This file is indexed.

/usr/share/gap/pkg/ctbllib/gap4/construc.gd is in gap-character-tables 1r1p3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
#############################################################################
##
#W  construc.gd           GAP 4 package `ctbllib'               Thomas Breuer
##
#H  @(#)$Id: construc.gd,v 1.14 2004/03/23 10:14:25 gap Exp $
##
#Y  Copyright (C)  2002,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
##
##  1. Character Tables of Groups of Structure $M.G.A$
##  2. Character Tables of Groups of Structure $G.S_3$
##  3. Character Tables of Groups of Structure $G.2^2$
##  4. Character Tables of Groups of Structure $2^2.G$
##  5. Brauer Tables of Extensions by $p$-regular Automorphisms
##  6. Construction Functions used in the Character Table Library
##  7. Character Tables of Coprime Central Extensions
##  8. Miscellaneous
##
Revision.( "ctbllib/gap4/construc_gd" ) :=
    "@(#)$Id: construc.gd,v 1.14 2004/03/23 10:14:25 gap Exp $";


#############################################################################
#1
##  The functions in this chapter deal with the construction of character
##  tables from other character tables.  So they fit to the functions in
##  Section~"ref:Constructing Character Tables from Others" in the {\GAP}
##  Reference Manual.
##  But since they are used in situations that are typical for the {\GAP}
##  Character Table Library, they are described here.
##
##  An important ingredient of the constructions is the description of the
##  action of a group automorphism on the classes by a permutation.
##  In practice, these permutations are usually chosen from the group of
##  table automorphisms of the character table in question
##  (see~"ref:AutomorphismsOfTable" in the {\GAP} Reference Manual).
##
##  Section~"Character Tables of Groups of Structure MGA" deals with
##  groups of structure $M\.G\.A$, where the upwards extension $G\.A$ acts
##  suitably on the central extension $M\.G$.
##  Section~"Character Tables of Groups of Structure GS3" deals with
##  groups that have a factor group of type $S_3$.
#T  The sections~"Character Tables of Groups of Structure GV4"
#T  and~"Character Tables of Groups of Structure V4G" deal with the
#T  character tables of upwards and downwards extensions of a group by a
#T  Klein four group.
#T  Section~"Brauer Tables of Extensions by p-regular Automorphisms"
#T  describes the construction of certain Brauer tables.
##  Section~"Character Tables of Coprime Central Extensions" deals with
##  special cases of the construction of character tables of central
##  extensions from known character tables of suitable factor groups.
##  Section~"Construction Functions used in the Character Table Library"
##  documents the functions used to encode certain tables in the {\GAP}
##  Character Table Library.
##
##  Examples can be found in~\cite{Auto}.
##


#############################################################################
##
##  1. Character Tables of Groups of Structure $M.G.A$
##


#############################################################################
##
#F  PossibleCharacterTablesOfTypeMGA( <tblMG>, <tblG>, <tblGA>, <aut>,
#F      <identifier> )
##
##  Let $H$ be a group with normal subgroups $N$ and $M$ such that
##  $H/N$ is cyclic, $M \leq N$ holds,
##  and such that each irreducible character of $N$
##  that does not contain $M$ in its kernel induces irreducibly to $H$.
##  (This is satisfied for example if $N$ has prime index in $H$
##  and $M$ is a group of prime order that is central in $N$ but not in $H$.)
##  Let $G = N/M$ and $A = H/N$, so $H$ has the structure $M\.G\.A$.
##
##  Let <tblMG>, <tblG>, <tblGA> be the ordinary character tables of the
##  groups $M\.G$, $G$, and $G\.A$, respectively,
##  and <aut> the permutation of classes of <tblMG> induced by the action
##  of $H$ on $M\.G$.
##  Furthermore, let the class fusions from <tblMG> to <tblG> and from <tblG>
##  to <tblGA> be stored on <tblMG> and <tblG>, respectively
##  (see~"ref:StoreFusion" in the {\GAP} Reference Manual).
##
##  `PossibleCharacterTablesOfTypeMGA' returns a list of records describing
##  all possible character tables for groups $H$ that are compatible with the
##  arguments.
##  Note that in general there may be several possible groups $H$,
##  and it may also be that ``character tables'' are constructed for which no
##  group exists.
##  Each of the records in the result has the following components.
##  \beginitems
##  `table' &
##      the ordinary character table of a possible table for $H$, and
##
##  `MGfusMGA' &
##      the fusion map from <tblMG> into the table stored in `table'.
##  \enditems
##  The possible tables differ w.r.t. some power maps, and perhaps element
##  orders and table automorphisms;
##  in particular, the `MGfusMGA' component is the same in all records.
##
##  The returned tables have the `Identifier' value <identifier>.
##  The classes of these tables are sorted as follows.
##  First come the classes contained in $M\.G$, sorted compatibly with the
##  classes in <tblMG>, then the classes in $H \setminus M\.G$ follow,
##  in the same ordering as the classes of $G\.A \setminus G$.
##
DeclareGlobalFunction( "PossibleCharacterTablesOfTypeMGA" );


