (set_anisotropic_flags) and modify
// another one (refine_grid).
template <int dim>
class DGMethod
{
public:
DGMethod (const bool anisotropic);
~DGMethod ();
void run ();
private:
void setup_system ();
void assemble_system1 ();
void assemble_system2 ();
void solve (Vector<double> &solution);
void refine_grid ();
void set_anisotropic_flags ();
void output_results (const unsigned int cycle) const;
Triangulation<dim> triangulation;
const MappingQ1<dim> mapping;
// Again we want to use DG elements of
// degree 1 (but this is only specified in
// the constructor). If you want to use a
// DG method of a different degree replace
// 1 in the constructor by the new degree.
const unsigned int degree;
FE_DGQ<dim> fe;
DoFHandler<dim> dof_handler;
SparsityPattern sparsity_pattern;
SparseMatrix<double> system_matrix;
// This is new, the threshold value used in
// the evaluation of the anisotropic jump
// indicator explained in the
// introduction. Its value is set to 3.0 in
// the constructor, but it can easily be
// changed to a different value greater
// than 1.
const double anisotropic_threshold_ratio;
// This is a bool flag indicating whether
// anisotropic refinement shall be used or
// not. It is set by the constructor, which
// takes an argument of the same name.
const bool anisotropic;
const QGauss<dim> quadrature;
const QGauss<dim-1> face_quadrature;
Vector<double> solution2;
Vector<double> right_hand_side;
const DGTransportEquation<dim> dg;
};
template <int dim>
DGMethod<dim>::DGMethod (const bool anisotropic)
:
mapping (),
// Change here for DG
// methods of
// different degrees.
degree(1),
fe (degree),
dof_handler (triangulation),
anisotropic_threshold_ratio(3.),
anisotropic(anisotropic),
// As beta is a
// linear function,
// we can choose the
// degree of the
// quadrature for
// which the
// resulting
// integration is
// correct. Thus, we
// choose to use
// <code>degree+1</code>
// gauss points,
// which enables us
// to integrate
// exactly
// polynomials of
// degree
// <code>2*degree+1</code>,
// enough for all the
// integrals we will
// perform in this
// program.
quadrature (degree+1),
face_quadrature (degree+1),
dg ()
{}
template <int dim>
DGMethod<dim>::~DGMethod ()
{
dof_handler.clear ();
}
template <int dim>
void DGMethod<dim>::setup_system ()
{
dof_handler.distribute_dofs (fe);
sparsity_pattern.reinit (dof_handler.n_dofs(),
dof_handler.n_dofs(),
(GeometryInfo<dim>::faces_per_cell
*GeometryInfo<dim>::max_children_per_face+1)*fe.dofs_per_cell);
DoFTools::make_flux_sparsity_pattern (dof_handler, sparsity_pattern);
sparsity_pattern.compress();
system_matrix.reinit (sparsity_pattern);
solution2.reinit (dof_handler.n_dofs());
right_hand_side.reinit (dof_handler.n_dofs());
}
// @sect4{Function: assemble_system2}
//
// We proceed with the
// <code>assemble_system2</code> function that
// implements the DG discretization in its
// second version. This function is very
// similar to the <code>assemble_system2</code>
// function from step-12, even the four cases
// considered for the neighbor-relations of a
// cell are the same, namely a) cell is at the
// boundary, b) there are finer neighboring
// cells, c) the neighbor is neither coarser
// nor finer and d) the neighbor is coarser.
