/usr/share/doc/deal.ii-examples/step-6/step-6.cc is in deal.ii-examples 6.3.1-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 | /* $Id: step-6.cc 21235 2010-06-20 17:53:33Z kanschat $ */
/* Author: Wolfgang Bangerth, University of Heidelberg, 2000 */
/* $Id: step-6.cc 21235 2010-06-20 17:53:33Z kanschat $ */
/* */
/* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2010 by the deal.II authors */
/* */
/* This file is subject to QPL and may not be distributed */
/* without copyright and license information. Please refer */
/* to the file deal.II/doc/license.html for the text and */
/* further information on this license. */
// @sect3{Include files}
// The first few files have already
// been covered in previous examples
// and will thus not be further
// commented on.
#include <base/quadrature_lib.h>
#include <base/function.h>
#include <base/logstream.h>
#include <lac/vector.h>
#include <lac/full_matrix.h>
#include <lac/sparse_matrix.h>
#include <lac/compressed_sparsity_pattern.h>
#include <lac/solver_cg.h>
#include <lac/precondition.h>
#include <grid/tria.h>
#include <dofs/dof_handler.h>
#include <grid/grid_generator.h>
#include <grid/tria_accessor.h>
#include <grid/tria_iterator.h>
#include <grid/tria_boundary_lib.h>
#include <dofs/dof_accessor.h>
#include <dofs/dof_tools.h>
#include <fe/fe_values.h>
#include <numerics/vectors.h>
#include <numerics/matrices.h>
#include <numerics/data_out.h>
#include <fstream>
#include <iostream>
// From the following include file we
// will import the declaration of
// H1-conforming finite element shape
// functions. This family of finite
// elements is called <code>FE_Q</code>, and
// was used in all examples before
// already to define the usual bi- or
// tri-linear elements, but we will
// now use it for bi-quadratic
// elements:
#include <fe/fe_q.h>
// We will not read the grid from a
// file as in the previous example,
// but generate it using a function
// of the library. However, we will
// want to write out the locally
// refined grids (just the grid, not
// the solution) in each step, so we
// need the following include file
// instead of <code>grid_in.h</code>:
#include <grid/grid_out.h>
// When using locally refined grids,
// we will get so-called <code>hanging
// nodes</code>. However, the standard
// finite element methods assumes
// that the discrete solution spaces
// be continuous, so we need to make
// sure that the degrees of freedom
// on hanging nodes conform to some
// constraints such that the global
// solution is continuous. The
// following file contains a class
// which is used to handle these
// constraints:
#include <lac/constraint_matrix.h>
// In order to refine our grids
// locally, we need a function from
// the library that decides which
// cells to flag for refinement or
// coarsening based on the error
// indicators we have computed. This
// function is defined here:
#include <grid/grid_refinement.h>
// Finally, we need a simple way to
// actually compute the refinement
// indicators based on some error
// estimat. While in general,
// adaptivity is very
// problem-specific, the error
// indicator in the following file
// often yields quite nicely adapted
// grids for a wide class of
// problems.
#include <numerics/error_estimator.h>
// Finally, this is as in previous
// programs:
using namespace dealii;
// @sect3{The <code>LaplaceProblem</code> class template}
// The main class is again almost
// unchanged. Two additions, however,
// are made: we have added the
// <code>refine_grid</code> function, which is
// used to adaptively refine the grid
// (instead of the global refinement
// in the previous examples), and a
// variable which will hold the
// constraints associated to the
// hanging nodes. In addition, we
// have added a destructor to the
// class for reasons that will become
// clear when we discuss its
// implementation.