#############################################################################
##
#F  PossibleActionsForTypeMGA( <tblMG>, <tblG>, <tblGA> )
##
##  Let the arguments be as described for `PossibleCharacterTablesOfTypeMGA'
##  (see~"PossibleCharacterTablesOfTypeMGA").
##  `PossibleActionsForTypeMGA' returns the set of those table automorphisms
##  (see~"ref:AutomorphismsOfTable" in the {\GAP} Reference Manual)
##  of <tblMG> that can be induced by the action of $H$ on $M\.G$.
##
##  Information about the progress is reported if the info level of
##  `InfoCharacterTable' is at least $1$
##  (see~"ref:SetInfoLevel" in the {\GAP} Reference Manual).
##
DeclareGlobalFunction( "PossibleActionsForTypeMGA" );


#############################################################################
##
##  2. Character Tables of Groups of Structure $G.S_3$
##


#############################################################################
##
#F  CharacterTableOfTypeGS3( <tbl>, <tbl2>, <tbl3>, <aut>, <identifier> )
#F  CharacterTableOfTypeGS3( <modtbl>, <modtbl2>, <modtbl3>, <ordtbls3>,
#F                           <identifier> )
##
##  Let $H$ be a group with a normal subgroup $G$ such that $H/G \cong S_3$,
##  the symmetric group on three points,
##  and let $G\.2$ and $G\.3$ be preimages of subgroups of order $2$ and $3$,
##  respectively, under the natural projection onto this factor group.
##
##  In the first form, let <tbl>, <tbl2>, <tbl3> be the ordinary character
##  tables of the groups $G$, $G\.2$, and $G\.3$, respectively,
##  and <aut> the permutation of classes of <tbl3> induced by the action
##  of $H$ on $G\.3$.
##  Furthermore assume that the class fusions from <tbl> to <tbl2> and <tbl3>
##  are stored on <tbl>
##  (see~"ref:StoreFusion" in the {\GAP} Reference Manual).
##
##  In the second form, let <modtbl>, <modtbl2>, <modtbl3> be the $p$-modular
##  character tables of the groups $G$, $G\.2$, and $G\.3$, respectively,
##  and <ordtbls3> the ordinary character table of $H$.
##
##  `CharacterTableOfTypeGS3' returns a record with the following components.
##  \beginitems
##  `table' &
##      the ordinary or $p$-modular character table of $H$, respectively,
##
##  `tbl2fustbls3' &
##      the fusion map from <tbl2> into the table of $H$, and
##
##  `tbl3fustbls3' &
##      the fusion map from <tbl3> into the table of $H$.
##  \enditems
##
##  The returned table of $H$ has the `Identifier' value <identifier>.
##  The classes of the table of $H$ are sorted as follows.
##  First come the classes contained in $G\.3$, sorted compatibly with the
##  classes in <tbl3>, then the classes in $H \setminus G\.3$ follow,
##  in the same ordering as the classes of $G\.2 \setminus G$.
##
#T  In fact the code is applicable in the more general case that $H/G$ is a
#T  Frobenius group $F = K C$ with abelian kernel $K$ and cyclic complement
#T  $C$ of prime order, see~\cite{Auto}.
#T  Besides $F = S_3$, e.g., the case $F = A_4$ is interesting.
##
DeclareGlobalFunction( "CharacterTableOfTypeGS3" );