// However, the way in which we decide upon
// which case we have are modified in the way
// described in the introduction.
template <int dim>
void DGMethod<dim>::assemble_system2 ()
{
const unsigned int dofs_per_cell = dof_handler.get_fe().dofs_per_cell;
std::vector<unsigned int> dofs (dofs_per_cell);
std::vector<unsigned int> dofs_neighbor (dofs_per_cell);
const UpdateFlags update_flags = update_values
| update_gradients
| update_quadrature_points
| update_JxW_values;
const UpdateFlags face_update_flags = update_values
| update_quadrature_points
| update_JxW_values
| update_normal_vectors;
const UpdateFlags neighbor_face_update_flags = update_values;
FEValues<dim> fe_v (
mapping, fe, quadrature, update_flags);
FEFaceValues<dim> fe_v_face (
mapping, fe, face_quadrature, face_update_flags);
FESubfaceValues<dim> fe_v_subface (
mapping, fe, face_quadrature, face_update_flags);
FEFaceValues<dim> fe_v_face_neighbor (
mapping, fe, face_quadrature, neighbor_face_update_flags);
FullMatrix<double> ui_vi_matrix (dofs_per_cell, dofs_per_cell);
FullMatrix<double> ue_vi_matrix (dofs_per_cell, dofs_per_cell);
FullMatrix<double> ui_ve_matrix (dofs_per_cell, dofs_per_cell);
FullMatrix<double> ue_ve_matrix (dofs_per_cell, dofs_per_cell);
Vector<double> cell_vector (dofs_per_cell);
typename DoFHandler<dim>::active_cell_iterator
cell = dof_handler.begin_active(),
endc = dof_handler.end();
for (;cell!=endc; ++cell)
{
ui_vi_matrix = 0;
cell_vector = 0;
fe_v.reinit (cell);
dg.assemble_cell_term(fe_v,
ui_vi_matrix,
cell_vector);
cell->get_dof_indices (dofs);
for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell; ++face_no)
{
typename DoFHandler<dim>::face_iterator face=
cell->face(face_no);
// Case a)
if (face->at_boundary())
{
fe_v_face.reinit (cell, face_no);
dg.assemble_boundary_term(fe_v_face,
ui_vi_matrix,
cell_vector);
}
else
{
Assert (cell->neighbor(face_no).state() == IteratorState::valid,
ExcInternalError());
typename DoFHandler<dim>::cell_iterator neighbor=
cell->neighbor(face_no);
// Case b), we decide that there
// are finer cells as neighbors
// by asking the face, whether it
// has children. if so, then
// there must also be finer cells
// which are children or farther
// offsprings of our neighbor.
if (face->has_children())
{
// We need to know, which of
// the neighbors faces points
// in the direction of our
// cell. Using the @p
// neighbor_face_no function
// we get this information
// for both coarser and
// non-coarser neighbors.
const unsigned int neighbor2=
cell->neighbor_face_no(face_no);
// Now we loop over all
// subfaces, i.e. the
// children and possibly
// grandchildren of the
// current face.
for (unsigned int subface_no=0;
subface_no<face->number_of_children(); ++subface_no)
{
// To get the cell behind
// the current subface we
// can use the @p
// neighbor_child_on_subface
// function. it takes
// care of all the
// complicated situations
// of anisotropic
// refinement and
// non-standard faces.
typename DoFHandler<dim>::cell_iterator neighbor_child
= cell->neighbor_child_on_subface (face_no, subface_no);
Assert (!neighbor_child->has_children(), ExcInternalError());
// The remaining part of
// this case is
// unchanged.
ue_vi_matrix = 0;
ui_ve_matrix = 0;
ue_ve_matrix = 0;
fe_v_subface.reinit (cell, face_no, subface_no);
fe_v_face_neighbor.reinit (neighbor_child, neighbor2);
dg.assemble_face_term2(fe_v_subface,
fe_v_face_neighbor,
ui_vi_matrix,
ue_vi_matrix,
ui_ve_matrix,
ue_ve_matrix);
neighbor_child->get_dof_indices (dofs_neighbor);
for (unsigned int i=0; i<dofs_per_cell; ++i)
for (unsigned int j=0; j<dofs_per_cell; ++j)
{
system_matrix.add(dofs[i], dofs_neighbor[j],
ue_vi_matrix(i,j));
system_matrix.add(dofs_neighbor[i], dofs[j],
ui_ve_matrix(i,j));
system_matrix.add(dofs_neighbor[i], dofs_neighbor[j],
ue_ve_matrix(i,j));
}
}
}
else
{
// Case c). We simply ask,
// whether the neighbor is
// coarser. If not, then it
// is neither coarser nor
// finer, since finer
// neighbor would have been
// reated above withz case
// b). Of all the cases with
// thesame refinement
// situation of our cell and
// the neighbor we want to
// treat only one half, so
// that each face is
// considered only once. Thus
// we have the additional
// condition, that the cell
// with the lower index does
// the work. In the rare case
// that both cells have the
// same index, the cell with
// lower level is selected.