template <int dim>
class LaplaceProblem
{
public:
LaplaceProblem ();
~LaplaceProblem ();
void run ();
private:
void setup_system ();
void assemble_system ();
void solve ();
void refine_grid ();
void output_results (const unsigned int cycle) const;
Triangulation<dim> triangulation;
DoFHandler<dim> dof_handler;
FE_Q<dim> fe;
// This is the new variable in
// the main class. We need an
// object which holds a list of
// constraints originating from
// the hanging nodes:
ConstraintMatrix hanging_node_constraints;
SparsityPattern sparsity_pattern;
SparseMatrix<double> system_matrix;
Vector<double> solution;
Vector<double> system_rhs;
};
// @sect3{Nonconstant coefficients}
// The implementation of nonconstant
// coefficients is copied verbatim
// from step-5:
template <int dim>
class Coefficient : public Function<dim>
{
public:
Coefficient () : Function<dim>() {}
virtual double value (const Point<dim> &p,
const unsigned int component = 0) const;
virtual void value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component = 0) const;
};
template <int dim>
double Coefficient<dim>::value (const Point<dim> &p,
const unsigned int) const
{
if (p.square() < 0.5*0.5)
return 20;
else
return 1;
}
template <int dim>
void Coefficient<dim>::value_list (const std::vector<Point<dim> > &points,
std::vector<double> &values,
const unsigned int component) const
{
const unsigned int n_points = points.size();
Assert (values.size() == n_points,
ExcDimensionMismatch (values.size(), n_points));
Assert (component == 0,
ExcIndexRange (component, 0, 1));
for (unsigned int i=0; i<n_points; ++i)
{
if (points[i].square() < 0.5*0.5)
values[i] = 20;
else
values[i] = 1;
}
}
// @sect3{The <code>LaplaceProblem</code> class implementation}
// @sect4{LaplaceProblem::LaplaceProblem}
// The constructor of this class is
// mostly the same as before, but
// this time we want to use the
// quadratic element. To do so, we
// only have to replace the
// constructor argument (which was
// <code>1</code> in all previous examples) by
// the desired polynomial degree
// (here <code>2</code>):
template <int dim>
LaplaceProblem<dim>::LaplaceProblem ()
:
dof_handler (triangulation),
fe (2)
{}
// @sect4{LaplaceProblem::~LaplaceProblem}
// Here comes the added destructor of
// the class. The reason why we want
// to add it is a subtle change in
// the order of data elements in the
// class as compared to all previous
// examples: the <code>dof_handler</code>
// object was defined before and not
// after the <code>fe</code> object. Of course
// we could have left this order
// unchanged, but we would like to
// show what happens if the order is
// reversed since this produces a
// rather nasty side-effect and
// results in an error which is
// difficult to track down if one
// does not know what happens.
//
// Basically what happens is the
// following: when we distribute the
// degrees of freedom using the
// function call
// <code>dof_handler.distribute_dofs()</code>,
// the <code>dof_handler</code> also stores a
// pointer to the finite element in
// use. Since this pointer is used
// every now and then until either
// the degrees of freedom are
// re-distributed using another
// finite element object or until the
// <code>dof_handler</code> object is
// destroyed, it would be unwise if
// we would allow the finite element
// object to be deleted before the
// <code>dof_handler</code> object. To
// disallow this, the DoF handler
// increases a counter inside the
// finite element object which counts
// how many objects use that finite
// element (this is what the
// <code>Subscriptor</code>/<code>SmartPointer</code>
// class pair is used for, in case
// you want something like this for
// your own programs; see step-7 for
// a more complete discussion
// of this topic). The finite
// element object will refuse its
// destruction if that counter is
// larger than zero, since then some
// other objects might rely on the
// persistence of the finite element
// object. An exception will then be
// thrown and the program will
// usually abort upon the attempt to
// destroy the finite element.
//
// To be fair, such exceptions about
// still used objects are not
// particularly popular among
// programmers using deal.II, since
// they only tell us that something
// is wrong, namely that some other
// object is still using the object
// that is presently being
// destructed, but most of the time
// not who this user is. It is
// therefore often rather
// time-consuming to find out where
// the problem exactly is, although
// it is then usually straightforward
// to remedy the situation. However,
// we believe that the effort to find
// invalid references to objects that
// do no longer exist is less if the
// problem is detected once the
// reference becomes invalid, rather
// than when non-existent objects are
// actually accessed again, since
// then usually only invalid data is
// accessed, but no error is
// immediately raised.
