This file is indexed.

/usr/share/gap/pkg/ctbllib/doc/ctbllibr.tex is in gap-character-tables 1r1p3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
% This file was created automatically from ctbllibr.msk.
% DO NOT EDIT!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%W  ctbllibr.msk          GAP 4 package `ctbllib'               Thomas Breuer
%%
%H  @(#)$Id: ctbllibr.msk,v 1.16 2004/03/23 10:11:17 gap Exp $
%%
%Y  Copyright (C) 2001,  Lehrstuhl D fuer Mathematik,   RWTH Aachen,  Germany
%%
\Chapter{The GAP Character Table Library}

\index{character tables!library of}%
\index{tables!library of}%
\index{library tables}%
\index{generic character tables}

This chapter informs you about
\beginlist
\item{--}
    the currently available character tables
    (see~"Contents of the GAP Character Table Library"),
\item{--}
    how to access library tables (see~"Access to Library Character Tables"),
\item{--}
    generic character tables
    (see~"Generic Character Tables"
    and "Examples of Generic Character Tables"),
\item{--}
    the subsets of {\ATLAS} tables
    (see~"ATLAS Tables" and "Examples of the ATLAS Format for GAP Tables")
    and {\sf CAS} tables (see~"CAS Tables"),
\item{--}
    the organization of the table library
    (see~"Organization of the Character Table Library"), and
\item{--}
    how to extend the library
    (see~"How to Extend the Character Table Library").
\endlist
The latter two sections are rather technical,
they are thought only for those who want to maintain or extend the table
library.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Contents of the GAP Character Table Library}

\index{character tables!library of}%
\index{tables!library of}\index{library of character tables}

This section gives a brief overview of the contents of the {\GAP}
character table library.
For the details about, e.g., the structure of data files,
see~"Organization of the Character Table Library".

The changes in the character table library since the first release of
{\GAP}~4 are listed in a file that can be fetched from
\URL{http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/ctbldiff.html}

There are three different kinds of character tables in the {\GAP} library,
namely *ordinary character tables*, *Brauer tables*,
and *generic character tables*.
Note that the Brauer table and the corresponding ordinary table of a group
determine the *decomposition matrix* of the group
(and the decomposition matrices of its blocks).
These decomposition matrices can be computed from the ordinary and modular
irreducibles with {\GAP}
(see~"ref:Operations Concerning Blocks" in the {\GAP} Reference Manual
for details).
A collection of DVI and PostScript files of the known decomposition matrices
of almost simple groups in the {\GAP} table library can also be found
at~\URL{http://www.math.rwth-aachen.de/~MOC/decomposition/}


*Ordinary Character Tables*

Two different aspects are useful to list the ordinary character tables
available in {\GAP}, namely the aspect of the *source* of the tables
and that of *connections* between the tables.

As for the source, there are first of all two big sources,
namely the {\ATLAS} of Finite Groups (see~"ATLAS Tables")
and the {\sf CAS} library of character tables (see~\cite{NPP84}).
Many {\ATLAS} tables are contained in the {\sf CAS} library,
and difficulties may arise because the succession of characters and classes
in {\sf CAS} tables and {\ATLAS} tables are in general different,
so see~"CAS Tables" for the relations between these two variants of
character tables of the same group.
A large subset of the {\sf CAS} tables is the set of tables of Sylow
normalizers of sporadic simple groups as published in~\cite{Ost86}
--this may be viewed as another source of character tables.
The library also contains the character tables of factor groups of space
groups (computed by W.~Hanrath, see~\cite{Han88})
that are part of~\cite{HP89} via two microfiches;
these tables are given in {\sf CAS} format (see~"CAS Tables") on the
microfiches,
but they had not been part of the ``official'' {\sf CAS} library.

To avoid confusion about the ordering of classes and characters in a given
table, authorship and so on,
the `InfoText' (see~"ref:InfoText" in the {\GAP} Reference Manual)
value of the table contains the information
\beginitems
`origin: ATLAS of finite groups' &
    for {\ATLAS} tables (see~"ATLAS Tables"),

`origin: Ostermann' &
    for tables contained in~\cite{Ost86},

`origin: CAS library' &
    for any table of the {\sf CAS} table library that is contained
    neither in the {\ATLAS} nor in~\cite{Ost86}, and

`origin: Hanrath library' &
    for tables contained in the microfiches in~\cite{HP89}.
\enditems
The `InfoText' value usually contains more detailed information,
for example that the table in question is the character table of a maximal
subgroup of an almost simple group.
If the table was contained in the {\sf CAS} library then additional
information may be available via the `CASInfo' value (see~"CASInfo").

If one is interested in the aspect of connections between the tables,
i.e., the internal structure of the library of ordinary tables,
the contents can be listed up the following way.

We have
\beginlist
\item{-}
    all {\ATLAS} tables (see~"ATLAS Tables"), i.e., the tables of the
    simple groups which are contained in the {\ATLAS} of Finite Groups,
    and the tables of cyclic and bicyclic extensions of these groups,
\item{-}
    most tables of maximal subgroups of sporadic simple groups
    (*not all* for $B$ and $M$),
\item{-}
    some tables of maximal subgroups of other {\ATLAS} tables,
    where the list of maximal subgroups is complete if the `Maxes' value
    for the table is known (see~"Maxes"),
\item{-}
    the tables of most Sylow normalizers of sporadic simple groups,
    as printed in~\cite{Ost86}
    (*not* $J_4N2$, $Co_1N2$, $Fi_{22}N2$,
    and several for $HN$, $Fi_{23}$, $Fi_{24}^{\prime}$, $B$, $M$)
\item{-}
    some tables of element centralizers
\item{-}
    some tables of Sylow subgroups
\item{-}
    a few other tables, e.g.~`W(F4)'
%T namely which?
\endlist

*Note* that class fusions stored on library tables are not guaranteed
to be compatible for any two subgroups of a group and their intersection,
and they are not guaranteed to be consistent w.r.t.~the composition of maps.


*Brauer Tables*

The library contains all tables of the {\ATLAS} of Brauer Tables
(\cite{JLPW95}), and many other Brauer tables of bicyclic extensions of
simple groups which are known yet.

The Brauer tables in the library contain the information
\begintt
origin: modular ATLAS of finite groups
\endtt
in their `InfoText' string
(see~"ref:InfoText" in the {\GAP} Reference Manual).


*Generic Character Tables*

See~"Generic Character Tables" for an overview of generic tables available.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Access to Library Character Tables}

\index{character tables!access to}

This section describes how to access
a specific character table (see~"CharacterTableFromLibrary"),
known character tables of maximal subgroups (see~"Maxes"),
and how to select character tables with prescribed properties
(see~"AllCharacterTableNames", "OneCharacterTableName").

\>CharacterTableFromLibrary( <tblname> ) F
\>CharacterTableFromLibrary( <series>, <param1>[, <param2>] ) F

If the only argument is a string <tblname> and if this is an admissible
name (see below) of a library character table then
`CharacterTableFromLibrary' returns this library table, otherwise `fail'.

If `CharacterTableFromLibrary' is called with more than one argument
then the first must be a string <series> specifying a series of groups
which is implemented via a generic character table,
for example `\"Symmetric\"' for symmetric groups;
the remaining arguments specialise then the desired member of the series
(see~"Generic Character Tables" for a list of available generic tables).
If no generic table with name <series> is available or if the parameters
are not admissible then `CharacterTableFromLibrary' returns `fail'.

A call of `CharacterTableFromLibrary' may cause to read some library
files and to construct the table object from the data stored in these
files,
so fetching a library table may take more time than on expects.

`CharacterTableFromLibrary' is called by `CharacterTable' if the first
argument is a string, so one may also call `CharacterTable'.

Admissible names for the *ordinary character table* $t$ of the group $G$
are
\beginlist
\item{-}
    an {\ATLAS} like name if $t$ is an {\ATLAS} table
    (see~"ATLAS Tables"), for example
    `\"M22\"' for the table of the Mathieu group $M_{22}$,
    `\"L2(13).2\"' for $L_2(13):2$, and
    `\"12_1.U4(3).2_1\"' for $12_1\.U_4(3)\.2_1$,

    (The difference to the name printed in the {\ATLAS} is that
    subscripts and superscripts are omitted except if they are used to
    qualify integer values,
    and double dots are replaced by a single dot.)
\item{-}
    the names that were admissible for tables of $G$ in {\sf CAS}
    if the {\sf CAS} table library contained a table of $G$,
    for example `sl42' for the table of the alternating group $A_8$,

    (But note that the {\GAP} table may be different from that in
    {\sf CAS}, see~"CAS Tables".)
\item{-}
    some ``relative'' names, as follows.

    If $G$ is the <n>--th maximal subgroup (in decreasing group order)
    of a group whose library table $s$ is available in {\GAP} and stores
    the `Maxes' value (see~"Maxes"),
    and if <name> is an admissible name for $s$
    then `<name>M<n>' is admissible for $t$.
    For example, the name `\"J3M2\"' can be used to access the second
    maximal subgroup of the sporadic simple Janko group $J_3$
    which has the admissible name `J3'.

    If $G$ is a nontrivial Sylow $p$ normalizer in a sporadic simple
    group with admissible name <name>,
    --where nontrivial means that $G$ is not isomorphic to a subgroup of
    $p:(p-1)$--
    then `<name>N<p>' is an admissible name of $t$.
    For example, the name `\"J4N11\"' can be used to access the table of
    the Sylow $11$ normalizer in the sporadic simple Janko group $J_4$.

    In a few cases, the table of the Sylow $p$ subgroup of $G$ is
    accessible via the name `<name>Syl<p>' where <name> is an admissible
    name of the table of $G$.
    For example, `\"A11Syl2\"' is an admissible name for the table of the
    Sylow $2$ subgroup of the alternating group $A_{11}$.

    In a few cases, the table of an element centralizer in $G$ is
    accessible via the name `<name>C<cl>'
    where <name> is an admissible name of the table of $G$.
    For example, `\"M11C2\"' is an admissible name for the table of an
    involution centralizer in the Mathieu group $M_{11}$.
\endlist

The recommended way to access *Brauer tables* from the library is via the
`mod' operator from the ordinary table and the desired characteristic
(see~"ref:BrauerTable" and "ref:Operators for Character Tables"
in the {\GAP} Reference Manual),
so it is not necessary to define admissible names of Brauer tables.

A *generic character table* (see~"Generic Character Tables") is
accessible only by the name given by its `Identifier' value
(see~"ref:Identifier!for character tables"
in the {\GAP} Reference Manual).

Case is not significant for character table names.
For example, both `\"suzm3\"' and `\"SuzM3\"' are admissible names for
the third maximal subgroup of the sporadic simple Suzuki group.


\beginexample
gap> s5:= CharacterTable( "A5.2" );
CharacterTable( "A5.2" )
gap> sym5:= CharacterTable( "Symmetric", 5 );
CharacterTable( "Sym(5)" )
gap> TransformingPermutationsCharacterTables( s5, sym5 );
rec( columns := (2,3,4,7,5), rows := (1,7,3,4,6,5,2), group := Group(()) )
\endexample
The above two tables are tables of the symmetric group on five letters;
the first is in {\ATLAS} format (see~"ATLAS Tables"),
the second is constructed from the generic table for symmetric groups
(see~"Generic Character Tables").
\beginexample
gap> CharacterTable( "J5" );
fail
gap> CharacterTable( "A5" ) mod 2;
BrauerTable( "A5", 2 )
\endexample

\>Maxes( <tbl> ) A

is a list of identifiers of the tables of all maximal subgroups of <tbl>.
This is meaningful only for library tables,
and there is no default method to compute the value.

If the `Maxes' value of <tbl> is stored then it lists exactly one
representative for each conjugacy class of maximal subgroups of the group
of <tbl>,
and the tables of these maximal subgroups are available in the {\GAP}
table library, and the fusions to <tbl> are stored on these tables.