if (!cell->neighbor_is_coarser(face_no) &&
(neighbor->index() > cell->index() ||
(neighbor->level() < cell->level() &&
neighbor->index() == cell->index())))
{
// Here we know, that the
// neigbor is not coarser
// so we can use the
// usual @p
// neighbor_of_neighbor
// function. However, we
// could also use the
// more general @p
// neighbor_face_no
// function.
const unsigned int neighbor2=cell->neighbor_of_neighbor(face_no);
ue_vi_matrix = 0;
ui_ve_matrix = 0;
ue_ve_matrix = 0;
fe_v_face.reinit (cell, face_no);
fe_v_face_neighbor.reinit (neighbor, neighbor2);
dg.assemble_face_term2(fe_v_face,
fe_v_face_neighbor,
ui_vi_matrix,
ue_vi_matrix,
ui_ve_matrix,
ue_ve_matrix);
neighbor->get_dof_indices (dofs_neighbor);
for (unsigned int i=0; i<dofs_per_cell; ++i)
for (unsigned int j=0; j<dofs_per_cell; ++j)
{
system_matrix.add(dofs[i], dofs_neighbor[j],
ue_vi_matrix(i,j));
system_matrix.add(dofs_neighbor[i], dofs[j],
ui_ve_matrix(i,j));
system_matrix.add(dofs_neighbor[i], dofs_neighbor[j],
ue_ve_matrix(i,j));
}
}
// We do not need to consider
// case d), as those faces
// are treated 'from the
// other side within case b).
}
}
}
for (unsigned int i=0; i<dofs_per_cell; ++i)
for (unsigned int j=0; j<dofs_per_cell; ++j)
system_matrix.add(dofs[i], dofs[j], ui_vi_matrix(i,j));
for (unsigned int i=0; i<dofs_per_cell; ++i)
right_hand_side(dofs[i]) += cell_vector(i);
}
}
// @sect3{Solver}
//
// For this simple problem we use the simple
// Richardson iteration again. The solver is
// completely unaffected by our anisotropic
// changes.
template <int dim>
void DGMethod<dim>::solve (Vector<double> &solution)
{
SolverControl solver_control (1000, 1e-12, false, false);
SolverRichardson<> solver (solver_control);
PreconditionBlockSSOR<SparseMatrix<double> > preconditioner;
preconditioner.initialize(system_matrix, fe.dofs_per_cell);
solver.solve (system_matrix, solution, right_hand_side,
preconditioner);
}
// @sect3{Refinement}
//
// We refine the grid according to the same
// simple refinement criterion used in step-12,
// namely an approximation to the
// gradient of the solution.
template <int dim>
void DGMethod<dim>::refine_grid ()
{
Vector<float> gradient_indicator (triangulation.n_active_cells());
// We approximate the gradient,
DerivativeApproximation::approximate_gradient (mapping,
dof_handler,
solution2,
gradient_indicator);
// and scale it to obtain an error indicator.
typename DoFHandler<dim>::active_cell_iterator
cell = dof_handler.begin_active(),
endc = dof_handler.end();
for (unsigned int cell_no=0; cell!=endc; ++cell, ++cell_no)
gradient_indicator(cell_no)*=std::pow(cell->diameter(), 1+1.0*dim/2);
// Then we use this indicator to flag the 30
// percent of the cells with highest error
// indicator to be refined.