//
// Coming back to the present
// situation, if we did not write
// this destructor, the compiler will
// generate code that triggers
// exactly the behavior sketched
// above. The reason is that member
// variables of the
// <code>LaplaceProblem</code> class are
// destructed bottom-up (i.e. in
// reverse order of their declaration
// in the class), as always in
// C++. Thus, the finite element
// object will be destructed before
// the DoF handler object, since its
// declaration is below the one of
// the DoF handler. This triggers the
// situation above, and an exception
// will be raised when the <code>fe</code>
// object is destructed. What needs
// to be done is to tell the
// <code>dof_handler</code> object to release
// its lock to the finite element. Of
// course, the <code>dof_handler</code> will
// only release its lock if it really
// does not need the finite element
// any more, i.e. when all finite
// element related data is deleted
// from it. For this purpose, the
// <code>DoFHandler</code> class has a
// function <code>clear</code> which deletes
// all degrees of freedom, and
// releases its lock to the finite
// element. After this, you can
// safely destruct the finite element
// object since its internal counter
// is then zero.
//
// For completeness, we add the
// output of the exception that would
// have been triggered without this
// destructor, to the end of the
// results section of this example.
template <int dim>
LaplaceProblem<dim>::~LaplaceProblem ()
{
dof_handler.clear ();
}
// @sect4{LaplaceProblem::setup_system}
// The next function is setting up
// all the variables that describe
// the linear finite element problem,
// such as the DoF handler, the
// matrices, and vectors. The
// difference to what we did in
// step-5 is only that we now also
// have to take care of handing node
// constraints. These constraints are
// handled almost transparently by
// the library, i.e. you only need to
// know that they exist and how to
// get them, but you do not have to
// know how they are formed or what
// exactly is done with them.
//
// At the beginning of the function,
// you find all the things that are
// the same as in step-5: setting up
// the degrees of freedom (this time
// we have quadratic elements, but
// there is no difference from a user
// code perspective to the linear --
// or cubic, for that matter --
// case), generating the sparsity
// pattern, and initializing the
// solution and right hand side
// vectors. Note that the sparsity
// pattern will have significantly
// more entries per row now, since
// there are now 9 degrees of freedom
// per cell, not only four, that can
// couple with each other. The
// <code>dof_Handler.max_couplings_between_dofs()</code>
// call will take care of this,
// however:
template <int dim>
void LaplaceProblem<dim>::setup_system ()
{
dof_handler.distribute_dofs (fe);
solution.reinit (dof_handler.n_dofs());
system_rhs.reinit (dof_handler.n_dofs());
// After setting up all the degrees
// of freedoms, here are now the
// differences compared to step-5,
// all of which are related to
// constraints associated with the
// hanging nodes. In the class
// desclaration, we have already
// allocated space for an object
// <code>hanging_node_constraints</code>
// that will hold a list of these
// constraints (they form a matrix,
// which is reflected in the name
// of the class, but that is
// immaterial for the moment). Now
// we have to fill this
// object. This is done using the
// following function calls (the
// first clears the contents of the
// object that may still be left
// over from computations on the
// previous mesh before the last
// adaptive refinement):
hanging_node_constraints.clear ();
DoFTools::make_hanging_node_constraints (dof_handler,
hanging_node_constraints);
// The next step is <code>closing</code>
// this object. For this note that,
// in principle, the
// <code>ConstraintMatrix</code> class can
// hold other constraints as well,
// i.e. constraints that do not
// stem from hanging
// nodes. Sometimes, it is useful
// to use such constraints, in
// which case they may be added to
// the <code>ConstraintMatrix</code> object
// after the hanging node
// constraints were computed. After
// all constraints have been added,
// they need to be sorted and
// rearranged to perform some
// actions more efficiently. This
// postprocessing is done using the
// <code>close()</code> function, after which
// no further constraints may be
// added any more:
hanging_node_constraints.close ();
// Now we first build our
// compressed sparsity pattern like
// we did in the previous
// examples. Nevertheless, we do
// not copy it to the final
// sparsity pattern immediately.