\beginexample
gap> tbl:= CharacterTable( "M11" );;
gap> HasMaxes( tbl );
true
gap> maxes:= Maxes( tbl );
[ "A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4" ]
gap> CharacterTable( maxes[1] );
CharacterTable( "A6.2_3" )
\endexample

\>FusionToTom( <tbl> ) A

If this attribute is set for an ordinary character table <tbl> then
the {\GAP} Library of Tables of Marks contains the table of marks of the
group of <tbl>, and the attribute value is a record with the following
components.
\beginitems
`name' &
    the `Identifier' component of the table of marks of <tbl>,

`map' &
    the fusion map, and

`text' (optional) &
    a string describing the status of the fusion.
\enditems


\beginexample
gap> FusionToTom( CharacterTable( "A5" ) );
rec( name := "A5", map := [ 1, 2, 3, 5, 5 ], text := "fusion map is unique" )
\endexample

\>ProjectivesInfo( <tbl> ) A

If this attribute is set for an ordinary character table <tbl> then
the value is a list of records, each with the following components.
\beginitems
`name' &
    the `Identifier' value of the character table <mult> of the covering
    whose faithful irreducible characters are described by the record,

`chars' &
    a list of values lists of faithful projective irreducibles;
    only one representative of each family of Galois conjugates is
    contained in this list,
    and

`map' &
    a list of positions that maps each class of <tbl> to that preimage in
    <mult> for which the entries in `chars' give the values.
    In a sense, a projection map is an inverse of the factor fusion from
    the table of the covering to the given table
    (see~"ref:ProjectionMap" in the {\GAP} Reference Manual).
\enditems


\beginexample
gap> ProjectivesInfo( CharacterTable( "A5" ) );
[ rec( name := "2.A5", 
      chars := [ [ 2, 0, -1, E(5)+E(5)^4, E(5)^2+E(5)^3 ], [ 2, 0, -1, 
              E(5)^2+E(5)^3, E(5)+E(5)^4 ], [ 4, 0, 1, -1, -1 ], 
          [ 6, 0, 0, 1, 1 ] ], map := [ 1, 3, 4, 6, 8 ] ) ]
\endexample

\>ExtensionInfoCharacterTable( <tbl> ) A

Let <tbl> be the ordinary character table of a group $G$, say.
If this attribute is set for <tbl> then the value is a list of length
two,
the first entry being a string <M> that describes the Schur multiplier
of $G$ and the second entry being a string <A> that describes the outer
automorphism group of $G$.
Trivial multiplier or outer automorphism group are denoted by an empty
string.

If <tbl> is a table from the {\GAP} Character Table Library and $G$ is
(nonabelian and) simple then the value is set.
In this case, an admissible name for the character table of the
Darstellungsgruppe of $G$ (if this table is available and different from
<tbl>) is given by the concatenation of <M>, `"."', and the `Identifier'
value of <tbl>.
Analogously, an admissible name for the character table of the
automorphism group of $G$ (if this table is available and different from
<tbl>) is given by the concatenation of the `Identifier' value of <tbl>,
`"."', and <A>.


\beginexample
gap> ExtensionInfoCharacterTable( CharacterTable( "A5" ) );
[ "2", "2" ]
\endexample

\index{selection function!for character tables}

\>AllCharacterTableNames( [<func>, <val>, ... ] ) F
\>AllCharacterTableNames( <func>, <val>, ...[, OfThose, <func>] ) F

Similar to group libraries (see Chapter~"ref:Group Libraries" in the
{\GAP} Reference Manual),
the {\GAP} character table library can be used to search for ordinary
character tables with prescribed properties.

A specific library table can be selected by an admissible name
(see~"CharacterTableFromLibrary").

The selection function for character tables from the {\GAP} Character
Table Library that have certain abstract properties is
`AllCharacterTableNames'.
Contrary to the situation in the case of group libraries,
the selection function returns a list not of library character tables
but of their names;
using `CharacterTable' one can then access the tables themselves.

`AllCharacterTableNames' takes an arbitrary even number of arguments.
The argument at each odd position must be a function, and
the argument at the subsequent even position must be a value that this
function must return when called for the character table in question,
in order to have the name of the table included in the selection,
or a list of such values.
For example,
\beginexample
gap> names:= AllCharacterTableNames();;
\endexample
returns a list containing one admissible name of each ordinary character
table in the {\GAP} library, and
\beginexample
gap> simpnames:= AllCharacterTableNames( IsSimple, true );;
gap> AllCharacterTableNames( IsSimple, true, Size, [ 1 .. 100 ] );
[ "A5" ]
\endexample
return lists containing an admissible name of each ordinary character
table in the {\GAP} library whose groups are simple or are simple and
have order at most $100$, respectively.

For the sake of efficiency,
the arguments `IsSimple' and `IsSporadicSimple' followed by `true' are
handled in a special way, {\GAP} need not read all files of the table
library in these cases in order to find the desired names.

If the function `OfThose' is an argument at an odd position then the
following argument <func> must be a function that takes a character table
and returns a name of a character table or a list of names;
this is interpreted as replacement of the names computed up to this
position by the union of names returned by <func>.
For example, <func> may be `Maxes' (see~"Maxes") or
`NamesOfFusionSources' (see~"ref:NamesOfFusionSources" in the {\GAP}
Reference Manual).
\beginexample
gap> maxesnames:= AllCharacterTableNames( IsSporadicSimple, true,
>                                         HasMaxes, true,
>                                         OfThose, Maxes );;
\endexample
returns the union of names of ordinary tables of those maximal subgroups
of sporadic simple groups that are contained in the table library in the
sense that the attribute `Maxes' is set.

For the sake of efficiency, `OfThose' followed by one of the arguments
`AutomorphismGroup', `SchurCover', `CompleteGroup' is handled in a
special way.


\>OneCharacterTableName( {<func>, <val>} ) F
\>OneCharacterTableName( <func>, <val>, ...{, OfThose, <func>} ) F

The example function for character tables from the {\GAP} Character
Table Library that have certain abstract properties is
`OneCharacterTableName'.
It is analogous to the selection function `AllCharacterTableNames'
(see~"AllCharacterTableNames"), the difference is that it returns one
`Identifier' value of a character table with the properties in question
instead of the list of all such values.
If no table with the required properties is contained in the {\GAP}
Character Table Library then `fail' is returned.
\beginexample
gap> OneCharacterTableName( IsSimple, true, Size, 60 );
"A5"
gap> OneCharacterTableName( IsSimple, true, Size, 20 );
fail
\endexample



\>CTblLibSetUnload( <value> ) F

If <value> is `false' then the call to `CTblLibSetUnload' has the effect
that data files from the {\GAP} Character TableLibrary are read only once
in the current session.
By default, the contents of only one data file is kept in memory,
in order to keep the space small.
This behaviour can be achieved also by calling `CTblLibSetUnload' with
`true'.




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Generic Character Tables}

\index{character tables!generic}%
\index{tables!generic}%
\index{library tables!generic}%
\index{spin groups!character table}%
\index{symmetric groups!character table}%
\index{alternating groups!character table}%
\index{dihedral groups!character table}%
\index{Suzuki groups!character table}%
\index{Weyl groups!character table}%
\index{cyclic groups!character table}

Generic character tables provide a means for writing down the character
tables of all groups in a (usually infinite) series of similar groups,
e.g., cyclic groups, or symmetric groups, or the general linear groups
${\rm GL}(2,q)$ where $q$ ranges over certain prime powers.

Let $\{ G_q \| q \in I \}$ be such a series, where $I$ is an index set.
The character table of one fixed member $G_q$ could be computed using a
function that takes $q$ as only argument and constructs the table of $G_q$.
It is, however, often desirable to compute not only the whole table but to
access just one specific character, or to compute just one character value,
without computing the whole character table.

For example, both the conjugacy classes and the irreducible characters of
the symmetric group $S_n$ are in bijection with the partitions of $n$.
Thus for given $n$ it makes sense to ask for the character corresponding to
a particular partition, or just for its character value at another
partition.

A generic character table in {\GAP} allows one such local evaluations.
In this sense, {\GAP} can deal also with character tables that are too big
to be computed and stored as a whole.

Currently the only operations for generic tables supported by {\GAP} are
the specialisation of the parameter $q$ in order to compute the whole
character table of $G_q$, and local evaluation
(see~"ClassParameters" for an example).
{\GAP} does *not* support the computation of, e.g., generic scalar products.

Currently, generic tables of the following groups
--in alphabetical order-- are available in {\GAP}.
(A list of the names of generic tables known to {\GAP} is
`LIBTABLE.GENERIC.firstnames'.)
We list the function calls needed to get a specialized table,
the generic table itself can be accessed by calling `CharacterTable'
with the first argument only;
for example, `CharacterTable( \"Cyclic\" )' yields the generic table of
cyclic groups.
\beginlist
\item{}
    `CharacterTable( \"Alternating\", <n> )',
    the table of the *alternating* group on <n> letters,
\item{}
    `CharacterTable( \"Cyclic\", <n> )',
    the table of the *cyclic* group of order <n>,
\item{}
    `CharacterTable( \"Dihedral\", <2n> )',
    the table of the *dihedral* group of order <2n>,
\item{}
    `CharacterTable( \"DoubleCoverAlternating\", <n> )',
    the table of the *Schur double cover of the alternating* group
    on <n> letters (see~\cite{Noe02}),
\item{}
    `CharacterTable( \"DoubleCoverSymmetric\", <n> )',
    the table of the *standard Schur double cover of the symmetric* group
    on <n> letters (see~\cite{Noe02}),
\item{}
    `CharacterTable( \"GL\", 2, <q> )',
    the table of the *general linear* group GL$(2,q)$,
    for a prime power <q>,
\item{}
    `CharacterTable( \"GU\", 3, <q> )',
    the table of the *general unitary* group GU$(3,q)$,
    for a prime power <q>,
\item{}
    `CharacterTable( \"P:Q\", [ <p>, <q> ] )' and
    `CharacterTable( \"P:Q\", [ <p>, <q>, <k> ] )',
    the table of the *Frobenius extension* of the cyclic group of order <p>
    by a cyclic group of order <q> where <q> divides $p-1$;
    if <p> is a prime integer then <q> determines the group uniquely
    and thus the first version can be used,
    otherwise the action of the residue class of <k> modulo <p> is taken
    for forming orbits of length <q> each on the nonidentity elements of
    the group of order <p>,
\item{}
    `CharacterTable( \"PSL\", 2, <q> )',
    the table of the *projective special linear* group PSL$(2,q)$,
    for a prime power <q>,
\item{}
    `CharacterTable( \"SL\", 2, <q> )',
    the table of the *special linear* group SL$(2,q)$,
    for a prime power <q>,
\item{}
    `CharacterTable( \"SU\", 3, <q> )',
    the table of the *special unitary* group SU$(3,q)$,
    for a prime power <q>,
\item{}
    `CharacterTable( \"Suzuki\", <q> )',
    the table of the *Suzuki* group $Sz(q) = {}^2B_2(q)$,
    for <q> an odd power of $2$,
\item{}
    `CharacterTable( \"Symmetric\", <n> )',
    the table of the *symmetric* group on <n> letters,
\item{}
    `CharacterTable( \"WeylB\", <n> )',
    the table of the *Weyl* group of type $B_n$,
\item{}
    `CharacterTable( \"WeylD\", <n> )',
    the table of the *Weyl* group of type $D_n$.
\endlist
In addition to the above calls that really use generic tables,
the following calls to `CharacterTable' are to some extent ``generic''
constructions.
But note that no local evaluation is possible in these cases,
as no generic table object exists in {\GAP} that can be asked for local
information.
\beginlist
\item{}
    `CharacterTable( \"Quaternionic\", <4n> )',
    the table of the *quaternionic* (dicyclic) group of order <4n>,
\item{}
    `CharacterTableWreathSymmetric( <tbl>, <n> )',
    the character table of the wreath product of the group whose table is
    <tbl> with the symmetric group on <n> letters
    (see~"ref:CharacterTableWreathSymmetric" in the {\GAP} Reference Manual).
\endlist

\>CharacterTableSpecialized( <generic_table>, <q> ) F

For a record <generic_table> representing a generic character table,
and a parameter value <q>,
`CharacterTableSpecialized' returns a character table object computed by
evaluating <generic_table> at <q>.


\beginexample
gap> c5:= CharacterTableSpecialized( CharacterTable( "Cyclic" ), 5 );
CharacterTable( "C5" )
gap> Display( c5 );
C5

     5  1  1  1  1  1

       1a 5a 5b 5c 5d
    5P 1a 1a 1a 1a 1a

X.1     1  1  1  1  1
X.2     1  A  B /B /A
X.3     1  B /A  A /B
X.4     1 /B  A /A  B
X.5     1 /A /B  B  A

A = E(5)
B = E(5)^2
\endexample
(Also `CharacterTable( \"Cyclic\", 5 )' could have been used to construct
the above table.)

While the numbers of conjugacy classes for the members of a series of groups
are usually not bounded,
there is always a fixed finite number of *types* (equivalence classes)
of conjugacy classes;
very often the equivalence relation is isomorphism of the centralizers of the
representatives.

For each type $t$ of classes and a fixed $q \in I$, a *parametrisation* of
the classes in $t$ is a function that assigns to each conjugacy class of
$G_q$ in $t$ a *parameter* by which it is uniquely determined.
Thus the classes are indexed by pairs $[t,p_t]$ consisting of a type $t$
and a parameter $p_t$ for that type.

For any generic table, there has to be a fixed number of types of irreducible
characters of $G_q$, too.
Like the classes, the characters of each type are parametrised.

In {\GAP}, the parametrisations of classes and characters for tables
computed from generic tables is stored using the attributes `ClassParameters'
and `CharacterParameters'.

\>ClassParameters( <tbl> ) A
\>CharacterParameters( <tbl> ) A

are lists containing a parameter for each conjugacy class or irreducible
character, respectively, of the character table <tbl>.