GridRefinement::refine_and_coarsen_fixed_number (triangulation,
gradient_indicator,
0.3, 0.1);
// Now the refinement flags are set for those
// cells with a large error indicator. If
// nothing is done to change this, those
// cells will be refined isotropically. If
// the @p anisotropic flag given to this
// function is set, we now call the
// set_anisotropic_flags() function, which
// uses the jump indicator to reset some of
// the refinement flags to anisotropic
// refinement.
if (anisotropic)
set_anisotropic_flags();
// Now execute the refinement considering
// anisotropic as well as isotropic
// refinement flags.
triangulation.execute_coarsening_and_refinement ();
}
// Once an error indicator has been evaluated
// and the cells with largerst error are
// flagged for refinement we want to loop over
// the flagged cells again to decide whether
// they need isotropic refinemnt or whether
// anisotropic refinement is more
// appropriate. This is the anisotropic jump
// indicator explained in the introduction.
template <int dim>
void DGMethod<dim>::set_anisotropic_flags ()
{
// We want to evaluate the jump over faces of
// the flagged cells, so we need some objects
// to evaluate values of the solution on
// faces.
UpdateFlags face_update_flags
= UpdateFlags(update_values | update_JxW_values);
FEFaceValues<dim> fe_v_face (mapping, fe, face_quadrature, face_update_flags);
FESubfaceValues<dim> fe_v_subface (mapping, fe, face_quadrature, face_update_flags);
FEFaceValues<dim> fe_v_face_neighbor (mapping, fe, face_quadrature, update_values);
// Now we need to loop over all active cells.
typename DoFHandler<dim>::active_cell_iterator cell=dof_handler.begin_active(),
endc=dof_handler.end();
for (; cell!=endc; ++cell)
// We only need to consider cells which are
// flaged for refinement.
if (cell->refine_flag_set())
{
Point<dim> jump;
Point<dim> area;
for (unsigned int face_no=0; face_no<GeometryInfo<dim>::faces_per_cell; ++face_no)
{
typename DoFHandler<dim>::face_iterator face = cell->face(face_no);
if (!face->at_boundary())
{
Assert (cell->neighbor(face_no).state() == IteratorState::valid, ExcInternalError());
typename DoFHandler<dim>::cell_iterator neighbor = cell->neighbor(face_no);
std::vector<double> u (fe_v_face.n_quadrature_points);
std::vector<double> u_neighbor (fe_v_face.n_quadrature_points);
// The four cases of different
// neighbor relations senn in
// the assembly routines are
// repeated much in the same
// way here.
if (face->has_children())
{
// The neighbor is refined.
// First we store the
// information, which of
// the neighbor's faces
// points in the direction
// of our current
// cell. This property is
// inherited to the
// children.
unsigned int neighbor2=cell->neighbor_face_no(face_no);
// Now we loop over all subfaces,
for (unsigned int subface_no=0; subface_no<face->number_of_children(); ++subface_no)
{
// get an iterator
// pointing to the cell
// behind the present
// subface...
typename DoFHandler<dim>::cell_iterator neighbor_child = cell->neighbor_child_on_subface(face_no,subface_no);
Assert (!neighbor_child->has_children(), ExcInternalError());
// ... and reinit the
// respective
// FEFaceValues und
// FESubFaceValues
// objects.
fe_v_subface.reinit (cell, face_no, subface_no);
fe_v_face_neighbor.reinit (neighbor_child, neighbor2);
// We obtain the function values
fe_v_subface.get_function_values(solution2, u);
fe_v_face_neighbor.get_function_values(solution2, u_neighbor);
// as well as the
// quadrature weights,
// multiplied by the
// jacobian determinant.