CompressedSparsityPattern c_sparsity(dof_handler.n_dofs());
DoFTools::make_sparsity_pattern (dof_handler, c_sparsity);
// The constrained hanging nodes
// will later be eliminated from
// the linear system of
// equations. When doing so, some
// additional entries in the global
// matrix will be set to non-zero
// values, so we have to reserve
// some space for them here. Since
// the process of elimination of
// these constrained nodes is
// called <code>condensation</code>, the
// functions that eliminate them
// are called <code>condense</code> for both
// the system matrix and right hand
// side, as well as for the
// sparsity pattern.
hanging_node_constraints.condense (c_sparsity);
// Now all non-zero entries of the
// matrix are known (i.e. those
// from regularly assembling the
// matrix and those that were
// introduced by eliminating
// constraints). We can thus copy
// our intermediate object to
// the sparsity pattern:
sparsity_pattern.copy_from(c_sparsity);
// Finally, the so-constructed
// sparsity pattern serves as the
// basis on top of which we will
// create the sparse matrix:
system_matrix.reinit (sparsity_pattern);
}
// @sect4{LaplaceProblem::assemble_system}
// Next, we have to assemble the
// matrix again. There are no code
// changes compared to step-5 except
// for a single place: We have to use
// a higher-order quadrature formula
// to account for the higher
// polynomial degree in the finite
// element shape functions. This is
// easy to change: the constructor of
// the <code>QGauss</code> class takes the
// number of quadrature points in
// each space direction. Previously,
// we had two points for bilinear
// elements. Now we should use three
// points for biquadratic elements.
//
// The rest of the code that forms
// the local contributions and
// transfers them into the global
// objects remains unchanged. It is
// worth noting, however, that under
// the hood several things are
// different than before. First, the
// variables <code>dofs_per_cell</code> and
// <code>n_q_points</code> now are 9 each,
// where they were 4
// before. Introducing such variables
// as abbreviations is a good
// strategy to make code work with
// different elements without having
// to change too much code. Secondly,
// the <code>fe_values</code> object of course
// needs to do other things as well,
// since the shape functions are now
// quadratic, rather than linear, in
// each coordinate variable. Again,
// however, this is something that is
// completely transparent to user
// code and nothing that you have to
// worry about.
template <int dim>
void LaplaceProblem<dim>::assemble_system ()
{
const QGauss<dim> quadrature_formula(3);
FEValues<dim> fe_values (fe, quadrature_formula,
update_values | update_gradients |
update_quadrature_points | update_JxW_values);
const unsigned int dofs_per_cell = fe.dofs_per_cell;
const unsigned int n_q_points = quadrature_formula.size();
FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);
Vector<double> cell_rhs (dofs_per_cell);
std::vector<unsigned int> local_dof_indices (dofs_per_cell);
const Coefficient<dim> coefficient;
std::vector<double> coefficient_values (n_q_points);
typename DoFHandler<dim>::active_cell_iterator
cell = dof_handler.begin_active(),
endc = dof_handler.end();
for (; cell!=endc; ++cell)
{
cell_matrix = 0;
cell_rhs = 0;
fe_values.reinit (cell);
coefficient.value_list (fe_values.get_quadrature_points(),
coefficient_values);
for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
for (unsigned int i=0; i<dofs_per_cell; ++i)
{
for (unsigned int j=0; j<dofs_per_cell; ++j)
cell_matrix(i,j) += (coefficient_values[q_point] *
fe_values.shape_grad(i,q_point) *
fe_values.shape_grad(j,q_point) *
fe_values.JxW(q_point));
cell_rhs(i) += (fe_values.shape_value(i,q_point) *
1.0 *
fe_values.JxW(q_point));
}
cell->get_dof_indices (local_dof_indices);
for (unsigned int i=0; i<dofs_per_cell; ++i)
{
for (unsigned int j=0; j<dofs_per_cell; ++j)
system_matrix.add (local_dof_indices[i],
local_dof_indices[j],
cell_matrix(i,j));
system_rhs(local_dof_indices[i]) += cell_rhs(i);
}
}
// After the system of equations
// has been assembled just as for
// the previous examples, we still