It depends on <tbl> what these parameters are,
so there is no default to compute class and character parameters.

For example, the classes of symmetric groups can be parametrized by
partitions, corresponding to the cycle structures of permutations.
Character tables constructed from generic character tables
(see~"Generic Character Tables") usually have class and character
parameters stored.

If <tbl> is a $p$-modular Brauer table such that class parameters are
stored in the underlying ordinary table
(see~"ref:OrdinaryCharacterTable" in the {\GAP} Reference Manual)
of <tbl> then `ClassParameters' returns the sublist of class parameters
of the ordinary table, for $p$-regular classes.


\beginexample
gap> HasClassParameters( c5 );  HasCharacterParameters( c5 );
true
true
gap> ClassParameters( c5 );  CharacterParameters( c5 );
[ [ 1, 0 ], [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 4 ] ]
[ [ 1, 0 ], [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 4 ] ]
gap> ClassParameters( CharacterTable( "Symmetric", 3 ) );
[ [ 1, [ 1, 1, 1 ] ], [ 1, [ 2, 1 ] ], [ 1, [ 3 ] ] ]
\endexample
Here are examples for ``local evaluation'' of generic character tables,
first a character value of the cyclic group shown above,
then a character value and a representative order of a symmetric group.
\beginexample
gap> CharacterTable( "Cyclic" ).irreducibles[1][1]( 5, 2, 3 );
E(5)
gap> tbl:= CharacterTable( "Symmetric" );;
gap> tbl.irreducibles[1][1]( 5, [ 3, 2 ], [ 2, 2, 1 ] );
1
gap> tbl.orders[1]( 5, [ 2, 1, 1, 1 ] );
2
\endexample

Any generic table in {\GAP} is represented by a record.
The following components are supported for generic character table records.
\beginitems
`centralizers' &
    list of functions, one for each class type $t$,
    with arguments $q$ and $p_t$, returning the centralizer order of
    the class $[t,p_t]$,

`charparam' &
    list of functions, one for each character type $t$,
    with argument $q$, returning the list of character parameters
    of type $t$,

`classparam' &
    list of functions, one for each class type $t$,
    with argument $q$, returning the list of class parameters of type $t$,

`classtext' &
    list of functions, one for each class type $t$,
    with arguments $q$ and $p_t$,
    returning a representative of the class with parameter $[t,p_t]$,

`domain' &
    function of $q$ returning `true' if $q$ is a valid parameter,
    and `false' otherwise,

`identifier' &
    identifier string of the generic table,

`irreducibles' &
    list of list of functions,
    in row $i$ and column $j$ the function of three arguments,
    namely $q$ and the parameters $p_t$ and $p_s$ of the class type $t$
    and the character type $s$,

`isGenericTable' &
    always `true'

`libinfo' &
    record with components `firstname' (`Identifier' value of the table)
    and `othernames' (list of other admissible names)

`matrix' &
    function of $q$ returning the matrix of irreducibles of $G_q$,

`orders' &
    list of functions, one for each class type $t$,
    with arguments $q$ and $p_t$, returning the representative order
    of elements of type $t$ and parameter $p_t$,

`powermap' &
    list of functions, one for each class type $t$,
    each with three arguments $q$, $p_t$, and $k$,
    returning the pair $[s,p_s]$ of type and parameter for the $k$-th
    power of the class with parameter $[t,p_t]$,

`size' &
    function of $q$ returning the order of $G_q$,

`specializedname' &
    function of $q$ returning the `Identifier' value of the table of $G_q$,

`text' &
    string informing about the generic table
\enditems

In the specialized table, the `ClassParameters' and `CharacterParameters'
values are the lists of parameters $[t,p_t]$ of classes and characters,
respectively.

If the `matrix' component is present then its value implements a method
to compute the complete table of small members $G_q$ more efficiently
than via local evaluation;
this method will be called when the generic table is used to compute the
whole character table for a given $q$ (see~"CharacterTableSpecialized").


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Examples of Generic Character Tables}

\index{tables!generic}\index{character tables!generic}

1. The generic table of cyclic groups.

For the cyclic group $C_q = \langle x \rangle$ of order $q$,
there is one type of classes.
The class parameters are integers $k \in \{ 0, \ldots, q-1 \}$,
the class with parameter $k$ consists of the group element $x^k$.
Group order and centralizer orders are the identity function $q \mapsto q$,
independent of the parameter $k$.
The representative order function maps the parameter pair $[q,k]$ to
$\frac{q}{\gcd(q,k)}$, which is the order of $x^k$ in $C_q$;
the $p$-th power map is the function mapping the triple $(q,k,p)$ to
the parameter $[1,(kp \bmod q)]$.

There is one type of characters,
with parameters $l \in \{ 0, \ldots, q-1 \}$;
for $e_q$ a primitive complex $q$-th root of unity,
the character values are $\chi_l(x^k) = e_q^{kl}$.

The library file contains the following generic table.
\begintt
rec(
identifier := "Cyclic",
specializedname := ( q -> Concatenation( "C", String(q) ) ),
size := ( n -> n ),
text := "generic character table for cyclic groups",
centralizers := [ function( n, k ) return n; end ],
classparam := [ ( n -> [ 0 .. n-1 ] ) ],
charparam := [ ( n -> [ 0 .. n-1 ] ) ],
powermap := [ function( n, k, pow ) return [ 1, k*pow mod n ]; end ],
orders := [ function( n, k ) return n / Gcd( n, k ); end ],
irreducibles := [ [ function( n, k, l ) return E(n)^(k*l); end ] ],
domain := IsPosInt,
libinfo := rec( firstname:= "Cyclic", othernames:= [] ),
isGenericTable := true )
\endtt


2. The generic table of the general linear group $\rm{GL}(2,q)$.

We have four types $t_1, t_2, t_3, t_4$ of classes,
according to the rational canonical form of the elements.
$t_1$ describes scalar matrices,
$t_2$ nonscalar diagonal matrices,
$t_3$ companion matrices of $(X-\rho)^2$ for elements $\rho\in \F_q^{\ast}$,
and
$t_4$ companion matrices of irreducible polynomials of degree 2 over $\F_q$.

The sets of class parameters of the types are in bijection with
$\F_q^{\ast}$ for $t_1$ and $t_3$,
with the set
$\{\{\rho,\tau\}; \rho, \tau\in \F_q^{\ast}, \rho\not=\tau\}$ for $t_2$,
and with the set
$\{\{\epsilon,\epsilon^q\}; \epsilon\in \F_{q^2}\setminus \F_q\}$ for $t_4$.

The centralizer order functions are
$q \mapsto (q^2-1)(q^2-q)$ for type $t_1$,
$q \mapsto (q-1)^2$ for type $t_2$,
$q \mapsto q(q-1)$ for type $t_3$, and
$q \mapsto q^2-1$ for type $t_4$.

The representative order function of $t_1$ maps $(q,\rho)$ to the order
of $\rho$ in $\F_q$,
that of $t_2$ maps $(q,\{\rho,\tau\})$ to the least common multiple
of the orders of $\rho$ and $\tau$.

The file contains something similar to the following table.
\begintt
rec(
identifier := "GL2",
specializedname := ( q -> Concatenation( "GL(2,", String(q), ")" ) ),
size := ( q -> (q^2-1)*(q^2-q) ),
text := "generic character table of GL(2,q), see Robert Steinberg: ...",
centralizers := [ function( q, k ) return (q^2-1) * (q^2-q); end,
                  ..., ..., ... ],
classparam := [ ( q -> [ 0 .. q-2 ] ), ..., ..., ... ],
charparam := [ ( q -> [ 0 .. q-2 ] ), ..., ..., ... ],
powermap := [ function( q, k, pow ) return [ 1, (k*pow) mod (q-1) ]; end,
              ..., ..., ... ],
orders:= [ function( q, k ) return (q-1)/Gcd( q-1, k ); end,
           ..., ..., ... ],
irreducibles := [ [ function( q, k, l ) return E(q-1)^(2*k*l); end,
                    ..., ..., ... ],
                  [ ..., ..., ..., ... ],
                  [ ..., ..., ..., ... ],
                  [ ..., ..., ..., ... ] ],
classtext := [ ..., ..., ..., ... ],
domain := IsPrimePowerInt,
isGenericTable := true )
\endtt


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{ATLAS Tables}

\index{character tables!ATLAS}%
\index{tables!library}\index{library of character tables}

The {\GAP} character table library contains all character tables of bicyclic
extensions of simple groups
that are included in the {\ATLAS} of Finite Groups (\cite{CCN85},
from now on called {\ATLAS}),
and the Brauer tables contained in the {\ATLAS} of Brauer Characters
(\cite{JLPW95}).

These tables have the information
\begintt
origin: ATLAS of finite groups
\endtt
or
\begintt
origin: modular ATLAS of finite groups
\endtt
in their `InfoText' value (see~"ref:InfoText" in the {\GAP} Reference Manual),
they are simply called {\ATLAS} tables further on.

For displaying {\ATLAS} tables with the row labels used in the {\ATLAS}, or
for displaying decomposition matrices,
see~"ref:LaTeXStringDecompositionMatrix" in the {\GAP} Reference Manual
and~"AtlasLabelsOfIrreducibles".

In addition to the information given in Chapters~6--8 of the {\ATLAS}
which tell you how to read the printed tables,
there are some rules relating these to the corresponding {\GAP} tables.


*Improvements*

For the {\GAP} Character Table Library not the printed versions of the
{\ATLAS} of Finite Groups and the {\ATLAS} of Brauer Characters are relevant
but the revised versions given by the currently three lists of improvements
that are maintained by Simon Norton.
The first such list is contained in~\cite{BN95},
and is printed in the Appendix of~\cite{JLPW95};
it contains the improvements that had been known until the
``{\ATLAS} of Brauer Characters'' was published.
The second list contains the improvements to the {\ATLAS} of Finite Groups
that were found since the publication of~\cite{JLPW95}.
It can be found in the internet, namely, an HTML version
at~\URL{http://web.mat.bham.ac.uk/atlas/html/atlasmods.html}

and a DVI
version at~\URL{http://web.mat.bham.ac.uk/atlas/html/atlasmods.dvi}

The third list contains the improvements to the {\ATLAS} of Brauer Characters,
HTML and PDF versions can be found in the internet
at~\URL{http://www.math.rwth-aachen.de/~MOC/ABCerr.html}

and~\URL{http://www.math.rwth-aachen.de/~MOC/ABCerr.pdf}

respectively.

Also some tables are regarded as {\ATLAS} tables which are not printed in
the {\ATLAS} but available in {\ATLAS} format from Cambridge,
according to the lists of improvements mentioned above.
Currently these are the tables related to $L_2(49)$, $L_2(81)$, $L_6(2)$,
$O_8^-(3)$, $O_8^+(3)$, $S_{10}(2)$, and ${}^2E_6(2)\.3$.


*Power Maps*

For the tables of $3\.McL$, $3_2\.U_4(3)$ and its covers,
and $3_2\.U_4(3)\.2_3$ and its covers,
the power maps are not uniquely determined by the information
from the {\ATLAS} but determined only up to matrix automorphisms
(see~"ref:MatrixAutomorphisms" in the {\GAP} Reference Manual)
of the irreducible characters.
In these cases, the first possible map according to lexicographical
ordering was chosen, and the automorphisms are listed in the `InfoText'
strings of the tables.


*Projective Characters and Projections*

If $G$ (or $G\.a$) has a nontrivial Schur multiplier then the attribute
`ProjectivesInfo' of the {\GAP} table object of $G$ (or $G\.a$) is set
(see~"ProjectivesInfo"); the `chars' component of the record in question
is the list of values lists of those faithful projective irreducibles
that are printed in the {\ATLAS} (so--called {\it proxy characters}),
and the `map' component lists the positions of columns in the covering
for which the column is printed in the {\ATLAS}
(a so--called {\it proxy class}, this preimage is denoted by $g_0$ in
Chapter~7, Section~14 of the {\ATLAS}).


*Tables of Isoclinic Groups*

As described in Chapter~6, Section~7 and in Chapter~7, Section~18 of the
{\ATLAS}, there exist two (often nonisomorphic) groups of structure
$2\.G\.2$ for a simple group $G$, which are isoclinic.
The table in the {\GAP} Character Table Library is the one printed in the
{\ATLAS}, the table of the other isoclinic variant can be constructed using
`CharacterTableIsoclinic' (see~"ref:CharacterTableIsoclinic" in the {\GAP}
Reference Manual).


*Ordering of Characters and Classes*

(Throughout this paragraph, $G$ always means the simple group involved.)
\beginlist
\item{1.}
    For $G$ itself, the ordering of classes and characters in the {\GAP}
    table coincides with the one in the {\ATLAS}.
\item{2.}
    For an automorphic extension $G\.a$, there are three types of characters.

