This file is indexed.

/usr/include/itpp/base/random.h is in libitpp-dev 4.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
/*!
 * \file
 * \brief Definition of classes for random number generators
 * \author Tony Ottosson and Adam Piatyszek
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef RANDOM_H
#define RANDOM_H

#include <itpp/base/random_dsfmt.h>
#include <itpp/base/operators.h>


namespace itpp
{

//! \addtogroup randgen

/*!
 * \brief Base class for random (stochastic) sources.
 * \ingroup randgen
 *
 * Random_Generator is a typedef of DSFMT class specialization using 19937
 * generation period.
 *
 * \sa DSFMT
 */
typedef DSFMT_19937_RNG Random_Generator;

//! \addtogroup randgen
//!@{

//! Set the seed of the Global Random Number Generator
void RNG_reset(unsigned int seed);
//! Set the seed of the Global Random Number Generator to the same as last time
void RNG_reset();
//! Set a random seed for the Global Random Number Generator
void RNG_randomize();
//! Save the current state of the generator in a vector
void RNG_get_state(ivec &state);
//! Resume the state of the generator from previously saved vector
void RNG_set_state(const ivec &state);
//!@}

/*!
  \brief Bernoulli distribution
  \ingroup randgen
*/
class Bernoulli_RNG
{
public:
  //! Binary source with probability prob for a 1
  Bernoulli_RNG(double prob) { setup(prob); }
  //! Binary source with probability prob for a 1
  Bernoulli_RNG() { p = 0.5; }
  //! set the probability
  void setup(double prob) {
    it_assert(prob >= 0.0 && prob <= 1.0, "The Bernoulli source probability "
              "must be between 0 and 1");
    p = prob;
  }
  //! return the probability
  double get_setup() const { return p; }
  //! Get one sample.
  bin operator()() { return sample(); }
  //! Get a sample vector.
  bvec operator()(int n) { bvec temp(n); sample_vector(n, temp); return temp; }
  //! Get a sample matrix.
  bmat operator()(int h, int w) { bmat temp(h, w); sample_matrix(h, w, temp); return temp; }
  //! Get a sample
  bin sample() { return RNG.genrand_close_open() < p ? bin(1) : bin(0); }
  //! Get a sample vector.
  void sample_vector(int size, bvec &out) {
    out.set_size(size, false);
    for (int i = 0; i < size; i++) out(i) = sample();
  }
  //! Get a sample matrix.
  void sample_matrix(int rows, int cols, bmat &out) {
    out.set_size(rows, cols, false);
    for (int i = 0; i < rows*cols; i++) out(i) = sample();
  }
protected:
private:
  //!
  double p;
  //!
  Random_Generator RNG;
};

/*!
  \brief Integer uniform distribution
  \ingroup randgen

  Example: Generation of random uniformly distributed integers in the interval [0,10].
  \code
  #include "itpp/sigproc.h"

  int main() {

  I_Uniform_RNG gen(0, 10);

  cout << gen() << endl; // prints a random integer
  cout << gen(10) << endl; // prints 10 random integers
  }
  \endcode
*/
class I_Uniform_RNG
{
public:
  //! constructor. Sets min and max values.
  I_Uniform_RNG(int min = 0, int max = 1);
  //! set min and max values
  void setup(int min, int max);
  //! get the parameters
  void get_setup(int &min, int &max) const;
  //! Get one sample.
  int operator()() { return sample(); }
  //! Get a sample vector.
  ivec operator()(int n);
  //! Get a sample matrix.
  imat operator()(int h, int w);
  //! Return a single value from this random generator
  int sample() {
    return floor_i(RNG.genrand_close_open() * (hi - lo + 1)) + lo;
  }
private:
  //!
  int lo;
  //!
  int hi;
  //!
  Random_Generator RNG;
};