// have to eliminate the
// constraints due to hanging
// nodes. This is done using the
// following two function calls:
hanging_node_constraints.condense (system_matrix);
hanging_node_constraints.condense (system_rhs);
// Using them, degrees of freedom
// associated to hanging nodes have
// been removed from the linear
// system and the independent
// variables are only the regular
// nodes. The constrained nodes are
// still in the linear system
// (there is a one on the diagonal
// of the matrix and all other
// entries for this line are set to
// zero) but the computed values
// are invalid (the <code>condense</code>
// function modifies the system so
// that the values in the solution
// corresponding to constrained
// nodes are invalid, but that the
// system still has a well-defined
// solution; we compute the correct
// values for these nodes at the
// end of the <code>solve</code> function).
// As almost all the stuff before,
// the interpolation of boundary
// values works also for higher
// order elements without the need
// to change your code for that. We
// note that for proper results, it
// is important that the
// elimination of boundary nodes
// from the system of equations
// happens *after* the elimination
// of hanging nodes.
std::map<unsigned int,double> boundary_values;
VectorTools::interpolate_boundary_values (dof_handler,
0,
ZeroFunction<dim>(),
boundary_values);
MatrixTools::apply_boundary_values (boundary_values,
system_matrix,
solution,
system_rhs);
}
// @sect4{LaplaceProblem::solve}
// We continue with gradual
// improvements. The function that
// solves the linear system again
// uses the SSOR preconditioner, and
// is again unchanged except that we
// have to incorporate hanging node
// constraints. As mentioned above,
// the degrees of freedom
// corresponding to hanging node
// constraints have been removed from
// the linear system by giving the
// rows and columns of the matrix a
// special treatment. This way, the
// values for these degrees of
// freedom have wrong, but
// well-defined values after solving
// the linear system. What we then
// have to do is to use the
// constraints to assign to them the
// values that they should have. This
// process, called <code>distributing</code>
// hanging nodes, computes the values
// of constrained nodes from the
// values of the unconstrained ones,
// and requires only a single
// additional function call that you
// find at the end of this function:
template <int dim>
void LaplaceProblem<dim>::solve ()
{
SolverControl solver_control (1000, 1e-12);
SolverCG<> cg (solver_control);
PreconditionSSOR<> preconditioner;
preconditioner.initialize(system_matrix, 1.2);
cg.solve (system_matrix, solution, system_rhs,
preconditioner);
hanging_node_constraints.distribute (solution);
}
// @sect4{LaplaceProblem::refine_grid}
// Instead of global refinement, we
// now use a slightly more elaborate
// scheme. We will use the
// <code>KellyErrorEstimator</code> class
// which implements an error
// estimator for the Laplace
// equation; it can in principle
// handle variable coefficients, but
// we will not use these advanced
// features, but rather use its most
// simple form since we are not
// interested in quantitative results
// but only in a quick way to
// generate locally refined grids.
//
// Although the error estimator
// derived by Kelly et al. was
// originally developed for the Laplace
// equation, we have found that it is
// also well suited to quickly
// generate locally refined grids for
// a wide class of
// problems. Basically, it looks at
// the jumps of the gradients of the
// solution over the faces of cells
// (which is a measure for the second
// derivatives) and scales it by the
// size of the cell. It is therefore
// a measure for the local smoothness
// of the solution at the place of
// each cell and it is thus
// understandable that it yields
// reasonable grids also for
// hyperbolic transport problems or
// the wave equation as well,
// although these grids are certainly
// suboptimal compared to approaches
// specially tailored to the
// problem. This error estimator may
// therefore be understood as a quick
// way to test an adaptive program.