    If a character $\chi$ of $G$ extends to $G\.a$ then the different
    extensions $\chi^0, \chi^1, \ldots, \chi^{a-1}$ are consecutive in the
    table of $G\.a$ (see Chapter~7, Section~16 of the {\ATLAS}).

    If some characters of $G$ fuse to give a single character of $G\.a$ then
    the position of that character in the table of $G\.a$ is given by the
    position of the first involved character of $G$.

    If both extension and fusion occur for a character
    then the resulting characters are consecutive in the table of $G\.a$,
    and each replaces the first involved character of $G$.
\item{3.}
    Similarly, there are different types of classes for an automorphic
    extension $G\.a$, as follows.

    If some classes collapse then the resulting class replaces the first
    involved class of $G$.

    For $a > 2$, any proxy class and its algebraic conjugates that are not
    printed in the {\ATLAS} are consecutive in the table of $G\.a$;
    if more than two classes of $G\.a$ have the same proxy class
    (the only case that actually occurs is for $a = 5$)
    then the ordering of non-printed classes is the natural one of
    corresponding Galois conjugacy operators $\ast k$
    (see Chapter~7, Section~19 in the {\ATLAS}).

    For $a_1, a_2$ dividing $a$ such that $a_1 \< a_2$,
    the classes of $G\.a_1$ in $G\.a$ precede the classes of $G\.a_2$ not
    contained in $G\.a_1$.
    This ordering is the same as in the {\ATLAS},
    with the only exception $U_3(8)\.6$.
\item{4.}
    For a central extension $M\.G$, there are two different types of
    characters, as follows.

    Each character can be regarded as a faithful character of a factor group
    $m\.G$, where $m$ divides $M$.
    Characters with the same kernel are consecutive as in the {\ATLAS},
    the ordering of characters with different kernels is given by the order
    of precedence $1, 2, 4, 3, 6, 12$ for the different values of $m$.

    If $m > 2$, a faithful character of $m\.G$ that is printed in the
    {\ATLAS} (a so-called {\it proxy character}) represents two or more
    Galois conjugates.
    In each {\ATLAS} table in {\GAP}, a proxy character always precedes the
    non-printed characters with this proxy.
    The case $m = 12$ is the only one that actually occurs where more than
    one character for a proxy is not printed.
    In this case, the non-printed characters are ordered according to the
    corresponding Galois conjugacy operators $\ast 5$, $\ast 7$, $\ast 11$
    (in that succession).
\item{5.}
    For the classes of a central extension we have the following.

    The preimages of a $G$-class in $M\.G$ are subsequent,
    the ordering is the same as that of the lifting order rows in the
    {\ATLAS} (see Chapter~7, Section~7 there).

    The primitive roots of unity chosen to represent the generating
    central element (i.e., the element in the second class of the {\GAP}
    table) are  `E(3)',  `E(4)',  `E(6)^5' (`= E(2) \* E(3)'), and `E(12)^7'
    (`= E(3) \* E(4)'), for $m = 3$, $4$, $6$, and $12$, respectively.
\item{6.}
    For tables of bicyclic extensions $m\.G\.a$, both the rules for
    automorphic and central extensions hold.
    Additionally we have the following three rules.

    Whenever classes of the subgroup $m\.G$ collapse in $m\.G\.a$
    then the resulting class replaces the first involved class.

    Whenever characters of the subgroup $m\.G$ collapse fuse in $m\.G\.a$
    then the result character replaces the first involved character.

    Extensions of a character are subsequent, and the extensions of a
    proxy character precede the extensions of characters with this proxy
    that are not printed.

    Preimages of a class of $G\.a$ in $m\.G\.a$ are subsequent,
    and the preimages of a proxy class precede the preimages of non-printed
    classes with this proxy.
\endlist


\>AtlasLabelsOfIrreducibles( <tbl>[, "short"] ) F

Let <tbl> be the (ordinary or Brauer) character table of a bicyclic
extension of a simple group that occurs in the
{\ATLAS} of Finite Groups~\cite{CCN85} or the
{\ATLAS} of Brauer Characters~\cite{JLPW95}.
`AtlasLabelsOfIrreducibles' returns a list of strings, the $i$-th entry
being a label for the $i$-th irreducible character of <tbl>.

The labels have the following form.
We state the rules only for ordinary characters,
the rules for Brauer characters are obtained by replacing $\chi$
by $\varphi$.

First consider only downward extensions $m\.G$ of a simple group $G$.
If $m \leq 2$ then only labels of the form $\chi_i$ occur,
which denotes the $i$-th ordinary character shown in the {\ATLAS}.

The labels of faithful ordinary characters of groups $m\.G$ with $m\geq 3$
are of the form $\chi_i$, $\chi_i^{\ast}$, or $\chi_i^{\ast k}$,
which means the $i$-th character printed in the {\ATLAS},
the unique character that is not printed and for which $\chi_i$ acts as
proxy
(see~Sections~8 and~19 of Chapter~7 in the {\ATLAS} of Finite Groups),
and the image of the printed character $\chi_i$ under the algebraic
conjugacy operator $\ast k$, respectively.

For groups $m\.G\.a$ with $a > 1$, the labels of the irreducible characters
are derived from the labels of the irreducible constituents of their
restrictions to $m\.G$, as follows.
\beginlist
\item{1.}
    If the ordinary irreducible character $\chi_i$ of $m\.G$ extends to
    $m\.G\.a$ then the $a^{\prime}$ extensions are denoted by
    $\chi_{i,0}, \chi_{i,1}, \ldots, \chi_{i,a^{\prime}}$,
    where $\chi_{i,0}$ is the character whose values are printed in the
    {\ATLAS}.
\item{2.}
    The label $\chi_{i_1 + i_2 + \cdots + i_a}$ means that $a$ different
    characters $\chi_{i_1}, \chi_{i_2}, \ldots, \chi_{i_a}$ of $m\.G$
    induce to an irreducible character of $m\.G\.a$ with this label.

    If the string `\"short\"' was entered as the second argument then the
    label has the short form $\chi_{i_1+}$.
    Note that $i_2, i_3, \ldots, i_a$ can be read off from the
    fusion signs in the {\ATLAS}.
\item{3.}
    Finally, the label
    $\chi_{i_1,j_1 + i_2,j_2 + \cdots + i_{a^{\prime}},j_{a^{\prime}}}$
    means that the characters
    $\chi_{i_1}, \chi_{i_2}, \ldots, \chi_{i_{a^{\prime}}}$ of $m\.G$
    extend to a group that lies properly between $m\.G$ and $m\.G\.a$,
    and the extensions $\chi_{i_1,j_1}, \chi_{i_2,j_2}, \ldots
    \chi_{i_{a^{\prime}},j_{a^{\prime}}}$
    induce to an irreducible character of $m\.G\.a$ with this label.

    Again, if the string `\"short\"' was entered as the second argument
    then the label has a short form, namely $\chi_{i,j+}$.
\endlist


\beginexample
gap> AtlasLabelsOfIrreducibles( CharacterTable( "3.A7.2" ) );
[ "\\chi_{1,0}", "\\chi_{1,1}", "\\chi_{2,0}", "\\chi_{2,1}", "\\chi_{3+4}", 
  "\\chi_{5,0}", "\\chi_{5,1}", "\\chi_{6,0}", "\\chi_{6,1}", "\\chi_{7,0}", 
  "\\chi_{7,1}", "\\chi_{8,0}", "\\chi_{8,1}", "\\chi_{9,0}", "\\chi_{9,1}", 
  "\\chi_{17+17\\ast 2}", "\\chi_{18+18\\ast 2}", "\\chi_{19+19\\ast 2}", 
  "\\chi_{20+20\\ast 2}", "\\chi_{21+21\\ast 2}", "\\chi_{22+23\\ast 8}", 
  "\\chi_{22\\ast 8+23}" ]
gap> AtlasLabelsOfIrreducibles( CharacterTable( "3.A7.2" ), "short" );
[ "\\chi_{1,0}", "\\chi_{1,1}", "\\chi_{2,0}", "\\chi_{2,1}", "\\chi_{3+}", 
  "\\chi_{5,0}", "\\chi_{5,1}", "\\chi_{6,0}", "\\chi_{6,1}", "\\chi_{7,0}", 
  "\\chi_{7,1}", "\\chi_{8,0}", "\\chi_{8,1}", "\\chi_{9,0}", "\\chi_{9,1}", 
  "\\chi_{17+}", "\\chi_{18+}", "\\chi_{19+}", "\\chi_{20+}", "\\chi_{21+}", 
  "\\chi_{22+}", "\\chi_{23+}" ]
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Examples of the ATLAS Format for GAP Tables}

\index{character tables!CAS}\index{tables!library}
\index{library of character tables}

We give three little examples for the conventions stated in~"ATLAS Tables",
listing both the {\ATLAS} format and the table displayed by {\GAP}.

First, let $G$ be the trivial group.
We consider the cyclic group $C_6$ of order $6$.
It can be viewed in several ways, namely
\beginlist
\item{1.}
    as a downward extension of the factor group $C_2$ which contains
    $G$ as a subgroup,
    or equivalently,
    as an upward extension of the subgroup $C_3$ which has a factor group
    isomorphic to $G$,
\item{2.}
    as a downward extension of the factor group $C_3$ which contains
    $G$ as a subgroup,
    or equivalently,
    as an upward extension of the subgroup $C_2$ which has a factor group
    isomorphic to $G$,
\item{3.}
    as a downward extension of the factor groups $C_3$ and $C_2$ which
    have $G$ as a factor group, or
\item{4.}
    as an upward extension of the subgroups $C_3$ or $C_2$ which both
    contain a subgroup isomorphic to $G$.
\endlist

% \def\ttquote{\char13}
% \setlength{\unitlength}{0.1cm}
% %ignore
% \begin{picture}(110,55)
% \put(-2,23){
% \begin{picture}(29,29)
% \put(0,29){\line(1,0){14}}
% \put(0,15){\line(1,0){14}}
% \put(0,14){\line(1,0){14}}
% \put(0,0){\line(1,0){14}}
% \put(15,29){\line(1,0){14}}
% \put(15,15){\line(1,0){14}}
% \put(15,14){\line(1,0){14}}
% \put(15,0){\line(1,0){14}}
% \put(0,15){\line(0,1){14}}
% \put(0,0){\line(0,1){14}}
% \put(14,15){\line(0,1){14}}
% \put(15,15){\line(0,1){14}}
% \put(29,15){\line(0,1){14}}
% \put(14,0){\line(0,1){14}}
% \put(15,0){\line(0,1){14}}
% \put(29,0){\line(0,1){14}}
% \put(7,7){\makebox(0,0){3.G}}
% \put(22,7){\makebox(0,0){3.G.2}}
% \put(7,22){\makebox(0,0){G}}
% \put(22,22){\makebox(0,0){G.2}}
% \end{picture}}
% \put(37,52){\makebox(0,0)[tl]{
% \small\tt
% \begin{minipage}{2in}
% \baselineskip0.9ex
% \parskip0.2ex
% 
% \ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \par
% \ \par
% \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1\ \par
% \ \ p\ power\ \ \ \ \ \ \ \ \ \ \ A\ \par
% \ \ p\ttquote\ part\ \ \ \ \ \ \ \ \ \ \ A\ \par
% \ \ ind\ \ 1A\ fus\ ind\ \ 2A\ \par
% \ \par
% $\chi_1$\ \ +\ \ \ 1\ \ \ \:\ \ ++\ \ \ 1\ \par
% \ \par
% \ \ ind\ \ \ 1\ fus\ ind\ \ \ 2\ \par
% \ \ \ \ \ \ \ \ 3\ \ \ \ \ \ \ \ \ \ \ 6\ \par
% \ \ \ \ \ \ \ \ 3\ \ \ \ \ \ \ \ \ \ \ 6\ \par
% \ \par
% $\chi_2$\ o2\ \ \ 1\ \ \ \:\ oo2\ \ \ 1\ 
% \end{minipage}}}
% 
% \put(83,52){\makebox(0,0)[tl]{
% \small\tt
% \begin{minipage}{2in}
% \baselineskip2.7ex
% \parskip0ex
% 
% \ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
% \ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
%  \par
% \ \ \ \ \ \ 1a\ \ 3a\ \ 3b\ \ 2a\ \ 6a\ \ 6b \par
% \ \ 2P\ \ 1a\ \ 3b\ \ 3a\ \ 1a\ \ 3b\ \ 3a \par
% \ \ 3P\ \ 1a\ \ 1a\ \ 1a\ \ 2a\ \ 2a\ \ 2a \par
%  \par
% X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
% X.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ -1\ \ -1\ \ -1 \par
% X.3\ \ \ \ 1\ \ \ A\ \ /A\ \ \ 1\ \ \ A\ \ /A \par
% X.4\ \ \ \ 1\ \ \ A\ \ /A\ \ -1\ \ -A\ -/A \par
% X.5\ \ \ \ 1\ \ /A\ \ \ A\ \ \ 1\ \ /A\ \ \ A \par
% X.6\ \ \ \ 1\ \ /A\ \ \ A\ \ -1\ -/A\ \ -A \par
%  \par
% A\ =\ E(3) \par
% \ \ =\ (-1+ER(-3))/2\ =\ b3 \par
% 
% \end{minipage}}}
% \end{picture}
% %end
% %display
Situation 1.~is shown here.
\begintt
 -------   -------         ;   @   ;   ;   @      2   1   1   1   1   1   1
||       || ||       ||            1           1      3   1   1   1   1   1   1
||   G   || ||  G.2  ||      p power           A
||       || ||       ||      p' part           A         1a  3a  3b  2a  6a  6b
 -------   -------       ind  1A fus ind  2A     2P  1a  3b  3a  1a  3b  3a
 -------   -------                               3P  1a  1a  1a  2a  2a  2a
||       || ||       ||  chi1  +   1   :  ++   1
||  3.G  || || 3.G.2 ||                            X.1    1   1   1   1   1   1
||       || ||       ||      ind   1 fus ind   2   X.2    1   1   1  -1  -1  -1
 -------   -------             3           6   X.3    1   A  /A   1   A  /A
                               3           6   X.4    1   A  /A  -1  -A -/A
                                               X.5    1  /A   A   1  /A   A
                     chi2 o2   1   : oo2   1   X.6    1  /A   A  -1 -/A  -A

                                               A = E(3)
                                                 = (-1+ER(-3))/2 = b3
\endtt
`X.1', `X.2' extend  $\chi_1$.
`X.3', `X.4' extend the proxy character $\chi_2$.
`X.5', `X.6' extend the not printed character with proxy $\chi_2$.
The classes `1a', `3a', `3b' are preimages of `1A',
and `2a', `6a', `6b' are preimages of `2A'.