#############################################################################
##
#F  PossibleActionsForTypeGS3( <tbl>, <tbl2>, <tbl3> )
##
##  Let the arguments be as described for `CharacterTableOfTypeGS3'
##  (see~"CharacterTableOfTypeGS3").
##  `PossibleActionsForTypeGS3' returns the set of those table automorphisms
##  (see~"ref:AutomorphismsOfTable" in the {\GAP} Reference Manual)
##  of <tbl3> that can be induced by the action of $H$ on the classes of
##  <tbl3>.
##
##  Information about the progress is reported if the info level of
##  `InfoCharacterTable' is at least $1$
##  (see~"ref:InfoCharacterTable" in the {\GAP} Reference Manual).
##
DeclareGlobalFunction( "PossibleActionsForTypeGS3" );


#############################################################################
##
##  3. Character Tables of Groups of Structure $G.2^2$
#4
##  The following functions are thought for constructing the possible
##  ordinary character tables of a group of structure $G\.2^2$ from the known
##  tables of the three normal subgroups of type $G\.2$.
##


#############################################################################
##
#F  PossibleCharacterTablesOfTypeGV4( <tblG>, <tblsG2>, <acts>, <identifier> )
##
##  Let <tblG> be the ordinary character table of a group $G$, say,
##  and let <tblsG2> be a list of three character tables of groups $G\.2_1$,
##  $G\.2_2$, $G\.2_3$, say, which contain $G$ as a subgroup of index $2$.
##  Let <acts> be a list of three permutations describing the action of a
##  group $H$, say, that contains $G\.2_1$, $G\.2_2$, $G\.2_3$ as index $2$
##  subgroups which intersect in the index $4$ subgroup $G$,
##  on the conjugacy classes of the corresponding tables in <tblsG2>.
##  Further it is assumed that the class fusions from <tblG> into the tables
##  in <tblsG2> are stored on <tblG>.
##
##  `PossibleCharacterTablesOfTypeGV4' returns a list of records describing
##  all possible character tables for groups $H$ that are compatible with the
##  arguments; note that in general there may be several such groups.
##  Each of the records has the following components.
##  \beginitems
##  `table' &
##      the ordinary character table of a possible table for $H$, and
##
##  `G2fusGV4' &
##      the list of fusion maps from the tables in <tblsG2> into the table.
##  \enditems
##  The possible tables differ w.r.t. the irreducible characters and perhaps
##  the table automorphisms;
##  in particular, the `G2fusGV4' component is the same in all records.
##
##  The returned tables have the `Identifier' value <identifier>.
##  The classes of these tables are sorted as follows.
##  First come the classes contained in $G$, sorted compatibly with the
##  classes in <tblG>, then the outer classes in the tables in <tblsG2>
##  follow, in the same ordering as in these tables.
##
DeclareGlobalFunction( "PossibleCharacterTablesOfTypeGV4" );


#############################################################################
##
#F  PossibleActionsForTypeGV4( <tblG>, <tblsG2> )
##
##  Let the arguments be as described for `PossibleCharacterTablesOfTypeGV4'
##  (see~"PossibleCharacterTablesOfTypeGV4").
##  `PossibleActionsForTypeGV4' returns the list of those triples
##  $[ \pi_1, \pi_2, \pi_3 ]$ of permutations for which a group $H$ may exist
##  that contains $G\.2_1$, $G\.2_2$, $G\.2_3$ as index $2$ subgroups
##  which intersect in the index $4$ subgroup $G$.
##
##  Information about the progress is reported if the level of
##  `InfoCharacterTable' is at least $1$
##  (see~"ref:SetInfoLevel" in the {\GAP} Reference Manual).
##
DeclareGlobalFunction( "PossibleActionsForTypeGV4" );


#############################################################################
##
##  4. Character Tables of Groups of Structure $2^2.G$
#5
##  The following function is thought for constructing the possible ordinary
##  character tables of a group of structure $2^2\.G$ from the known tables
##  of the three factor groups modulo the normal order two subgroups in the
##  Klein four group.
##