/*!
  \brief Uniform distribution
  \ingroup randgen
*/
class Uniform_RNG
{
public:
  //! Constructor. Set min, max and seed.
  Uniform_RNG(double min = 0, double max = 1.0);
  //! set min and max
  void setup(double min, double max);
  //! get parameters
  void get_setup(double &min, double &max) const;
  //! Get one sample.
  double operator()() { return (sample() * (hi_bound - lo_bound) + lo_bound); }
  //! Get a sample vector.
  vec operator()(int n) {
    vec temp(n);
    sample_vector(n, temp);
    temp *= hi_bound - lo_bound;
    temp += lo_bound;
    return temp;
  }
  //! Get a sample matrix.
  mat operator()(int h, int w) {
    mat temp(h, w);
    sample_matrix(h, w, temp);
    temp *= hi_bound - lo_bound;
    temp += lo_bound;
    return temp;
  }
  //! Get a Uniformly distributed [0,1) sample
  double sample() {  return RNG.genrand_close_open(); }
  //! Get a Uniformly distributed [0,1) vector
  void sample_vector(int size, vec &out) {
    out.set_size(size, false);
    for (int i = 0; i < size; i++) out(i) = sample();
  }
  //! Get a Uniformly distributed [0,1) matrix
  void sample_matrix(int rows, int cols, mat &out) {
    out.set_size(rows, cols, false);
    for (int i = 0; i < rows*cols; i++) out(i) = sample();
  }
protected:
private:
  //!
  double lo_bound, hi_bound;
  //!
  Random_Generator RNG;
};

/*!
  \brief Exponential distribution
  \ingroup randgen
*/
class Exponential_RNG
{
public:
  //! constructor. Set lambda.
  Exponential_RNG(double lambda = 1.0);
  //! Set lambda
  void setup(double lambda) { l = lambda; }
  //! get lambda
  double get_setup() const;
  //! Get one sample.
  double operator()() { return sample(); }
  //! Get a sample vector.
  vec operator()(int n);
  //! Get a sample matrix.
  mat operator()(int h, int w);
private:
  double sample() { return (-std::log(RNG.genrand_open_close()) / l); }
  double l;
  Random_Generator RNG;
};

/*!
 * \brief Normal distribution
 * \ingroup randgen
 *
 * Normal (Gaussian) random variables, using a simplified Ziggurat method.
 *
 * For details see the following arcticle: George Marsaglia, Wai Wan
 * Tsang, "The Ziggurat Method for Generating Random Variables", Journal
 * of Statistical Software, vol. 5 (2000), no. 8
 *
 * This implementation is based on the generator written by Jochen Voss
 * found at http://seehuhn.de/comp/ziggurat/, which is also included in
 * the GSL library (randlist/gauss.c).
 */
class Normal_RNG
{
public:
  //! Constructor. Set mean and variance.
  Normal_RNG(double meanval, double variance):
      mean(meanval), sigma(std::sqrt(variance)) {}
  //! Constructor. Set mean and variance.
  Normal_RNG(): mean(0.0), sigma(1.0) {}
  //! Set mean, and variance
  void setup(double meanval, double variance)
  { mean = meanval; sigma = std::sqrt(variance); }
  //! Get mean and variance
  void get_setup(double &meanval, double &variance) const;
  //! Get one sample.
  double operator()() { return (sigma*sample() + mean); }
  //! Get a sample vector.
  vec operator()(int n) {
    vec temp(n);
    sample_vector(n, temp);
    temp *= sigma;
    temp += mean;
    return temp;
  }
  //! Get a sample matrix.
  mat operator()(int h, int w) {
    mat temp(h, w);
    sample_matrix(h, w, temp);
    temp *= sigma;
    temp += mean;
    return temp;
  }
  //! Get a Normal distributed (0,1) sample
  double sample();

  //! Get a Normal distributed (0,1) vector
  void sample_vector(int size, vec &out) {
    out.set_size(size, false);
    for (int i = 0; i < size; i++) out(i) = sample();
  }

  //! Get a Normal distributed (0,1) matrix
  void sample_matrix(int rows, int cols, mat &out) {
    out.set_size(rows, cols, false);
    for (int i = 0; i < rows*cols; i++) out(i) = sample();
  }
private:
  double mean, sigma;
  static const double ytab[128];
  static const unsigned int ktab[128];
  static const double wtab[128];
  static const double PARAM_R;
  Random_Generator RNG;
};