% %ignore
% \begin{picture}(110,55)
% \put(-2,23){
% \begin{picture}(29,29)
% \put(0,29){\line(1,0){14}}
% \put(0,15){\line(1,0){14}}
% \put(0,14){\line(1,0){14}}
% \put(0,0){\line(1,0){14}}
% \put(15,29){\line(1,0){14}}
% \put(15,15){\line(1,0){14}}
% \put(15,14){\line(1,0){14}}
% \put(15,0){\line(1,0){14}}
% \put(0,15){\line(0,1){14}}
% \put(0,0){\line(0,1){14}}
% \put(14,15){\line(0,1){14}}
% \put(15,15){\line(0,1){14}}
% \put(29,15){\line(0,1){14}}
% \put(14,0){\line(0,1){14}}
% \put(15,0){\line(0,1){14}}
% \put(29,0){\line(0,1){14}}
% \put(7,7){\makebox(0,0){2.G}}
% \put(22,7){\makebox(0,0){2.G.3}}
% \put(7,22){\makebox(0,0){G}}
% \put(22,22){\makebox(0,0){G.3}}
% \end{picture}}
% \put(37,52){\makebox(0,0)[tl]{
% \small\tt
% \begin{minipage}{2in}
% \baselineskip0.9ex
% \parskip0.2ex
% 
% \ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @ \par
% \ \par
% \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1 \par
% \ \ p\ power\ \ \ \ \ \ \ \ \ \ \ A \par
% \ \ p\ttquote\ part\ \ \ \ \ \ \ \ \ \ \ A \par
% \ \ ind\ \ 1A\ fus\ ind\ \ 3A \par
% \ \par
% $\chi_1$\ \ +\ \ \ 1\ \ \ \:\ +oo\ \ \ 1 \par
% \ \par
% \ \ ind\ \ \ 1\ fus\ ind\ \ \ 3 \par
% \ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ \ 6 \par
% \ \par
% $\chi_2$\ \ +\ \ \ 1\ \ \ \:\ +oo\ \ \ 1 \par
% \end{minipage}}}
% 
% \put(83,52){\makebox(0,0)[tl]{
% \small\tt
% \begin{minipage}{2in}
% \baselineskip2.7ex
% \parskip0ex
% 
% \ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
% \ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
%  \par
% \ \ \ \ \ \ 1a\ \ 2a\ \ 3a\ \ 6a\ \ 3b\ \ 6b \par
% \ \ 2P\ \ 1a\ \ 1a\ \ 3b\ \ 3b\ \ 3a\ \ 3a \par
% \ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 2a\ \ 1a\ \ 2a \par
%  \par
% X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
% X.2\ \ \ \ 1\ \ \ 1\ \ \ A\ \ \ A\ \ /A\ \ /A \par
% X.3\ \ \ \ 1\ \ \ 1\ \ /A\ \ /A\ \ \ A\ \ \ A \par
% X.4\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ 1\ \ -1 \par
% X.5\ \ \ \ 1\ \ -1\ \ \ A\ \ -A\ \ /A\ -/A \par
% X.6\ \ \ \ 1\ \ -1\ \ /A\ -/A\ \ \ A\ \ -A \par
%  \par
% A\ =\ E(3) \par
% \ \ =\ (-1+ER(-3))/2\ =\ b3 \par
% \end{minipage}}}
% \end{picture}
% %end
% %display
Situation 2.~is shown here.
\begintt
 -------   -------         ;   @   ;   ;   @      2   1   1   1   1   1   1
||       || ||       ||            1           1      3   1   1   1   1   1   1
||   G   || ||  G.3  ||      p power           A
||       || ||       ||      p' part           A         1a  2a  3a  6a  3b  6b
 -------   -------       ind  1A fus ind  3A     2P  1a  1a  3b  3b  3a  3a
 -------   -------                               3P  1a  2a  1a  2a  1a  2a
||       || ||       ||  chi1  +   1   : +oo   1
||  2.G  || || 2.G.3 ||                            X.1    1   1   1   1   1   1
||       || ||       ||      ind   1 fus ind   3   X.2    1   1   A   A  /A  /A
 -------   -------             2           6   X.3    1   1  /A  /A   A   A
                                               X.4    1  -1   1  -1   1  -1
                     chi2  +   1   : +oo   1   X.5    1  -1   A  -A  /A -/A
                                               X.6    1  -1  /A -/A   A  -A

                                               A = E(3)
                                                 = (-1+ER(-3))/2 = b3
\endtt
`X.1'--`X.3' extend $\chi_1$, `X.4'--`X.6' extend $\chi_2$.
The classes `1a' and `2a' are preimages of `1A',
`3a' and `6a' are preimages of the proxy class `3A',
and `3b' and `6b' are preimages of the not printed class with proxy `3A'.

% %ignore
% \begin{picture}(110,70)
% \put(-2,8){
% \begin{picture}(14,59)
% \put(0,59){\line(1,0){14}}
% \put(0,45){\line(1,0){14}}
% \put(0,44){\line(1,0){14}}
% \put(0,30){\line(1,0){14}}
% \put(0,29){\line(1,0){14}}
% \put(0,15){\line(1,0){14}}
% \put(0,14){\line(1,0){14}}
% \put(0,0){\line(1,0){14}}
% \put(0,45){\line(0,1){14}}
% \put(0,30){\line(0,1){14}}
% \put(0,15){\line(0,1){14}}
% \put(0,0){\line(0,1){14}}
% \put(14,45){\line(0,1){14}}
% \put(14,30){\line(0,1){14}}
% \put(14,15){\line(0,1){14}}
% \put(14,0){\line(0,1){14}}
% \put(7,7){\makebox(0,0){6.G}}
% \put(7,22){\makebox(0,0){3.G}}
% \put(7,37){\makebox(0,0){2.G}}
% \put(7,52){\makebox(0,0){G}}
% \end{picture}}
% \put(37,67){\makebox(0,0)[tl]{
% \small\tt
% \begin{minipage}{2in}
% \baselineskip0.9ex
% \parskip0.2ex
% 
% \ \ \ \ ;\ \ \ @ \par
% \ \  \par
% \ \ \ \ \ \ \ \ 1 \par
% \ \ p\ power \par
% \ \ p\ttquote\ part \par
% \ \ ind\ \ 1A \par
% \ \  \par
% $\chi_1$\ \ +\ \ \ 1 \par
% \ \  \par
% \ \ ind\ \ \ 1 \par
% \ \ \ \ \ \ \ \ 2 \par
% \ \  \par
% $\chi_2$\ \ +\ \ \ 1 \par
% \ \  \par
% \ \ ind\ \ \ 1 \par
% \ \ \ \ \ \ \ \ 3 \par
% \ \ \ \ \ \ \ \ 3 \par
% \ \  \par
% $\chi_3$\ o2\ \ \ 1 \par
% \ \  \par
% \ \ ind\ \ \ 1 \par
% \ \ \ \ \ \ \ \ 6 \par
% \ \ \ \ \ \ \ \ 3 \par
% \ \ \ \ \ \ \ \ 2 \par
% \ \ \ \ \ \ \ \ 3 \par
% \ \ \ \ \ \ \ \ 6 \par
% \ \  \par
% $\chi_4$\ o2\ \ \ 1 \par
% \end{minipage}}}
% 
% \put(83,67){\makebox(0,0)[tl]{
% \small\tt
% \begin{minipage}{2in}
% \baselineskip2.7ex
% \parskip0ex
% 
% \ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
% \ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
%  \par
% \ \ \ \ \ \ 1a\ \ 6a\ \ 3a\ \ 2a\ \ 3b\ \ 6b \par
% \ \ 2P\ \ 1a\ \ 3a\ \ 3b\ \ 1a\ \ 3a\ \ 3b \par
% \ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 2a\ \ 1a\ \ 2a \par
%  \par
% X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
% X.2\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ 1\ \ -1 \par
% X.3\ \ \ \ 1\ \ \ A\ \ /A\ \ \ 1\ \ \ A\ \ /A \par
% X.4\ \ \ \ 1\ \ /A\ \ \ A\ \ \ 1\ \ /A\ \ \ A \par
% X.5\ \ \ \ 1\ \ -A\ \ /A\ \ -1\ \ \ A\ -/A \par
% X.6\ \ \ \ 1\ -/A\ \ \ A\ \ -1\ \ /A\ \ -A \par
%  \par
% A\ =\ E(3) \par
% \ \ =\ (-1+ER(-3))/2\ =\ b3 \par
% \end{minipage}}}
% \end{picture}
% %end
% %display
Situation 3.~is shown here.
\begintt
 -------             ;   @        2   1   1   1   1   1   1
||       ||                1        3   1   1   1   1   1   1
||   G   ||          p power
||       ||          p' part           1a  6a  3a  2a  3b  6b
 -------           ind  1A       2P  1a  3a  3b  1a  3a  3b
 -------                         3P  1a  2a  1a  2a  1a  2a
||       ||      chi1  +   1
||  2.G  ||                      X.1    1   1   1   1   1   1
||       ||          ind   1     X.2    1  -1   1  -1   1  -1
 -------                 2     X.3    1   A  /A   1   A  /A
 -------                       X.4    1  /A   A   1  /A   A
||       ||      chi2  +   1     X.5    1  -A  /A  -1   A -/A
||  3.G  ||                      X.6    1 -/A   A  -1  /A  -A
||       ||          ind   1
 -------                 3     A = E(3)
 -------                 3       = (-1+ER(-3))/2 = b3
||       ||
||  6.G  ||      chi3 o2   1
||       ||
 -------           ind   1
                         6
                         3
                         2
                         3
                         6

               chi4 o2   1
\endtt
`X.1', `X.2' correspond to $\chi_1, \chi_2$, respectively;
`X.3', `X.5' correspond to the proxies $\chi_3$, $\chi_4$, and
`X.4', `X.6' to the not printed characters with these proxies.
followers.
The factor fusion onto $3\.G$ is given by `[ 1, 2, 3, 1, 2, 3 ]',
that onto $G\.2$ by `[ 1, 2, 1, 2, 1, 2 ]'.