#############################################################################
##
#F  PossibleCharacterTablesOfTypeV4G( <tblG>, <tbls2G>, <identifier> )
#F  PossibleCharacterTablesOfTypeV4G( <tblG>, <tbl2G>, <aut>, <identifier> )
##
##  Let $H$ be a group with a central subgroup $N$ of type $2^2$,
##  and let $Z_1$, $Z_2$, $Z_3$ be the order $2$ subgroups of $N$.
##
##  In the first form, let <tblG> be the ordinary character table of $H/N$,
##  and <tbls2G> be a list of length three, the entries being the ordinary
##  character tables of the groups $H/Z_i$.
##  In the second form, let <tbl2G> be the ordinary character table of
##  $H/Z_i$ and <aut> be a permutation;
##  here it is assumed that the groups $Z_i$ are permuted under an
##  automorphism $\sigma$ of order $3$ of $H$, and that $\sigma$ induces the
##  permutation <aut> on the classes of <tblG>.
##
##  Let the class fusions from <tblG> into the tables in <tbls2G> or <tbl2G>,
##  respectively, be stored on <tblG>.
##
##  `PossibleCharacterTablesOfTypeV4G' returns the list of all possible
##  character tables for $H$ in this situation.
##  The returned tables have the `Identifier' value <identifier>.
#T which criteria are used?
##
DeclareGlobalFunction( "PossibleCharacterTablesOfTypeV4G" );


#############################################################################
##
##  5. Brauer Tables of Extensions by $p$-regular Automorphisms
#6
##  As for the construction of Brauer character tables from known tables,
##  the functions `PossibleCharacterTablesOfTypeMGA'
##  (see~"PossibleCharacterTablesOfTypeMGA") and `CharacterTableOfTypeGS3'
##  (see~"CharacterTableOfTypeGS3") work for both ordinary and Brauer tables.
##  The following function is designed specially for Brauer tables.
##


#############################################################################
##
#F  BrauerTableOfExtensionBySingularAutomorphism( <modtbl>, <ordexttbl> )
##
##  Let <modtbl> be a $p$-modular Brauer table of the group $G$, say,
##  and <ordexttbl> the ordinary character table of an extension of $G$
##  by an automorphism of order $p$.
##  Further let the class fusion from the ordinary table of <modtbl> into
##  <ordexttbl> be stored.
##  Then `BrauerTableOfExtensionBySingularAutomorphism' returns the
##  $p$-modular Brauer table of <ordexttbl>.
##
DeclareGlobalFunction( "BrauerTableOfExtensionBySingularAutomorphism" );


#############################################################################
##
##  6. Construction Functions used in the Character Table Library
#7
##  The following functions are used in the {\GAP} Character Table Library,
##  for encoding table constructions via the mechanism that is based on the
##  attribute `ConstructionInfoCharacterTable'
##  (see~"ConstructionInfoCharacterTable").
##  All construction functions take as their first argument a record that
##  describes the table to be constructed, and the function adds only those
##  components that are not yet contained in this record.
##


#############################################################################
##
#F  ConstructMGA( <tbl>, <subname>, <factname>, <plan>, <perm> )
##
##  `ConstructMGA' constructs the ordinary character table <tbl> of a group
##  $m\.G\.a$ where the automorphism $a$ (a group of prime order) of $m\.G$
##  acts notrivially on the central subgroup $m$ of $m\.G$.
##  <subname> is the name of the subgroup $m\.G$ which is a (not necessarily
##  cyclic) central extension of the (not necessarily simple) group $G$,
##  <factname> is the name of the factor group $G\.a$.
##  Then the faithful characters of <tbl> are induced characters of $m\.G$.
##
##  <plan> is a list, each entry being a list containing positions of
##  characters of $m\.G$ that form an orbit under the action of $a$
##  (so the induction of characters is simulated).
##
##  <perm> is the permutation that must be applied to the list of characters
##  that is obtained on appending the faithful characters to the
##  inflated characters of the factor group.
##  A nonidentity permutation occurs for example for groups of structure
##  $12\.G\.2$ that are encoded via the subgroup $12\.G$ and the factor group
##  $6\.G\.2$, where the faithful characters of $4\.G\.2$ shall precede those
##  of $6\.G\.2$.
##
##  Examples where `ConstructMGA' is used to encode library tables are the
##  tables of $3\.F_{3+}\.2$ (subgroup $3\.F_{3+}$, factor group $F_{3+}\.2$)
##  and $12_1\.U_4(3)\.2_2$ (subgroup $12_1\.U_4(3)$, factor group
##  $6_1\.U_4(3)\.2_2$).
##
DeclareGlobalFunction( "ConstructMGA" );

DeclareSynonym( "ConstructMixed", ConstructMGA );