const std::vector<double> &JxW = fe_v_subface.get_JxW_values ();
// Now we loop over all
// quadrature points
for (unsigned int x=0; x<fe_v_subface.n_quadrature_points; ++x)
{
// and integrate
// the absolute
// value of the
// jump of the
// solution,
// i.e. the
// absolute value
// of the
// difference
// between the
// function value
// seen from the
// current cell and
// the neighboring
// cell,
// respectively. We
// know, that the
// first two faces
// are orthogonal
// to the first
// coordinate
// direction on the
// unit cell, the
// second two faces
// are orthogonal
// to the second
// coordinate
// direction and so
// on, so we
// accumulate these
// values ito
// vectors with
// <code>dim</code>
// components.
jump[face_no/2]+=std::fabs(u[x]-u_neighbor[x])*JxW[x];
// We also sum up
// the scaled
// weights to
// obtain the
// measure of the
// face.
area[face_no/2]+=JxW[x];
}
}
}
else
{
if (!cell->neighbor_is_coarser(face_no))
{
// Our current cell and
// the neighbor have
// the same refinement
// along the face under
// consideration. Apart
// from that, we do
// much the same as
// with one of the
// subcells in the
// above case.
unsigned int neighbor2=cell->neighbor_of_neighbor(face_no);
fe_v_face.reinit (cell, face_no);
fe_v_face_neighbor.reinit (neighbor, neighbor2);
fe_v_face.get_function_values(solution2, u);
fe_v_face_neighbor.get_function_values(solution2, u_neighbor);
const std::vector<double> &JxW = fe_v_face.get_JxW_values ();
for (unsigned int x=0; x<fe_v_face.n_quadrature_points; ++x)
{
jump[face_no/2]+=std::fabs(u[x]-u_neighbor[x])*JxW[x];
area[face_no/2]+=JxW[x];
}
}
else //i.e. neighbor is coarser than cell
{
// Now the neighbor is
// actually
// coarser. This case
// is new, in that it
// did not occur in the
// assembly
// routine. Here, we
// have to consider it,
// but this is not
// overly
// complicated. We
// simply use the @p
// neighbor_of_coarser_neighbor
// function, which
// again takes care of
// anisotropic
// refinement and
// non-standard face
// orientation by
// itself.
std::pair<unsigned int,unsigned int> neighbor_face_subface
= cell->neighbor_of_coarser_neighbor(face_no);
Assert (neighbor_face_subface.first<GeometryInfo<dim>::faces_per_cell, ExcInternalError());
Assert (neighbor_face_subface.second<neighbor->face(neighbor_face_subface.first)->number_of_children(),
ExcInternalError());
Assert (neighbor->neighbor_child_on_subface(neighbor_face_subface.first, neighbor_face_subface.second)
== cell, ExcInternalError());
fe_v_face.reinit (cell, face_no);
fe_v_subface.reinit (neighbor, neighbor_face_subface.first,
neighbor_face_subface.second);
fe_v_face.get_function_values(solution2, u);
fe_v_subface.get_function_values(solution2, u_neighbor);
const std::vector<double> &JxW = fe_v_face.get_JxW_values ();
for (unsigned int x=0; x<fe_v_face.n_quadrature_points; ++x)
{
jump[face_no/2]+=std::fabs(u[x]-u_neighbor[x])*JxW[x];
area[face_no/2]+=JxW[x];
}
}
}
}
}
// Now we analyze the size of the mean
// jumps, which we get dividing the
// jumps by the measure of the
// respective faces.
double average_jumps[dim];
double sum_of_average_jumps=0.;
for (unsigned int i=0; i<dim; ++i)
{
average_jumps[i] = jump(i)/area(i);
sum_of_average_jumps += average_jumps[i];
}
// Now we loop over the <code>dim</code>
// coordinate directions of the unit
// cell and compare the average jump
// over the faces orthogional to that
// direction with the average jumnps
// over faces orthogonal to the
// remining direction(s). If the first
// is larger than the latter by a given
// factor, we refine only along hat
// axis. Otherwise we leave the
// refinement flag unchanged, resulting
// in isotropic refinement.