% %ignore
% \begin{picture}(110,55)
% \put(-2,38){
% \begin{picture}(59,14)
% \put(0,0){\line(1,0){14}}
% \put(0,0){\line(0,1){14}}
% \put(0,14){\line(1,0){14}}
% \put(14,0){\line(0,1){14}}
% \put(7,7){\makebox(0,0){G}}
% \put(15,0){\line(1,0){14}}
% \put(15,0){\line(0,1){14}}
% \put(15,14){\line(1,0){14}}
% \put(29,0){\line(0,1){14}}
% \put(22,7){\makebox(0,0){G.2}}
% \put(30,0){\line(1,0){14}}
% \put(30,0){\line(0,1){14}}
% \put(30,14){\line(1,0){14}}
% \put(44,0){\line(0,1){14}}
% \put(37,7){\makebox(0,0){G.3}}
% \put(45,0){\line(1,0){14}}
% \put(45,0){\line(0,1){14}}
% \put(45,14){\line(1,0){14}}
% \put(59,0){\line(0,1){14}}
% \put(52,7){\makebox(0,0){G.6}}
% \end{picture}}
% \put(-2,30){\makebox(0,0)[tl]{
% \small\tt
% \begin{minipage}{4in}
% \baselineskip0.9ex
% \parskip0.2ex
% 
% \ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \ \ ;\ \ \ \ \ ;\ \ \ @\ \par
% \ \par
% \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ \ \ 1\ \par
% \ \ p\ power\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ \ AA\ \par
% \ \ p\ttquote\ part\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ \ AA\ \par
% \ \ ind\ \ 1A\ fus\ ind\ \ 2A\ fus\ ind\ \ 3A\ fus\ \ \ ind\ \ 6A\ \par
% \ \par
% $\chi_1$\ \ +\ \ \ 1\ \ \ \:\ \ ++\ \ \ 1\ \ \ \:\ +oo\ \ \ 1\ \ \ \:+oo+oo\ \ \ 1\ \par
% \end{minipage}}}
% 
% \put(83,52){\makebox(0,0)[tl]{
% \small\tt
% \begin{minipage}{2in}
% \baselineskip2.7ex
% \parskip0ex
% 
% \ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
% \ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
%  \par
% \ \ \ \ \ \ 1a\ \ 2a\ \ 3a\ \ 3b\ \ 6a\ \ 6b \par
% \ \ 2P\ \ 1a\ \ 1a\ \ 3b\ \ 3a\ \ 3b\ \ 3a \par
% \ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 1a\ \ 2a\ \ 2a \par
%  \par
% X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
% X.2\ \ \ \ 1\ \ -1\ \ \ A\ \ /A\ \ -A\ -/A \par
% X.3\ \ \ \ 1\ \ \ 1\ \ /A\ \ \ A\ \ /A\ \ \ A \par
% X.4\ \ \ \ 1\ \ -1\ \ \ 1\ \ \ 1\ \ -1\ \ -1 \par
% X.5\ \ \ \ 1\ \ \ 1\ \ \ A\ \ /A\ \ \ A\ \ /A \par
% X.6\ \ \ \ 1\ \ -1\ \ /A\ \ \ A\ -/A\ \ -A \par
%  \par
% A\ =\ E(3) \par
% \ \ =\ (-1+ER(-3))/2\ =\ b3 \par
% \end{minipage}}}
% \end{picture}
% %end
% %display
Finally, situation 4.~is shown here.
\begintt
 -------   -------   -------   -------
||       || ||       || ||       || ||       ||
||   G   || ||  G.2  || ||  G.3  || ||  G.6  ||
||       || ||       || ||       || ||       ||
 -------   -------   -------   -------

      ;   @   ;   ;   @   ;   ;   @   ;     ;   @

          1           1           1             1
    p power           A           A            AA
    p' part           A           A            AA
    ind  1A fus ind  2A fus ind  3A fus   ind  6A

chi1  +   1   :  ++   1   : +oo   1   :+oo+oo   1


    2   1   1   1   1   1   1
    3   1   1   1   1   1   1

       1a  2a  3a  3b  6a  6b
   2P  1a  1a  3b  3a  3b  3a
   3P  1a  2a  1a  1a  2a  2a
 X.1    1   1   1   1   1   1
 X.2    1  -1   A  /A  -A -/A
 X.3    1   1  /A   A  /A   A
 X.4    1  -1   1   1  -1  -1
 X.5    1   1   A  /A   A  /A
 X.6    1  -1  /A   A -/A  -A

 A = E(3)
   = (-1+ER(-3))/2 = b3
\endtt
The classes `1a', `2a' correspond to $1A$, $2A$, respectively.
`3a', `6a' correspond to the proxies $3A$, $6A$,
and `3b', `6b' to the not printed classes with these proxies.

% %ignore
% \begin{picture}(110,95)
% \put(0,33){
% \begin{picture}(29,59)
% \put(0,59){\line(1,0){14}}
% \put(0,45){\line(1,0){14}}
% \put(0,44){\line(1,0){14}}
% \put(0,30){\line(1,0){14}}
% \put(0,29){\line(1,0){14}}
% \put(0,15){\line(1,0){14}}
% \put(0,14){\line(1,0){14}}
% \put(0,0){\line(1,0){14}}
% \put(0,45){\line(0,1){14}}
% \put(0,30){\line(0,1){14}}
% \put(0,15){\line(0,1){14}}
% \put(0,0){\line(0,1){14}}
% \put(14,45){\line(0,1){14}}
% \put(14,30){\line(0,1){14}}
% \put(14,15){\line(0,1){14}}
% \put(14,0){\line(0,1){14}}
% \put(15,59){\line(1,0){14}}
% \put(15,45){\line(1,0){14}}
% \put(15,44){\line(1,0){14}}
% \put(15,30){\line(1,0){14}}
% \put(15,29){\line(1,0){14}}
% \put(15,14){\line(1,0){14}}
% \put(15,45){\line(0,1){14}}
% \put(15,30){\line(0,1){14}}
% \put(15,15){\line(0,1){14}}
% \put(15,0){\line(0,1){14}}
% \put(29,45){\line(0,1){14}}
% \put(29,30){\line(0,1){14}}
% \put(7,7){\makebox(0,0){6.G}}
% \put(7,22){\makebox(0,0){3.G}}
% \put(7,37){\makebox(0,0){2.G}}
% \put(7,52){\makebox(0,0){G}}
% \put(22,7){\makebox(0,0){6.G.2}}
% \put(22,22){\makebox(0,0){3.G.2}}
% \put(22,37){\makebox(0,0){2.G.2}}
% \put(22,52){\makebox(0,0){G.2}}
% \end{picture}}
% \put(39,92){\makebox(0,0)[tl]{
% \small\tt
% \begin{minipage}{2in}
% \baselineskip0.9ex
% \parskip0.2ex
% 
% \ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ @\ \par
% \ \ \ \par
% \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ 1\ \par
% \ \ p\ power\ \ \ \ \ \ \ \ \ \ A\ \par
% \ \ p\ttquote\ part\ \ \ \ \ \ \ \ \ \ A\ \par
% \ \ ind\ \ 1A\ fus\ ind\ 2A\ \par
% \ \ \ \par
% $\chi_1$\ \ +\ \ \ 1\ \ \ \:\ \ ++\ \ 1\ \par
% \ \ \ \par
% \ \ ind\ \ \ 1\ fus\ ind\ \ 2\ \par
% \ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ 2\ \par
% \ \ \ \par
% $\chi_2$\ \ +\ \ \ 1\ \ \ \:\ \ ++\ \ 1\ \par
% \ \ \ \par
% \ \ ind\ \ \ 1\ fus\ ind\ \ 2\ \par
% \ \ \ \ \ \ \ \ 3\ \par
% \ \ \ \ \ \ \ \ 3\ \par
% \ \ \ \par
% $\chi_3$\ o2\ \ \ 1\ \ \ \*\ \ \ +\ \par
% \ \ \ \par
% \ \ ind\ \ \ 1\ fus\ ind\ \ 2\ \par
% \ \ \ \ \ \ \ \ 6\ \ \ \ \ \ \ \ \ \ 2\par
% \ \ \ \ \ \ \ \ 3\ \par
% \ \ \ \ \ \ \ \ 2\ \par
% \ \ \ \ \ \ \ \ 3\ \par
% \ \ \ \ \ \ \ \ 6\ \par
% \ \ \ \par
% $\chi_4$\ o2\ \ \ 1\ \ \ \*\ \ \ +\ \par
% \end{minipage}}}
% 
% \put(85,92){\makebox(0,0)[tl]{
% \small\tt
% \begin{minipage}{2in}
% \baselineskip2.7ex
% \parskip0ex
% 
% $3.G.2$ \par
%  \par
% \ \ \ 2\ \ \ 1\ \ \ .\ \ \ 1 \par
% \ \ \ 3\ \ \ 1\ \ \ 1\ \ \ . \par
%  \par
% \ \ \ \ \ \ 1a\ \ 3a\ \ 2a \par
% \ \ 2P\ \ 1a\ \ 3a\ \ 1a \par
% \ \ 3P\ \ 1a\ \ 1a\ \ 2a \par
%  \par
% X.1\ \ \ \ 1\ \ \ 1\ \ \ 1 \par
% X.2\ \ \ \ 1\ \ \ 1\ \ -1 \par
% X.3\ \ \ \ 2\ \ -1\ \ \ . \par
%  \par
% \ 
%  \par
% $6.G.2$ \par
%  \par
% \ \ \ 2\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 2\ \ \ 2\ \ \ 2 \par
% \ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ .\ \ \ . \par
%  \par
% \ \ \ \ \ \ 1a\ \ 6a\ \ 3a\ \ 2a\ \ 2b\ \ 2c \par
% \ \ 2P\ \ 1a\ \ 3a\ \ 3a\ \ 1a\ \ 1a\ \ 1a \par
% \ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 2a\ \ 2b\ \ 2c \par
%  \par
% Y.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
% Y.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ -1\ \ -1 \par
% Y.3\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ 1\ \ -1 \par
% Y.4\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ -1\ \ \ 1 \par
% Y.5\ \ \ \ 2\ \ -1\ \ -1\ \ \ 2\ \ \ .\ \ \ . \par
% Y.6\ \ \ \ 2\ \ \ 1\ \ -1\ \ -2\ \ \ .\ \ \ . \par
% 
% \end{minipage}}}
% \end{picture}
% %end
% %display
The second example explains the fusion case;
again, $G$ is the trivial group.
\begintt
 -------   -------        ;   @   ;   ;  @      3.G.2
||       || ||       ||           1          1
||   G   || ||  G.2  ||     p power          A         2   1   .   1
||       || ||       ||     p' part          A         3   1   1   .
 -------   -------      ind  1A fus ind 2A
 -------   -------                                    1a 3a 2a
||       || ||       ||   X1  +   1   :  ++  1        2P  1a 3a 1a
||  2.G  || || 2.G.2 ||                               3P  1a 1a 2a
||       || ||       ||     ind   1 fus ind  2
 -------   -------            2          2      X.1    1  1  1
 -------   -------                              X.2    1  1 -1
||       || ||           X2  +   1   :  ++  1      X.3    2 -1  .
||  3.G  || || 3.G.2
||       || ||             ind   1 fus ind  2
 -------                      3                 6.G.2
 -------   -------            3
||       || ||                                        2   2  1  1  2  2  2
||  6.G  || || 6.G.2     X3 o2   1   *   +            3   1  1  1  1  .  .
||       || ||
 -------                ind   1 fus ind  2            1a 6a 3a 2a 2b 2c
                              6          2        2P  1a 3a 3a 1a 1a 1a
                              3                   3P  1a 2a 1a 2a 2b 2c
                              2
                              3                 Y.1    1  1  1  1  1  1
                              6                 Y.2    1  1  1  1 -1 -1
                                                Y.3    1 -1  1 -1  1 -1
                      X4 o2   1   *   +         Y.4    1 -1  1 -1 -1  1
                                                Y.5    2 -1 -1  2  .  .
                                                Y.6    2  1 -1 -2  .  .
\endtt
The tables of $G$, $2\.G$, $3\.G$, $6\.G$ and $G\.2$ are known from the first
example, that of $2\.G\.2$ will be given in the next one.
So here we print only the {\GAP} tables of $3\.G\.2 \cong D_6$ and
$6\.G\.2 \cong D_{12}$.

In $3\.G\.2$, the characters `X.1', `X.2' extend $\chi_1$;
$\chi_3$ and its non-printed partner fuse to give `X.3',
and the two preimages of `1A' of order $3$ collapse.

In  $6\.G\.2$,  `Y.1'--`Y.4' are extensions of $\chi_1$, $\chi_2$,
so these characters are the inflated characters from $2\.G\.2$
(with respect to the factor fusion `[ 1, 2, 1, 2, 3, 4 ]').
`Y.5' is inflated from $3\.G\.2$
(with respect to the factor fusion `[ 1, 2, 2, 1, 3, 3 ]'),
and `Y.6' is the result of the fusion of $\chi_4$ and its non-printed
partner.