#############################################################################
##
#F  ConstructMGAInfo( <tblmGa>, <tblmG>, <tblGa> )
##
##  Let <tblmGa> be the ordinary character table of a group of structure
##  $m\.G\.a$ where the factor group of prime order $a$ acts nontrivially on
##  the normal subgroup of order $m$ that is central in $m\.G$,
##  <tblmG> the character table of $m\.G$, and <tblGa> the character table of
##  the factor group $G\.a$.
##
##  `ConstructMGAInfo' returns the list that is to be stored in the library
##  version of <tblmGa>: the first entry is the string `"ConstructMGA"',
##  the remaining four entries are the last four arguments for the call to
##  `ConstructMGA' (see~"ConstructMGA").
##
DeclareGlobalFunction( "ConstructMGAInfo" );


#############################################################################
##
#F  ConstructGS3( <tbls3>, <tbl2>, <tbl3>, <ind2>, <ind3>, <ext>, <perm> )
#F  ConstructGS3Info( <tbl2>, <tbl3>, <tbls3> )
##
##  `ConstructGS3' constructs the irreducibles of an ordinary character table
##  <tbls3> of type $G\.S_3$ from the tables with names <tbl2> and <tbl3>,
##  which correspond to the groups $G\.2$ and $G\.3$, respectively.
##  <ind2> is a list of numbers referring to irreducibles of <tbl2>.
##  <ind3> is a list of pairs, each referring to irreducibles of <tbl3>.
##  <ext>  is a list of pairs, each referring to one irreducible of <tbl2>
##                             and one of <tbl3>.
##  <perm> is a permutation that must be applied to the irreducibles
##  after the construction.
##
##  `ConstructGS3Info' returns a record with the components `ind2', `ind3',
##  `ext', `perm', and `list', as are needed for `ConstructGS3'.
#T better return just the `list' component?
##
DeclareGlobalFunction( "ConstructGS3" );

DeclareGlobalFunction( "ConstructGS3Info" );


#############################################################################
##
#F  ConstructV4G( <tbl>, <facttbl>, <aut>[, <ker>] )
##
##  Let <tbl> be the character table of a group of type $2^2\.G$
##  where an outer automorphism of order 3 permutes the three involutions
##  in the central $2^2$.
##  Let <aut> be the permutation of classes of <tbl> induced by that
##  automorphism, and <facttbl> the name of the character table
##  of the factor group $2\.G$.
##  Then `ConstructV4G' constructs the irreducible characters of <tbl> from
##  that information.
##
##  The optional argument <ker> is an integer denoting the position of the
##  nontrivial class of the table of $2\.G$ that lies in the kernel of the
##  epimorphism onto $G$; the default for <ker> is $2$.
##
DeclareGlobalFunction( "ConstructV4G" );


#############################################################################
##
#F  ConstructProj( <tbl>, <irrinfo> )
#F  ConstructProjInfo( <tbl>, <kernel> )
##
##  `ConstructProj' constructs the irreducible characters of record encoding
##  the ordinary character table <tbl> from projective characters of tables
##  of factor groups,
##  which are stored in the `ProjectivesInfo' (see~"ProjectivesInfo") value
##  of the smallest factor;
##  the information about the name of this factor and the projectives to
##  take is stored in <irrinfo>.
##
##  `ConstructProjInfo' takes an ordinary character table <tbl> and a list
##  <kernel> of class positions of a cyclic kernel of order dividing $12$,
##  and returns a record with the components
##  \beginitems
##  `tbl' &
##      a character table that is permutation isomorphic with <tbl>,
##      and sorted such that classes that differ only by multiplication with
##      elements in the classes of <kernel> are consecutive,
##
##  `projectives' &
##      a record being the entry for the `projectives' list of the table of
##      the factor of <tbl> by <kernel>,
##      describing this part of the irreducibles of <tbl>, and
##
##  `info' &
##      the value of <irrinfo>.
##  \enditems
##
##  In order to encode a library table $t$ as a ``projective table'' relative
##  to another library table $f$, say, one has to do the following.
##  First the factor fusion from $t$ to $f$ must be stored on the table of
##  $t$, and $t$ is written to a library file.
##  Then the result of `ConstructProjInfo', called for $t$ and the kernel of
##  the factor fusion, is used as follows.
##  The list containing `"ConstructProj"' at its first position and the
##  `info' component is added as last entry of the `MOT' call for this
##  library version.
##  The `projectives' component is added to the `ProjectivesInfo' list of
##  $f$, and a new library version of $f$ is produced (this contains the new
##  projectives via an `ARC' call).
##  Finally, `etc/maketbl' is called in order to store the projection for the
##  factor fusion in the `ctprimar.tbl' data.
##
DeclareGlobalFunction( "ConstructProj" );