/*!
 * \brief Gamma distribution
 * \ingroup randgen
 *
 * Generate samples from Gamma(alpha,beta) density, according to the
 * following equation:
 * \f[ x \sim \Gamma(\alpha,\beta) =
 * \frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1} \exp(-\beta x) \f]
 *
 * For \f$\alpha=1\f$ the Gamma distribution is equivalent to the
 * Exponential distribution.
 *
 * \note The implementation of the sample() function was adapted from the
 * R statistical language.
 * \author Vasek Smidl
 */
class Gamma_RNG
{
public:
  //! Constructor, which sets alpha (a) and beta (b)
  Gamma_RNG(double a = 1.0, double b = 1.0): alpha(a), beta(b) {}
  //! Set alpha and beta
  void setup(double a, double b) { alpha = a; beta = b; }
  //! Get one sample
  double operator()() { return sample(); }
  //! Get a sample vector
  vec operator()(int n);
  //! Get a sample matrix
  mat operator()(int r, int c);
  //! Get a sample
  double sample();
private:
  double alpha;
  double beta;
  Random_Generator RNG;
  Normal_RNG NRNG;
};

/*!
  \brief Laplacian distribution
  \ingroup randgen
*/
class Laplace_RNG
{
public:
  //! Constructor. Set mean and variance.
  Laplace_RNG(double meanval = 0.0, double variance = 1.0);
  //! Set mean and variance
  void setup(double meanval, double variance);
  //! Get mean and variance
  void get_setup(double &meanval, double &variance) const;
  //! Get one sample.
  double operator()() { return sample(); }
  //! Get a sample vector.
  vec operator()(int n);
  //! Get a sample matrix.
  mat operator()(int h, int w);
  //! Returns a single sample
  double sample() {
    double u = RNG.genrand_open_open();
    double l = sqrt_12var;
    if (u < 0.5)
      l *= std::log(2.0 * u);
    else
      l *= -std::log(2.0 * (1 - u));
    return (l + mean);
  }
private:
  double mean, var, sqrt_12var;
  Random_Generator RNG;
};

/*!
  \brief A Complex Normal Source
  \ingroup randgen
*/
class Complex_Normal_RNG
{
public:
  //! Constructor. Set mean and variance.
  Complex_Normal_RNG(std::complex<double> mean, double variance):
      norm_factor(1.0 / std::sqrt(2.0)) {
    setup(mean, variance);
  }
  //! Default constructor
  Complex_Normal_RNG(): m(0.0), sigma(1.0), norm_factor(1.0 / std::sqrt(2.0)) {}
  //! Set mean and variance
  void setup(std::complex<double> mean, double variance) {
    m = mean;
    sigma = std::sqrt(variance);
  }
  //! Get mean and variance
  void get_setup(std::complex<double> &mean, double &variance) {
    mean = m;
    variance = sigma * sigma;
  }
  //! Get one sample.
  std::complex<double> operator()() { return sigma*sample() + m; }
  //! Get a sample vector.
  cvec operator()(int n) {
    cvec temp(n);
    sample_vector(n, temp);
    temp *= sigma;
    temp += m;
    return temp;
  }
  //! Get a sample matrix.
  cmat operator()(int h, int w) {
    cmat temp(h, w);
    sample_matrix(h, w, temp);
    temp *= sigma;
    temp += m;
    return temp;
  }
  //! Get a Complex Normal (0,1) distributed sample
  std::complex<double> sample() {
    double a = nRNG.sample() * norm_factor;
    double b = nRNG.sample() * norm_factor;
    return std::complex<double>(a, b);
  }

  //! Get a Complex Normal (0,1) distributed vector
  void sample_vector(int size, cvec &out) {
    out.set_size(size, false);
    for (int i = 0; i < size; i++) out(i) = sample();
  }

  //! Get a Complex Normal (0,1) distributed matrix
  void sample_matrix(int rows, int cols, cmat &out) {
    out.set_size(rows, cols, false);
    for (int i = 0; i < rows*cols; i++) out(i) = sample();
  }

  //! Dummy assignment operator - MSVC++ warning C4512
  Complex_Normal_RNG & operator=(const Complex_Normal_RNG&) { return *this; }

private:
  std::complex<double> m;
  double sigma;
  const double norm_factor;
  Normal_RNG nRNG;
};