//
// The way the estimator works is to
// take a <code>DoFHandler</code> object
// describing the degrees of freedom
// and a vector of values for each
// degree of freedom as input and
// compute a single indicator value
// for each active cell of the
// triangulation (i.e. one value for
// each of the
// <code>triangulation.n_active_cells()</code>
// cells). To do so, it needs two
// additional pieces of information:
// a quadrature formula on the faces
// (i.e. quadrature formula on
// <code>dim-1</code> dimensional objects. We
// use a 3-point Gauss rule again, a
// pick that is consistent and
// appropriate with the choice
// bi-quadratic finite element shape
// functions in this program.
// (What constitutes a suitable
// quadrature rule here of course
// depends on knowledge of the way
// the error estimator evaluates
// the solution field. As said
// above, the jump of the gradient
// is integrated over each face,
// which would be a quadratic
// function on each face for the
// quadratic elements in use in
// this example. In fact, however,
// it is the square of the jump of
// the gradient, as explained in
// the documentation of that class,
// and that is a quartic function,
// for which a 3 point Gauss
// formula is sufficient since it
// integrates polynomials up to
// order 5 exactly.)
//
// Secondly, the function wants a
// list of boundaries where we have
// imposed Neumann value, and the
// corresponding Neumann values. This
// information is represented by an
// object of type
// <code>FunctionMap@<dim@>::type</code> that is
// essentially a map from boundary
// indicators to function objects
// describing Neumann boundary values
// (in the present example program,
// we do not use Neumann boundary
// values, so this map is empty, and
// in fact constructed using the
// default constructor of the map in
// the place where the function call
// expects the respective function
// argument).
//
// The output, as mentioned is a
// vector of values for all
// cells. While it may make sense to
// compute the *value* of a degree of
// freedom very accurately, it is
// usually not helpful to compute the
// *error indicator* corresponding to
// a cell particularly accurately. We
// therefore typically use a vector
// of floats instead of a vector of
// doubles to represent error
// indicators.
template <int dim>
void LaplaceProblem<dim>::refine_grid ()
{
Vector<float> estimated_error_per_cell (triangulation.n_active_cells());
KellyErrorEstimator<dim>::estimate (dof_handler,
QGauss<dim-1>(3),
typename FunctionMap<dim>::type(),
solution,
estimated_error_per_cell);
// The above function returned one
// error indicator value for each
// cell in the
// <code>estimated_error_per_cell</code>
// array. Refinement is now done as
// follows: refine those 30 per
// cent of the cells with the
// highest error values, and
// coarsen the 3 per cent of cells
// with the lowest values.
//
// One can easily verify that if
// the second number were zero,
// this would approximately result
// in a doubling of cells in each
// step in two space dimensions,
// since for each of the 30 per
// cent of cells, four new would be
// replaced, while the remaining 70
// per cent of cells remain
// untouched. In practice, some
// more cells are usually produced
// since it is disallowed that a
// cell is refined twice while the
// neighbor cell is not refined; in
// that case, the neighbor cell
// would be refined as well.
//
// In many applications, the number
// of cells to be coarsened would
// be set to something larger than
// only three per cent. A non-zero
// value is useful especially if
// for some reason the initial
// (coarse) grid is already rather
// refined. In that case, it might
// be necessary to refine it in
// some regions, while coarsening
// in some other regions is
// useful. In our case here, the
// initial grid is very coarse, so
// coarsening is only necessary in
// a few regions where
// over-refinement may have taken
// place. Thus a small, non-zero
// value is appropriate here.
//
// The following function now takes
// these refinement indicators and
// flags some cells of the
// triangulation for refinement or
// coarsening using the method
// described above. It is from a
// class that implements
// several different algorithms to
// refine a triangulation based on
// cell-wise error indicators.