DeclareGlobalFunction( "ConstructProjInfo" );


#############################################################################
##
#F  ConstructDirectProduct( <tbl>, <factors> )
#F  ConstructDirectProduct( <tbl>, <factors>, <permclasses>, <permchars> )
##
##  is a special case of a `construction' call for a library table <tbl>.
##
##  The direct product of the tables described in the list <factors> is
##  constructed, and all its components stored not yet in <tbl> are
##  added to <tbl>.
##
##  The `computedClassFusions' component of <tbl> is enlarged
##  by the factor fusions from the direct product to the factors.
##
##  If the optional arguments <permclasses>, <permchars> are given then
##  classes and characters of the result are sorted accordingly.
##
##  <factors> must have length at least two;
##  use `ConstructPermuted' (see~"ConstructPermuted") in the case of only
##  one factor.
##
DeclareGlobalFunction( "ConstructDirectProduct" );


#############################################################################
##
#F  ConstructSubdirect( <tbl>, <factors>, <choice> )
##
##  The library table <tbl> is completed with help of the table obtained by
##  taking the direct product of the tables with names in the list <factors>,
##  and then taking the table consisting of the classes in the list <choice>.
##
##  Note that in general, the restriction to the classes of a normal subgroup
##  is not sufficient for describing the irreducible characters of this
##  normal subgroup.
##
DeclareGlobalFunction( "ConstructSubdirect" );


#############################################################################
##
#F  ConstructIsoclinic( <tbl>, <factors> )
#F  ConstructIsoclinic( <tbl>, <factors>, <nsg> )
##
##  constructs first the direct product of library tables as given by the
##  list <factors>, and then constructs the isoclinic table of the result.
##
DeclareGlobalFunction( "ConstructIsoclinic" );


#############################################################################
##
#F  ConstructPermuted( <tbl>, <libnam>[, <prmclasses>, <prmchars>] )
##
##  The library table <tbl> is completed with help of the library table with
##  name <libnam>, whose classes and characters must be permuted by the
##  permutations <prmclasses> and <prmchars>, respectively.
##
DeclareGlobalFunction( "ConstructPermuted" );


#############################################################################
##
#F  ConstructFactor( <tbl>, <libnam>, <kernel> )
##
##  The library table <tbl> is completed with help of the library table with
##  name <libnam>, by factoring out the classes in the list <kernel>.
##
DeclareGlobalFunction( "ConstructFactor" );


#############################################################################
##
#F  ConstructClifford( <tbl>, <cliffordtable> )
##
##  constructs the irreducibles of the ordinary character table <tbl> from
##  the Clifford matrices stored in `<tbl>.cliffordTable'.
##
DeclareGlobalFunction( "ConstructClifford" );


#############################################################################
##
##  7. Character Tables of Coprime Central Extensions
##


#############################################################################
##
#F  CharacterTableOfCommonCentralExtension( <tblG>, <tblmG>, <tblnG>, <id> )
##
##  Let <tblG> be the ordinary character table of a group $G$, say,
##  and let <tblmG> and <tblnG> be the ordinary character tables of central
##  extensions $m.G$ and $n.G$ of $G$ by cyclic groups of prime orders $m$
##  and $n$, respectively, with $m \not= n$.
##  We assume that the factor fusions from <tblmG> and <tblnG> to <tblG> are
##  stored on the tables.
##  `CharacterTableOfCommonCentralExtension' returns a record with the
##  following components.
##
##  \beginitems
##  `tblmnG' &
##      the character table $t$, say, of the corresponding central extension
##      of $G$ by a cyclic group of order $m n$ that factors through $m.G$
##      and $n.G$; the `Identifier' value of this table is <id>,
##
##  `IsComplete' &
##      `true' if the `Irr' value is stored in $t$, and `false' otherwise,
##
##  `irreducibles' &
##      the list of irreducibles of $t$ that are known;
##      it contains the inflated characters of the factor groups $m.G$ and
##      $n.G$, plus those irreducibles that were found in tensor
##      products of characters of these groups.
##  \enditems
##
##  Note that the conjugacy classes and the power maps of $t$ are uniquely
##  determined by the input data.
##  Concerning the irreducible characters, we try to extract them from the
##  tensor products of characters of the given factor groups by reducing
##  with known irreducibles and applying the LLL algorithm
##  (see~"ref:ReducedClassFunctions" and~"ref:LLL"
##  in the {\GAP} Reference Manual).
##
DeclareGlobalFunction( "CharacterTableOfCommonCentralExtension" );