/*!
  \brief Filtered normal distribution
  \ingroup randgen
*/
class AR1_Normal_RNG
{
public:
  //! Constructor. Set mean, variance, and correlation.
  AR1_Normal_RNG(double meanval = 0.0, double variance = 1.0,
                 double rho = 0.0);
  //! Set mean, variance, and correlation
  void setup(double meanval, double variance, double rho);
  //! Get mean, variance and correlation
  void get_setup(double &meanval, double &variance, double &rho) const;
  //! Set memory contents to zero
  void reset();
  //! Get a single random sample
  double operator()() { return sample(); }
  //! Get a sample vector.
  vec operator()(int n);
  //! Get a sample matrix.
  mat operator()(int h, int w);
private:
  double sample() {
    mem *= r;
    if (odd) {
      r1 = m_2pi * RNG.genrand_open_close();
      r2 = std::sqrt(factr * std::log(RNG.genrand_open_close()));
      mem += r2 * std::cos(r1);
    }
    else {
      mem += r2 * std::sin(r1);
    }
    odd = !odd;
    return (mem + mean);
  }
  double mem, r, factr, mean, var, r1, r2;
  bool odd;
  Random_Generator RNG;
};

/*!
  \brief Gauss_RNG is the same as Normal Source
  \ingroup randgen
*/
typedef Normal_RNG Gauss_RNG;

/*!
  \brief AR1_Gauss_RNG is the same as AR1_Normal_RNG
  \ingroup randgen
*/
typedef AR1_Normal_RNG AR1_Gauss_RNG;

/*!
  \brief Weibull distribution
  \ingroup randgen
*/
class Weibull_RNG
{
public:
  //! Constructor. Set lambda and beta.
  Weibull_RNG(double lambda = 1.0, double beta = 1.0);
  //! Set lambda, and beta
  void setup(double lambda, double beta);
  //! Get lambda and beta
  void get_setup(double &lambda, double &beta) { lambda = l; beta = b; }
  //! Get one sample.
  double operator()() { return sample(); }
  //! Get a sample vector.
  vec operator()(int n);
  //! Get a sample matrix.
  mat operator()(int h, int w);
private:
  double sample() {
    return (std::pow(-std::log(RNG.genrand_open_close()), 1.0 / b) / l);
  }
  double l, b;
  double mean, var;
  Random_Generator RNG;
};

/*!
  \brief Rayleigh distribution
  \ingroup randgen
*/
class Rayleigh_RNG
{
public:
  //! Constructor. Set sigma.
  Rayleigh_RNG(double sigma = 1.0);
  //! Set sigma
  void setup(double sigma) { sig = sigma; }
  //! Get sigma
  double get_setup() { return sig; }
  //! Get one sample.
  double operator()() { return sample(); }
  //! Get a sample vector.
  vec operator()(int n);
  //! Get a sample matrix.
  mat operator()(int h, int w);
private:
  double sample() {
    double s1 = nRNG.sample();
    double s2 = nRNG.sample();
    // s1 and s2 are N(0,1) and independent
    return (sig * std::sqrt(s1*s1 + s2*s2));
  }
  double sig;
  Normal_RNG nRNG;
};

/*!
  \brief Rice distribution
  \ingroup randgen
*/
class Rice_RNG
{
public:
  //! Constructor. Set sigma, and v (if v = 0, Rice -> Rayleigh).
  Rice_RNG(double sigma = 1.0, double v = 1.0);
  //! Set sigma, and v (if v = 0, Rice -> Rayleigh).
  void setup(double sigma, double v) { sig = sigma; s = v; }
  //! Get parameters
  void get_setup(double &sigma, double &v) { sigma = sig; v = s; }
  //! Get one sample
  double operator()() { return sample(); }
  //! Get a sample vector
  vec operator()(int n);
  //! Get a sample matrix
  mat operator()(int h, int w);
private:
  double sample() {
    double s1 = nRNG.sample() + s;
    double s2 = nRNG.sample();
    // s1 and s2 are N(0,1) and independent
    return (sig * std::sqrt(s1*s1 + s2*s2));
  }
  double sig, s;
  Normal_RNG nRNG;
};