GridRefinement::refine_and_coarsen_fixed_number (triangulation,
estimated_error_per_cell,
0.3, 0.03);
// After the previous function has
// exited, some cells are flagged
// for refinement, and some other
// for coarsening. The refinement
// or coarsening itself is not
// performed by now, however, since
// there are cases where further
// modifications of these flags is
// useful. Here, we don't want to
// do any such thing, so we can
// tell the triangulation to
// perform the actions for which
// the cells are flagged:
triangulation.execute_coarsening_and_refinement ();
}
// @sect4{LaplaceProblem::output_results}
// At the end of computations on each
// grid, and just before we continue
// the next cycle with mesh
// refinement, we want to output the
// results from this cycle.
//
// In the present program, we will
// not write the solution (except for
// in the last step, see the next
// function), but only the meshes
// that we generated, as a
// two-dimensional Encapsulated
// Postscript (EPS) file.
//
// We have already seen in step-1 how
// this can be achieved. The only
// thing we have to change is the
// generation of the file name, since
// it should contain the number of
// the present refinement cycle
// provided to this function as an
// argument. The most general way is
// to use the std::stringstream class
// as shown in step-5, but here's a
// little hack that makes it simpler
// if we know that we have less than
// 10 iterations: assume that the
// numbers `0' through `9' are
// represented consecutively in the
// character set used on your machine
// (this is in fact the case in all
// known character sets), then
// '0'+cycle gives the character
// corresponding to the present cycle
// number. Of course, this will only
// work if the number of cycles is
// actually less than 10, and rather
// than waiting for the disaster to
// happen, we safeguard our little
// hack with an explicit assertion at
// the beginning of the function. If
// this assertion is triggered,
// i.e. when <code>cycle</code> is larger than
// or equal to 10, an exception of
// type <code>ExcNotImplemented</code> is
// raised, indicating that some
// functionality is not implemented
// for this case (the functionality
// that is missing, of course, is the
// generation of file names for that
// case):
template <int dim>
void LaplaceProblem<dim>::output_results (const unsigned int cycle) const
{
Assert (cycle < 10, ExcNotImplemented());
std::string filename = "grid-";
filename += ('0' + cycle);
filename += ".eps";
std::ofstream output (filename.c_str());
GridOut grid_out;
grid_out.write_eps (triangulation, output);
}
// @sect4{LaplaceProblem::run}
// The final function before
// <code>main()</code> is again the main
// driver of the class, <code>run()</code>. It
// is similar to the one of step-5,
// except that we generate a file in
// the program again instead of
// reading it from disk, in that we
// adaptively instead of globally
// refine the mesh, and that we
// output the solution on the final
// mesh in the present function.
//
// The first block in the main loop
// of the function deals with mesh
// generation. If this is the first
// cycle of the program, instead of
// reading the grid from a file on
// disk as in the previous example,
// we now again create it using a
// library function. The domain is
// again a circle, which is why we
// have to provide a suitable
// boundary object as well. We place
// the center of the circle at the
// origin and have the radius be one
// (these are the two hidden
// arguments to the function, which
// have default values).
//
// You will notice by looking at the
// coarse grid that it is of inferior
// quality than the one which we read
// from the file in the previous
// example: the cells are less
// equally formed. However, using the
// library function this program
// works in any space dimension,
// which was not the case before.
//
// In case we find that this is not
// the first cycle, we want to refine
// the grid. Unlike the global
// refinement employed in the last
// example program, we now use the
// adaptive procedure described
// above.