#############################################################################
##
#F  IrreduciblesForCharacterTableOfCommonCentralExtension(
#F      <tblmnG>, <factirreducibles>, <zpos>, <needed> )
##
##  This function implements a heuristic for finding the missing irreducible
##  characters of a character table whose table head is constructed with
##  `CharacterTableOfCommonCentralExtension'
##  (see~"CharacterTableOfCommonCentralExtension").
##  Currently reducing tensor products and applying the LLL algorithm are
##  the only ingredients.
##
DeclareGlobalFunction(
    "IrreduciblesForCharacterTableOfCommonCentralExtension" );


#############################################################################
##
##  8. Miscellaneous
#8
##


#############################################################################
##
#F  PossibleActionsForTypeGA( <tblG>, <tblGA> )
##
##  Let <tblG> and <tblGA> be the ordinary character tables of a group $G$
##  and of an extension $\tilde{G}$ of $G$ by an automorphism of order $A$,
##  say.
##
##  `PossibleActionsForTypeGA' returns the list of all those permutations
##  that may describe the action of $\tilde{G}$ on the classes
##  of <tblG>, that is, all table automorphisms of <tblG> that have order
##  dividing $A$ and permute the classes of <tblG> compatibly with the fusion
##  from <tblG> into <tblGA>.
##
DeclareGlobalFunction( "PossibleActionsForTypeGA" );
#T Replace the function by one that takes a perm. group and a fusion map!

#T The following two functions belong to the package for interactive
#T character table constructions;
#T but they are needed for `CharacterTableOfCommonCentralExtension'.

#############################################################################
##
#F  ReducedX( <tbl>, <redresult>, <chars> )
##
##  Let <tbl> be an ordinary character table, <redresult> be a result record
##  returned by `Reduced' when called with first argument <tbl>, and <chars>
##  be a list of characters of <tbl>.
##  `ReducedX' first reduces <chars> with the `irreducibles' component of
##  <redresult>; if new irreducibles are obtained this way then the
##  characters in the `remainders' component of <redresult> are reduced with
##  them; this process is iterated until no more irreducibles are found.
##  The function returns a record with the following components.
##
##  \beginitems
##  `irreducibles' &
##      all irreducible characters found during the process, including the
##      `irreducibles' component of <redresult>,
##
##  `remainders' &
##      the reducible characters that are left from <chars> and the
##      `remainders' component of <redresult>.
##  \enditems
##
DeclareGlobalFunction( "ReducedX" );


#############################################################################
##
#F  TensorAndReduce( <tbl>, <chars1>, <chars2>, <irreducibles>, <needed> )
##
##  Let <tbl> be an ordinary character table, <chars1> and <chars2> be two
##  lists of characters of <tbl>, <irreducibles> be a list of irreducible
##  characters of <tbl>, and <needed> be a nonnegative integer.
##  `TensorAndReduce' forms the tensor products of the characters in <chars1>
##  with the characters in <chars2>, and reduces them with the characters in
##  <irreducibles> and with all irreducible characters that are found this
##  way.
##  The function returns a record with the following components.
##
##  \beginitems
##  `irreducibles' &
##      all new irreducible characters found during the process,
##
##  `remainders' &
##      the reducible characters that are left from the tensor products.
##  \enditems
##
##  When at least <needed> new irreducibles are found then the process is
##  stopped immediately, without forming more tensor products.
##
##  For example, <chars1> and <chars2> can be chosen as lists of irreducible
##  characters with prescribed kernels such that the tensor products have a
##  prescribed kernel, too.
##  In this situation, <irreducibles> can be restricted to the list of those
##  known irreducible characters that can be constituents of the tensor
##  products, and <needed> can be chosen as the number of all missing
##  irreducibles of that kind.
##
DeclareGlobalFunction( "TensorAndReduce" );


#############################################################################
##
#E