For the last example, let $G$ be the elementary abelian group $2^2$
of order $4$.
Consider the following tables.
% %ignore
% \begin{picture}(110,125)
% \put(0,93){
% \begin{picture}(29,29)
% \put(0,29){\line(1,0){14}}
% \put(0,15){\line(1,0){14}}
% \put(0,14){\line(1,0){14}}
% \put(0,0){\line(1,0){14}}
% \put(15,29){\line(1,0){14}}
% \put(15,15){\line(1,0){14}}
% \put(15,14){\line(1,0){14}}
% \put(15,0){\line(1,0){14}}
% \put(0,15){\line(0,1){14}}
% \put(0,0){\line(0,1){14}}
% \put(14,15){\line(0,1){14}}
% \put(15,15){\line(0,1){14}}
% \put(29,15){\line(0,1){14}}
% \put(14,0){\line(0,1){14}}
% \put(15,0){\line(0,1){14}}
% \put(29,0){\line(0,1){14}}
% \put(7,7){\makebox(0,0){2.G}}
% \put(22,7){\makebox(0,0){2.G.3}}
% \put(7,22){\makebox(0,0){G}}
% \put(22,22){\makebox(0,0){G.3}}
% \end{picture}}
% 
% \put(81,91){\line(0,1){8}}  % fusion sign in picture
% \put(39,122){\makebox(0,0)[tl]{
% \small\tt
% \begin{minipage}{3in}
% \baselineskip0.9ex
% \parskip0.2ex
% 
% \ \ \ \ ;\ \ \ @\ \ \ @\ \ \ @\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \par
% \ \par
% \ \ \ \ \ \ \ \ 4\ \ \ 4\ \ \ 4\ \ \ 4\ \ \ \ \ \ \ \ \ \ \ 1\ \par
% \ \ p\ power\ \ \ A\ \ \ A\ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \par
% \ \ p\ttquote\ part\ \ \ A\ \ \ A\ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \par
% \ \ ind\ \ 1A\ \ 2A\ \ 2B\ \ 2C\ fus\ ind\ \ 3A\ \par
% \ \par
% $\chi_1$\ \ +\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ \:\ +oo\ \ \ 1\ \par
% \ \par
% $\chi_2$\ \ +\ \ \ 1\ \ \ 1\ \ -1\ \ -1\ \ \ .\ \ \ +\ \ \ 0\ \par
% \ \par
% $\chi_3$\ \ +\ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ .\ \par
% \ \par
% $\chi_4$\ \ +\ \ \ 1\ \ -1\ \ -1\ \ \ 1\ \ \ .\ \par
% \ \par
% \ \ ind\ \ \ 1\ \ \ 4\ \ \ 4\ \ \ 4\ fus\ ind\ \ \ 3\ \par
% \ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6\ \par
% \ \par
% $\chi_5$\ \ -\ \ \ 2\ \ \ 0\ \ \ 0\ \ \ 0\ \ \ \:\ -oo\ \ \ 1\ \par
% \end{minipage}}}
% 
% \put(102,122){\makebox(0,0)[tl]{
% \small\tt
% \begin{minipage}{3in}
% \baselineskip2.7ex
% \parskip0ex
% $G.3$\par
%  \par
% \ \ \ 2\ \ \ 2\ \ \ 2\ \ \ .\ \ \ . \par
% \ \ \ 3\ \ \ 1\ \ \ .\ \ \ 1\ \ \ 1 \par
%  \par
% \ \ \ \ \ \ 1a\ \ 2a\ \ 3a\ \ 3b \par
% \ \ 2P\ \ 1a\ \ 1a\ \ 3b\ \ 3a \par
% \ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 1a \par
%  \par
% X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
% X.2\ \ \ \ 1\ \ \ 1\ \ \ A\ \ /A \par
% X.3\ \ \ \ 1\ \ \ 1\ \ /A\ \ \ A \par
% X.4\ \ \ \ 3\ \ -1\ \ \ .\ \ \ . \par
%  \par
% A\ =\ E(3) \par
% \ \ =\ (-1+ER(-3))/2\ =\ b3 \par
% \end{minipage}}}
% 
% \put(0,71){\makebox(0,0)[tl]{
% \small\tt
% \begin{minipage}{3in}
% \baselineskip2.7ex
% \parskip0ex
% $2.G$\par
%  \par
% \ \ \ 2\ \ \ 3\ \ \ 3\ \ \ 2\ \ \ 2\ \ \ 2\par
%  \par
% \ \ \ \ \ \ 1a\ \ 2a\ \ 4a\ \ 4b\ \ 4c\par
% \ \ 2P\ \ 1a\ \ 1a\ \ 2a\ \ 1a\ \ 1a\par
% \ \ 3P\ \ 1a\ \ 2a\ \ 4a\ \ 4b\ \ 4c\par
%  \par
% X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
% X.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ -1\ \ -1\par
% X.3\ \ \ \ 1\ \ \ 1\ \ -1\ \ \ 1\ \ -1\par
% X.4\ \ \ \ 1\ \ \ 1\ \ -1\ \ -1\ \ \ 1\par
% X.5\ \ \ \ 2\ \ -2\ \ \ .\ \ \ .\ \ \ .\par
% \end{minipage}}}
% 
% \put(50,71){\makebox(0,0)[tl]{
% \small\tt
% \begin{minipage}{3in}
% \baselineskip2.7ex
% \parskip0ex
% $2.G.3$\par
%  \par
% \ \ \ 2\ \ \ 3\ \ \ 3\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
% \ \ \ 3\ \ \ 1\ \ \ 1\ \ \ .\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
%  \par
% \ \ \ \ \ \ 1a\ \ 2a\ \ 4a\ \ 3a\ \ 6a\ \ 3b\ \ 6b\par
% \ \ 2P\ \ 1a\ \ 1a\ \ 2a\ \ 3b\ \ 3b\ \ 3a\ \ 3a\par
% \ \ 3P\ \ 1a\ \ 2a\ \ 4a\ \ 1a\ \ 2a\ \ 1a\ \ 2a\par
%  \par
% X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
% X.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ A\ \ \ A\ \ /A\ \ /A\par
% X.3\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ /A\ \ /A\ \ \ A\ \ \ A\par
% X.4\ \ \ \ 3\ \ \ 3\ \ -1\ \ \ .\ \ \ .\ \ \ .\ \ \ .\par
% X.5\ \ \ \ 2\ \ -2\ \ \ .\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
% X.6\ \ \ \ 2\ \ -2\ \ \ .\ \ \ A\ \ -A\ \ /A\ -/A\par
% X.7\ \ \ \ 2\ \ -2\ \ \ .\ \ /A\ -/A\ \ \ A\ \ -A\par
%  \par
% A\ =\ E(3) \par
% \ \ =\ (-1+ER(-3))/2\ =\ b3 \par
% \end{minipage}}}
% \end{picture}
% %end
% %display
\begintt
 -------   -------            ;   @   @   @   @   ;   ;   @
||       || ||       ||               4   4   4   4           1
||   G   || ||  G.3  ||         p power   A   A   A           A
||       || ||       ||         p' part   A   A   A           A
 -------   -------          ind  1A  2A  2B  2C fus ind  3A
 -------   -------
||       || ||       ||     chi1  +   1   1   1   1   : +oo   1
||  2.G  || || 2.G.3 ||     chi2  +   1   1  -1  -1   .   +   0
||       || ||       ||     chi3  +   1  -1   1  -1   ||
 -------   -------      chi4  +   1  -1  -1   1   ||

                            ind   1   4   4   4 fus ind   3
                                  2                       6

                        chi5  -   2   0   0   0   : -oo   1

  G.3

     2   2   2   .   .
     3   1   .   1   1

        1a  2a  3a  3b
    2P  1a  1a  3b  3a
    3P  1a  2a  1a  1a

  X.1    1   1   1   1
  X.2    1   1   A  /A
  X.3    1   1  /A   A
  X.4    3  -1   .   .

  A = E(3)
    = (-1+ER(-3))/2 = b3

  2.G                          2.G.3

     2   3   3   2   2   2        2   3   3   2   1   1   1   1
                                  3   1   1   .   1   1   1   1
        1a  2a  4a  4b  4c
    2P  1a  1a  2a  1a  1a           1a  2a  4a  3a  6a  3b  6b
    3P  1a  2a  4a  4b  4c       2P  1a  1a  2a  3b  3b  3a  3a
                                 3P  1a  2a  4a  1a  2a  1a  2a
  X.1    1   1   1   1   1
  X.2    1   1   1  -1  -1     X.1    1   1   1   1   1   1   1
  X.3    1   1  -1   1  -1     X.2    1   1   1   A   A  /A  /A
  X.4    1   1  -1  -1   1     X.3    1   1   1  /A  /A   A   A
  X.5    2  -2   .   .   .     X.4    3   3  -1   .   .   .   .
                               X.5    2  -2   .   1   1   1   1
                               X.6    2  -2   .   A  -A  /A -/A
                               X.7    2  -2   .  /A -/A   A  -A

                               A = E(3)
                                 = (-1+ER(-3))/2 = b3
\endtt
In the table of $G\.3 \cong A_4$, the characters $\chi_2$, $\chi_3$, and
$\chi_4$ fuse, and the classes `2A', `2B'  and `2C' collapse.
For getting the table of $2\.G \cong Q_8$,
one just has to split the class `2A' and adjust the representative orders.
Finally, the table of $2\.G\.3 \cong SL_2(3)$ is given;
the class fusion corresponding to the injection $2\.G \hookrightarrow 2\.G\.3$
is `[ 1, 2, 3, 3, 3 ]', and the factor fusion corresponding to the
epimorphism $2\.G\.3 \rightarrow G\.3$ is `[ 1, 1, 2, 3, 3, 4, 4 ]'.

(The beautiful La{\TeX} pictures that were part of the {\GAP}~3 manual
will be reintroduced
as soon as the bad decision to use {\TeX} for the manual will be revised.)


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{CAS Tables}

\index{character tables!CAS}%
\index{tables!library}\index{library of character tables}

All character tables of the {\sf CAS} table library (see~\cite{NPP84})
are available in {\GAP} except if stated otherwise in the file
`doc/ctbldiff.pdf'.
This sublibrary has been completely revised before it was included in {\GAP},
for example, errors have been corrected and power maps have been completed.

Any {\sf CAS} table is accessible by each of its {\sf CAS} names (except if
stated otherwise in `doc/ctbldiff.pdf'), that is,
the table name or the filename used in {\sf CAS}.

\beginexample
gap> tbl:= CharacterTable( "m10" );
CharacterTable( "A6.2_3" )
\endexample

\>CASInfo( <tbl> ) A

Let <tbl> be an ordinary character table <tbl> in the {\GAP} library
that was (up to permutations of classes and characters) contained already
in the {\sf CAS} table library.
When one fetches <tbl> from the library, one does in general not get the
original {\sf CAS} table.
Namely, in many cases (mostly {\ATLAS} tables, see~"ATLAS Tables")
the identifier of the table (see~"ref:Identifier!for character tables"
in the {\GAP} Reference Manual) as well as the ordering of classes and
characters are different for the {\sf CAS} table and its {\GAP} version.

Note that in several cases, the {\sf CAS} library contains different
tables of the same group,
in particular these tables may have different names and orderings of
classes and characters.

The `CASInfo' value of <tbl>, if stored, is a list of records,
each describing the relation between <tbl> and a character table in the
{\sf CAS} library.
The records have the components
\beginitems
`name' &
    the name of the {\sf CAS} table,

`permchars' and `permclasses' &
    permutations of the `Irr' values and the classes of <tbl>,
    respectively, that must be applied in order to get the orderings in
    the original {\sf CAS} table, and

`text' &
    the text that was stored on the {\sf CAS} table
    (which may contain incorrect statements).
\enditems


\beginexample
gap> HasCASInfo( tbl );
true
gap> CASInfo( tbl );
[ rec( name := "m10", permchars := (3,5)(4,8,7,6), permclasses := (), 
      text := "names:     m10\norder:     2^4.3^2.5 = 720\nnumber of classes: \
8\nsource:    cambridge atlas\ncomments:  point stabilizer of mathieu-group m1\
1\ntest:      orth, min, sym[3]\n" ) ]
\endexample

The class fusions stored on tables from the {\sf CAS} library have been
computed anew;
the `text' component of such a fusion record tells if the fusion map is equal
to that in the {\sf CAS} library
--of course modulo the permutation of classes between the table in {\sf CAS}
and its {\GAP} version.

\beginexample
gap> First( ComputedClassFusions( tbl ), x -> x.name = "M11" );
rec( name := "M11", map := [ 1, 2, 3, 4, 5, 4, 7, 8 ], 
  text := "fusion is unique up to table automorphisms,\nthe representative is \
equal to the fusion map on the CAS table" )
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Organization of the Character Table Library}

The data files of the {\GAP} Character Table Library
reside in the `data' directory of the package `ctbllib'.

The filenames start with `ct' (for ``character table''),
followed by either `o' (for ``ordinary''), `b' (for ``Brauer''),
or `g' (for ``generic''),
then a description of the contents (up to $5$ characters, e.g., `alter'
for the tables of alternating and related groups),
and the suffix `.tbl'.

The file `ctb<descr>.tbl' contains the known Brauer tables
corresponding to the ordinary tables in the file `cto<descr>.tbl'.

Each data file of the table library is supposed to consist of
\beginlist
\item{1.}
    comment lines, starting with `' in the first column,
\item{2.}
    assignments to `ALN' (short for ``add library name'',
    see~"NotifyNameOfCharacterTable")
    and to a component of `Revision', at the beginning of the file,
    for example in the file with name `ctoalter.tbl' a value is assigned
    to `Revision.ctoalter_tbl',
\item{3.}
    assignments to `ALN' and to a component of `LIBTABLE.LOADSTATUS',
    at the end of the file, and
\item{4.}
    function calls of the form
    `SET_TABLEFILENAME( <filename> )',
    `MBT( <name>, <data> )' (``make Brauer table''),
    `MOT( <name>, <data> )' (``make ordinary table''),
    `ALF( <from>, <to>, <map> )',
    `ALF( <from>, <to>, <map>, <textlines> )' (``add library fusion''),
    `ALN( <name>, <listofnames> )', and
    `ARC( <name>, <component>, <compdata> )' (``add record component'').