//
// The rest of the loop looks as
// before:
template <int dim>
void LaplaceProblem<dim>::run ()
{
for (unsigned int cycle=0; cycle<8; ++cycle)
{
std::cout << "Cycle " << cycle << ':' << std::endl;
if (cycle == 0)
{
GridGenerator::hyper_ball (triangulation);
static const HyperBallBoundary<dim> boundary;
triangulation.set_boundary (0, boundary);
triangulation.refine_global (1);
}
else
refine_grid ();
std::cout << " Number of active cells: "
<< triangulation.n_active_cells()
<< std::endl;
setup_system ();
std::cout << " Number of degrees of freedom: "
<< dof_handler.n_dofs()
<< std::endl;
assemble_system ();
solve ();
output_results (cycle);
}
// After we have finished computing
// the solution on the finesh mesh,
// and writing all the grids to
// disk, we want to also write the
// actual solution on this final
// mesh to a file. As already done
// in one of the previous examples,
// we use the EPS format for
// output, and to obtain a
// reasonable view on the solution,
// we rescale the z-axis by a
// factor of four.
DataOutBase::EpsFlags eps_flags;
eps_flags.z_scaling = 4;
DataOut<dim> data_out;
data_out.set_flags (eps_flags);
data_out.attach_dof_handler (dof_handler);
data_out.add_data_vector (solution, "solution");
data_out.build_patches ();
std::ofstream output ("final-solution.eps");
data_out.write_eps (output);
}
// @sect3{The <code>main</code> function}
// The main function is unaltered in
// its functionality from the
// previous example, but we have
// taken a step of additional
// caution. Sometimes, something goes
// wrong (such as insufficient disk
// space upon writing an output file,
// not enough memory when trying to
// allocate a vector or a matrix, or
// if we can't read from or write to
// a file for whatever reason), and
// in these cases the library will
// throw exceptions. Since these are
// run-time problems, not programming
// errors that can be fixed once and
// for all, this kind of exceptions
// is not switched off in optimized
// mode, in contrast to the
// <code>Assert</code> macro which we have
// used to test against programming
// errors. If uncaught, these
// exceptions propagate the call tree
// up to the <code>main</code> function, and
// if they are not caught there
// either, the program is aborted. In
// many cases, like if there is not
// enough memory or disk space, we
// can't do anything but we can at
// least print some text trying to
// explain the reason why the program
// failed. A way to do so is shown in
// the following. It is certainly
// useful to write any larger program
// in this way, and you can do so by
// more or less copying this function
// except for the <code>try</code> block that
// actually encodes the functionality
// particular to the present
// application.
int main ()
{
// The general idea behind the
// layout of this function is as
// follows: let's try to run the
// program as we did before...
try
{
deallog.depth_console (0);
LaplaceProblem<2> laplace_problem_2d;
laplace_problem_2d.run ();
}
// ...and if this should fail, try
// to gather as much information as
// possible. Specifically, if the
// exception that was thrown is an
// object of a class that is
// derived from the C++ standard
// class <code>exception</code>, then we can
// use the <code>what</code> member function
// to get a string which describes
// the reason why the exception was
// thrown.
//
// The deal.II exception classes
// are all derived from the
// standard class, and in
// particular, the <code>exc.what()</code>
// function will return
// approximately the same string as
// would be generated if the
// exception was thrown using the
// <code>Assert</code> macro. You have seen
// the output of such an exception
// in the previous example, and you
// then know that it contains the
// file and line number of where
// the exception occured, and some
// other information. This is also
// what the following statements
// would print.
//
// Apart from this, there isn't
// much that we can do except
// exiting the program with an
// error code (this is what the
// <code>return 1;</code> does):
catch (std::exception &exc)
{
std::cerr << std::endl << std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Exception on processing: " << std::endl
<< exc.what() << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
// If the exception that was thrown
// somewhere was not an object of a
// class derived from the standard
// <code>exception</code> class, then we
// can't do anything at all. We
// then simply print an error
// message and exit.
catch (...)
{
std::cerr << std::endl << std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Unknown exception!" << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
// If we got to this point, there
// was no exception which
// propagated up to the main
// function (there may have been
// exceptions, but they were caught
// somewhere in the program or the
// library). Therefore, the program
// performed as was expected and we
// can return without error.
return 0;
}
|