for (unsigned int i=0; i<dim; ++i)
if (average_jumps[i] > anisotropic_threshold_ratio*(sum_of_average_jumps-average_jumps[i]))
cell->set_refine_flag(RefinementCase<dim>::cut_axis(i));
}
}
// @sect3{The Rest}
//
// The remaining part of the program is again
// unmodified. Only the creation of the
// original triangulation is changed in order
// to reproduce the new domain.
template <int dim>
void DGMethod<dim>::output_results (const unsigned int cycle) const
{
std::string refine_type;
if (anisotropic)
refine_type=".aniso";
else
refine_type=".iso";
std::string filename = "grid-";
filename += ('0' + cycle);
Assert (cycle < 10, ExcInternalError());
filename += refine_type + ".eps";
std::cout << "Writing grid to <" << filename << ">..." << std::endl;
std::ofstream eps_output (filename.c_str());
GridOut grid_out;
grid_out.write_eps (triangulation, eps_output);
filename = "grid-";
filename += ('0' + cycle);
Assert (cycle < 10, ExcInternalError());
filename += refine_type + ".gnuplot";
std::cout << "Writing grid to <" << filename << ">..." << std::endl;
std::ofstream gnuplot_grid_output (filename.c_str());
grid_out.write_gnuplot (triangulation, gnuplot_grid_output);
filename = "sol-";
filename += ('0' + cycle);
Assert (cycle < 10, ExcInternalError());
filename += refine_type + ".gnuplot";
std::cout << "Writing solution to <" << filename << ">..."
<< std::endl;
std::ofstream gnuplot_output (filename.c_str());
DataOut<dim> data_out;
data_out.attach_dof_handler (dof_handler);
data_out.add_data_vector (solution2, "u");
data_out.build_patches (degree);
data_out.write_gnuplot(gnuplot_output);
}
template <int dim>
void DGMethod<dim>::run ()
{
for (unsigned int cycle=0; cycle<6; ++cycle)
{
std::cout << "Cycle " << cycle << ':' << std::endl;
if (cycle == 0)
{
// Create the rectangular domain.
Point<dim> p1,p2;
p1(0)=0;
p1(0)=-1;
for (unsigned int i=0; i<dim; ++i)
p2(i)=1.;
// Adjust the number of cells in
// different directions to obtain
// completely isotropic cells for the
// original mesh.
std::vector<unsigned int> repetitions(dim,1);
repetitions[0]=2;
GridGenerator::subdivided_hyper_rectangle (triangulation,
repetitions,
p1,
p2);
triangulation.refine_global (5-dim);
}
else
refine_grid ();
std::cout << " Number of active cells: "
<< triangulation.n_active_cells()
<< std::endl;
setup_system ();
std::cout << " Number of degrees of freedom: "
<< dof_handler.n_dofs()
<< std::endl;
Timer assemble_timer;
assemble_system2 ();
std::cout << "Time of assemble_system2: "
<< assemble_timer()
<< std::endl;
solve (solution2);
output_results (cycle);
}
}
int main ()
{
try
{
// If you want to run the program in 3D,
// simply change the following line to
// <code>const unsigned int dim = 3;</code>.
const unsigned int dim = 2;
{
// First, we perform a run with
// isotropic refinement.
std::cout << "Performing a " << dim << "D run with isotropic refinement..." << std::endl
<< "------------------------------------------------" << std::endl;
DGMethod<dim> dgmethod_iso(false);
dgmethod_iso.run ();
}
{
// Now we do a second run, this time
// with anisotropic refinement.
std::cout << std::endl
<< "Performing a " << dim << "D run with anisotropic refinement..." << std::endl
<< "--------------------------------------------------" << std::endl;
DGMethod<dim> dgmethod_aniso(true);
dgmethod_aniso.run ();
}
}
catch (std::exception &exc)
{
std::cerr << std::endl << std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Exception on processing: " << std::endl
<< exc.what() << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
catch (...)
{
std::cerr << std::endl << std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Unknown exception!" << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
};
return 0;
}
|