//! \addtogroup randgen
//!@{

//! Generates a random bit (equally likely 0s and 1s)
inline bin randb(void) { Bernoulli_RNG src; return src.sample(); }
//! Generates a random bit vector (equally likely 0s and 1s)
inline void randb(int size, bvec &out) { Bernoulli_RNG src; src.sample_vector(size, out); }
//! Generates a random bit vector (equally likely 0s and 1s)
inline bvec randb(int size) { bvec temp; randb(size, temp); return temp; }
//! Generates a random bit matrix (equally likely 0s and 1s)
inline void randb(int rows, int cols, bmat &out) { Bernoulli_RNG src; src.sample_matrix(rows, cols, out); }
//! Generates a random bit matrix (equally likely 0s and 1s)
inline bmat randb(int rows, int cols) { bmat temp; randb(rows, cols, temp); return temp; }

//! Generates a random uniform (0,1) number
inline double randu(void) { Uniform_RNG src; return src.sample(); }
//! Generates a random uniform (0,1) vector
inline void randu(int size, vec &out) { Uniform_RNG src; src.sample_vector(size, out); }
//! Generates a random uniform (0,1) vector
inline vec randu(int size) { vec temp; randu(size, temp); return temp; }
//! Generates a random uniform (0,1) matrix
inline void randu(int rows, int cols, mat &out) { Uniform_RNG src; src.sample_matrix(rows, cols, out); }
//! Generates a random uniform (0,1) matrix
inline mat randu(int rows, int cols) { mat temp; randu(rows, cols, temp); return temp; }

//! Generates a random integer in the interval [low,high]
inline int randi(int low, int high) { I_Uniform_RNG src; src.setup(low, high); return src(); }
//! Generates a random ivec with elements in the interval [low,high]
inline ivec randi(int size, int low, int high) { I_Uniform_RNG src; src.setup(low, high); return src(size); }
//! Generates a random imat with elements in the interval [low,high]
inline imat randi(int rows, int cols, int low, int high) { I_Uniform_RNG src; src.setup(low, high); return src(rows, cols); }

//! Generates a random Rayleigh vector
inline vec randray(int size, double sigma = 1.0) { Rayleigh_RNG src; src.setup(sigma); return src(size); }

//! Generates a random Rice vector (See J.G. Poakis, "Digital Communications, 3rd ed." p.47)
inline vec randrice(int size, double sigma = 1.0, double s = 1.0) { Rice_RNG src; src.setup(sigma, s); return src(size); }

//! Generates a random complex Gaussian vector
inline vec randexp(int size, double lambda = 1.0) { Exponential_RNG src; src.setup(lambda); return src(size); }

//! Generates a random Gaussian (0,1) variable
inline double randn(void) { Normal_RNG src; return src.sample(); }
//! Generates a random Gaussian (0,1) vector
inline void randn(int size, vec &out) { Normal_RNG src; src.sample_vector(size, out); }
//! Generates a random Gaussian (0,1) vector
inline vec randn(int size) { vec temp; randn(size, temp); return temp; }
//! Generates a random Gaussian (0,1) matrix
inline void randn(int rows, int cols, mat &out)  { Normal_RNG src; src.sample_matrix(rows, cols, out); }
//! Generates a random Gaussian (0,1) matrix
inline mat randn(int rows, int cols) { mat temp; randn(rows, cols, temp); return temp; }

/*! \brief Generates a random complex Gaussian (0,1) variable

The real and imaginary parts are independent and have variances equal to 0.5
*/
inline std::complex<double> randn_c(void) { Complex_Normal_RNG src; return src.sample(); }
//! Generates a random complex Gaussian (0,1) vector
inline void randn_c(int size, cvec &out)  { Complex_Normal_RNG src; src.sample_vector(size, out); }
//! Generates a random complex Gaussian (0,1) vector
inline cvec randn_c(int size) { cvec temp; randn_c(size, temp); return temp; }
//! Generates a random complex Gaussian (0,1) matrix
inline void randn_c(int rows, int cols, cmat &out) { Complex_Normal_RNG src; src.sample_matrix(rows, cols, out); }
//! Generates a random complex Gaussian (0,1) matrix
inline cmat randn_c(int rows, int cols) { cmat temp; randn_c(rows, cols, temp); return temp; }

//!@}

} // namespace itpp

#endif // #ifndef RANDOM_H