    Here <filename> must be a string corresponding to the filename but
    without suffix, for example `\"ctoalter\"' if the file has the name
    `ctoalter.tbl';
    <name> must be the identifier value of the ordinary character table
    corresponding to the table to which the command refers;
    <data> must be a comma separated sequence of {\GAP} objects;
    <from> and <to> must be identifier values of ordinary character
    tables,
    <map> a list of positive itegers,
    <textlines> and <listofnames> lists list of strings,
    <component> a string, and
    <compdata> any {\GAP} object.

    `MOT', `ALF', `ALN', and `ARC' occur only in files containing
    ordinary character tables,
    and `MBT' occurs only in files containing Brauer tables.
\endlist
Besides the above calls, the data in files containing ordinary and Brauer
tables may contain only the following {\GAP} functions.
(Files containing generic character tables may contain calls to
arbitrary {\GAP} library functions.)

`ACM',
`Concatenation',
`E',
`EvalChars',
`GALOIS',
`Length',
`NotifyCharTableName',
`ShallowCopy',
`TENSOR', and
`TransposedMat'.

The `awk' script `maketbl' in the `etc' directory of the `ctbllib'
package expects the file format described above,
and to some extent this format is checked by this script.

The function calls may be continued over several lines of a file.
A semicolon is assumed to be the last character in its line
if and only if it terminates a function call.

Names of character tables are strings
(see Chapter~"ref:Strings and Characters" in the {\GAP} Reference Manual),
i.e., they are enclosed in double quotes;
strings in table library files must not be split over several lines,
because otherwise the `awk' script may get confused.
Additionally, no character table name is allowed to contain double
quotes.

{\GAP}'s knowledge about the ordinary tables in the table library
is given by the file `ctprimar.tbl' (the ``primary file'' of the
table library).
This file can be produced from the library files by the script `maketbl'
in the `etc' directory of the `ctbllib' package.
The information is stored in the global variable `LIBLIST',
which is a record with the following components.
\beginitems
`firstnames' &
    the list of `Identifier' (see~"ref:Identifier!for character tables"
    in the {\GAP} Reference Manual) values of the ordinary tables,

`files' &
    the list of filenames containing the data of ordinary tables,

`filenames' &
    a list of positive integers, value $j$ at position $i$ means that the
    table whose identifier is the $i$--th in the `firstnames' list is
    contained in the $j$-th file of the `files' component,

`fusionsource' &
    a list containing at position $i$ the list of names of tables that
    store a fusion into the table whose identifier is the $i$--th in the
    `firstnames' list,

`allnames' &
    a list of all admissible names of ordinary library tables,

`position' &
    a list that stores at position $i$ the position in `firstnames'
    of the identifier of the table with the $i$--th admissible name in
    `allnames',

`projections' &
    a list of triples $[ <name>, <factname>, <map> ]$
    describing a factor fusion <map> from the table with identifier
    <name> to the table with identifier <factname>
    (this is used to construct the table of <name> using the data of
    the table of <factname>),

`simpleinfo' &
    a list of triples $[ <m>, <name>, <a> ]$ describing the tables of
    simple groups in the library; <name> is the identifier of the table,
    `<m>.<name>' and `<name>.<a>' are admissible names for its
    Schur multiplier and automorphism group, respectively,

`sporadicSimple' &
    a list of identifiers of the tables of the $26$ sporadic simple
    groups, and

`GENERIC' &
    a record with information about generic tables
    (see~"Generic Character Tables").
\enditems

There are three different ways how the table data can be stored in the
file.

*Full ordinary tables* are encoded by a call to the function `MOT',
where the arguments correspond to the relevant attribute values;
each fusion into another library table is added by a call to `ALF',
values to be stored in components of the table object are added with
`ARC', and admissible names are notified with `ALN'.
The argument of `MOT' that encodes the irreducible characters is
abbreviated as follows.
For each subset of characters that differ just by multiplication with a
linear character or by Galois conjugacy, only the first one is given by
its values, the others are replaced by
`[TENSOR,[<i>,<j>]]' (which means that the character is the tensor
product of the <i>-th and the <j>-th character in the list)
or `[GALOIS,[<i>,<j>]]' (which means that the character is obtained from
the <i>-th character by applying `GaloisCyc( ., <j> )' to it.

*Brauer tables* are stored relative to the corresponding ordinary tables;
attribute values that can be got by restriction from the ordinary table
to $p$--regular classes are not stored,
and instead of the irreducible characters the files contain (inverses of)
decomposition matrices or Brauer trees for the blocks of nonzero defects.

*Ordinary construction tables* have the attribute
`ConstructionInfoCharacterTable' (see~"ConstructionInfoCharacterTable")
set, with value a list that contains the name of the construction
function used and the arguments for a call to this function;
The function call is performed by `CharacterTable' when the table is
constructed (*not* when the file containing the table is read).
The aim of this mechanism is to store structured character tables such as
tables of direct products and tables of central extensions of other
tables in a compact way.



\>LibInfoCharacterTable( <tblname> ) F

is a record with components
\beginitems
`firstName' &
    the `Identifier' value (see~"ref:Identifier!for character tables"
    in the {\GAP} Reference Manual) of the library table
    for which <tblname> is an admissible name, and

`fileName' &
    the name of the file in which the table data is stored.
\enditems
If no such table exists in the {\GAP} library then `fail' is returned.

If <tblname> contains the substring `\"mod\"' then it is regarded as the
name of a Brauer table.
In this case the result is computed from that for the corresponding
ordinary table and the characteristic.
So if the ordinary table exists then the result is a record although
the Brauer table in question need not be contained in the {\GAP} library.




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{How to Extend the Character Table Library}

\index{library tables!add}%
\index{tables!add to the library}

{\GAP} users may want to extend the character table library in different
respects.
Probably the easiest change is to add new admissible names to library tables,
in order to use these names in calls of `CharacterTable'
(see~"ref:CharacterTable" in the {\GAP} Reference Manual,
and "CharacterTableFromLibrary").
This can be done as follows.

\>NotifyNameOfCharacterTable( <firstname>, <newnames> ) F
\>ALN( <firstname>, <newnames> ) F

notifies the strings in the list <newnames> as new admissible names for
the library table with `Identifier' value <firstname>,
see~"ref:Identifier!for character tables" in the {\GAP} Reference Manual.
If there is already another library table for which some of these names
are admissible then an error is signaled.

`NotifyNameOfCharacterTable' modifies the global variable `LIBLIST'.

`ALN' is a shorthand for `NotifyNameOfCharacterTable'.
In those library files for which the `maketbl' script has produced the
necessary information for `LIBLIST', `ALN' is set to `Ignore'
in the beginning and back to `NotifyNameOfCharacterTable' in the end.


\beginexample
gap> CharacterTable( "private" );
fail
gap> NotifyNameOfCharacterTable( "A5", [ "private" ] );
gap> a5:= CharacterTable( "private" );
CharacterTable( "A5" )
\endexample

The next kind of changes is the addition of new fusions between library
tables.
Once a fusion map is known, it can be added to the library file containing
the table of the subgroup, using the format produced by `LibraryFusion'.

\>ALF( <from>, <to>, <map>[, <text>, <spec>] ) F

`ALF' stores the fusion map <map> between the ordinary character tables
with identifier strings <from> and <to> in the record encoding the table
with identifier <from>.
If the string <text> is given then it is added as `text' component of the
fusion.
If the argument <spec> is given then it is added as `specification'
component of the fusion.

`ALF' changes the global list `LIBLIST.fusionsource'.

Note that the `ALF' statement should be placed in the file containing the
data for the table with identifier <from>.


\>LibraryFusion( <name>, <fus> ) F

For a string <name> that is an `Identifier' value
(see~"ref:Identifier!for character tables" in the {\GAP} Reference
Manual) of an ordinary character table in the {\GAP} library,
and a record <fus> with the components
`name' (the identifier of the destination table, or this table itself),
`map' (the fusion map, a list of image positions),
and optionally `text' (a string containing information about the fusion)
and `specification' (a string or an integer),
`LibraryFusion' returns a string whose printed value can be used to add
the fusion in question to the library file containing the data for the
table with identifier <name>.

<name> may also be a character table, in this case its `Identifier' value
is used as string.


\beginexample
gap> s5:= CharacterTable( "S5" );
CharacterTable( "A5.2" )
gap> fus:= PossibleClassFusions( a5, s5 );
[ [ 1, 2, 3, 4, 4 ] ]
gap> fusion:= rec( name:= Identifier( s5 ), map:= fus[1], text:= "unique" );;
gap> Print( LibraryFusion( "A5", fusion ) );
ALF("A5","A5.2",[1,2,3,4,4],[
"unique"
]);
\endexample

The last kind of changes is the addition of new character tables to the
{\GAP} character table library.
Data files containing tables in library format
(i.e., in the form of calls to `MOT' or `MBT')
can be produced using `PrintToLib'.

\>PrintToLib( <file>, <tbl> ) F

prints the (ordinary or Brauer) character table <tbl> in library format
to the file `<file>.tbl' or <file>
(if this has already the suffix `.tbl'), respectively.

If <tbl> is an ordinary table then the value of the attribute
`NamesOfFusionSources' is ignored by `PrintToLib',
since for library tables this information is extracted from the source
files by the `maketbl' script.


\begintt
gap> PrintToLib( "private", a5 );
\endtt
The above command appends the data of the table `a5' to the file
`private.tbl';
the first lines printed to this file are
\begintt
SET_TABLEFILENAME("private");
MOT("A5",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5]"
],
[60,4,3,5,5],
[,[1,1,3,5,4],[1,2,1,5,4],,[1,2,3,1,1]],
[[1,1,1,1,1],[3,-1,0,-E(5)-E(5)^4,-E(5)^2-E(5)^3],
[GALOIS,[2,2]],[4,0,1,-1,-1],[5,1,-1,0,0]],
[(4,5)]);
ARC("A5","projectives",["2.A5",[[2,0,-1,E(5)+E(5)^4,E(5)^2+E(5)^3],
[GALOIS,[1,2]],[4,0,1,-1,-1],[6,0,0,1,1]],]);
ARC("A5","extInfo",["2","2"]);
\endtt

If you have an ordinary character table in library format which you want to
add to the table library, for example because it shall be accessible via
`CharacterTable' (see~"CharacterTableFromLibrary"),
you must notify this table, i.e., tell {\GAP} in which file it can be found,
and which names shall be admissible for it.

\>NotifyCharacterTable( <firstname>, <filename>, <othernames> ) F

notifies a new ordinary table to the library.
This table has `Identifier' value <firstname>,
it is contained (in library format, see~"PrintToLib") in the file with
name <filename> (without suffix `.tbl'),
and the names contained in the list <othernames> are admissible for it.

If the initial part of <filename> is one of `~/', `/' or `./' then it is
interpreted as an *absolute* path.
Otherwise it is interpreted *relative* to the `data' directory of the
`ctbllib' package.

`NotifyCharacterTable' modifies the global variable `LIBLIST' for the
current {\GAP} session,
after having checked that there is no other library table yet with an
admissible name equal to <firstname> or contained in <othernames>.



For example, let us change the name `A5' to `icos' wherever it occurs in
the file `private.tbl' that was produced above,
and then notify the ``new'' table in this file as follows.
(The name change is needed because {\GAP} knows already a table with name
`A5' and would not accept to add another table with this name.)

\begintt
gap> NotifyCharacterTable( "icos", "private", [] );
gap> icos:= CharacterTable( "icos" );
CharacterTable( "icos" )
gap> Display( icos );
icos

     2  2  2  .  .  .
     3  1  .  1  .  .
     5  1  .  .  1  1

       1a 2a 3a 5a 5b
    2P 1a 1a 3a 5b 5a
    3P 1a 2a 1a 5b 5a
    5P 1a 2a 3a 1a 1a

X.1     1  1  1  1  1
X.2     3 -1  .  A *A
X.3     3 -1  . *A  A
X.4     4  .  1 -1 -1
X.5     5  1 -1  .  .

A = -E(5)-E(5)^4
  = (1-ER(5))/2 = -b5
\endtt

So the private table is treated as a library table.
Note that the table can be accessed only if it has been notified in the
current {\GAP} session.
For frequently used private tables, it may be reasonable to put the
`NotifyCharacterTable' statements into your `.gaprc' file
(see~"ref:The .gaprc File" in the {\GAP} Reference Manual),
or into a file that is read via the `.gaprc' file.
For adding interesting character tables to the {\GAP} distribution,
please send the tables to the e-mail address mentioned in the first paragraph
of this chapter.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%E