/usr/include/rheolef/csr-algo-aplb.h is in librheolef-dev 5.93-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | # ifndef _SKIT_CSR_ALGO_APLB_H
# define _SKIT_CSR_ALGO_APLB_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
//
// CSR: Compressed Sparse Row format
//
// algorithm-oriented generic library
// inspired from sparskit2 fortran library
//
// author: Pierre.Saramito@imag.fr
//
// date: 12 november 1997
//
//@!\vfill\listofalgorithms
/*@!
\vfill \pagebreak \mbox{} \vfill \begin{algorithm}[h]
\caption{{\tt xply\_size}: sparse size of $z=x\pm y$, where $x,y$ are sparse vectors.}
\begin{algorithmic}
\INPUT {sparse vectors patterns}
jx(0:nnzx-1), jy(0:nnzy-1)
\ENDINPUT
\OUTPUT {number of non-null elements in $z=x\pm y$}
nnzz
\ENDOUTPUT
\NOTE {}
The input sparse vectors may be sorted by increasing index order (see also {\tt csr\_sort}).
\ENDNOTE
\BEGIN
nnzz := 0 \\
p := 0 \\
q := 0 \\
\WHILE {p $\neq$ nnzx {\bf or } q $\neq$ nnzy}
ix := {\bf if} p = nnzx {\bf then} $+\infty$ {\bf else} jx(p) {\bf endif} \\
iy := {\bf if} q = nnzy {\bf then} $+\infty$ {\bf else} jy(q) {\bf endif} \\
\IF {ix = jy}
p++\\
q++
\ELSIF {ix $<$ iy}
p++
\ELSE
q++
\ENDIF
nnz++
\ENDWHILE
\END
\end{algorithmic} \end{algorithm}
\vfill \pagebreak \mbox{} \vfill
*/
namespace rheolef {
template <
class InputIterator1,
class InputIterator2,
class Size>
inline
Size
xply_size (
InputIterator1 jx,
InputIterator1 last_jx,
InputIterator2 jy,
InputIterator2 last_jy,
const Size&)
{
Size nnzz = 0;
const Size infty = std::numeric_limits<Size>::max();
while (jx != last_jx || jy != last_jy) {
Size i1 = jx == last_jx ? infty : *jx;
Size i2 = jy == last_jy ? infty : *jy;
if (i1 == i2) {
++jx;
++jy;
} else if (i1 < i2) {
++jx;
} else {
++jy;
}
nnzz++;
}
return nnzz;
}
/*@!
\vfill \pagebreak \mbox{} \vfill \begin{algorithm}[h]
\caption{{\tt xply}: compute $z=x\pm y$, where $x,y$ are sparse vectors.}
\begin{algorithmic}
\INPUT {sparse vectors}
jx(0:nnzx-1), x(0:nnzx-1), \\
jy(0:nnzy-1), y(0:nnzy-1)
\ENDINPUT
\OUTPUT {the sparse vector $z=x\pm y$}
jz(0:nnzz-1), z(0:nnzz-1)
\ENDOUTPUT
\NOTE {}
The input sparse vectors may be sorted by increasing index order (see also {\tt csr\_sort}).
\ENDNOTE
\BEGIN
p := q := nzzz := 0 \\
\WHILE {p $\neq\infty$ {\bf or } q $\neq\infty$}
ix := {\bf if} p = $+\infty$ {\bf then} $+\infty$ {\bf else} jx(p) {\bf endif} \\
iy := {\bf if} q = $+\infty$ {\bf then} $+\infty$ {\bf else} jy(q) {\bf endif} \\
\IF {ix = jy}
jz(nzzz) := ix \\
z(nzzz) := x(p) $\pm$ y(q) \\
p++ \\
q++
\ELSIF {ix $<$ iy}
jz(nzzz) := ix \\
z(nzzz) := x(p) $\pm$ 0\\
p++
\ELSE
jz(nzzz) := iy \\
z(nzzz) := 0 $\pm$ y(q) \\
q++
\ENDIF
nzzz++
\ENDWHILE
\END
\end{algorithmic} \end{algorithm}
\vfill \pagebreak \mbox{} \vfill
*/
template <
class BinaryOperation,
class InputIterator1,
class InputIterator2,
class InputIterator3,
class InputIterator4,
class OutputIterator1,
class OutputIterator2,
class Size>
inline
Size
xply (
BinaryOperation binary_op,
InputIterator1 jx,
InputIterator1 last_jx,
InputIterator2 x,
InputIterator3 jy,
InputIterator3 last_jy,
InputIterator4 y,
OutputIterator1 jz,
OutputIterator2 z,
const Size&)
{
Size nnzz = 0;
const Size infty = std::numeric_limits<Size>::max();
while (jx != last_jx || jy != last_jy) {
Size i1 = jx == last_jx ? infty : *jx;
Size i2 = jy == last_jy ? infty : *jy;
if (i1 == i2) {
*z++ = binary_op(*x++, *y++);
*jz++ = i1;
++jx;
++jy;
} else if (i1 < i2) {
*z++ = binary_op(*x++, 0);
*jz++ = i1;
++jx;
} else {
*z++ = binary_op(0, *y++);
*jz++ = i2;
++jy;
}
nnzz++;
}
return nnzz;
}
/*@!
\vfill \pagebreak \mbox{} \vfill \begin{algorithm}[h]
\caption{{\tt aplb\_size}: sparse size of $c=a\pm b$.}
\begin{algorithmic}
\INPUT {sparse matrix patterns}
ia(0:nrowa), ja(0:nnza-1), \\
ib(0:nrowb), jb(0:nnzb-1)
\ENDINPUT
\OUTPUT {number of non-null elements in $c=a\pm b$}
nnzc
\ENDOUTPUT
\NOTE {} The input sparse matrix may be sorted by increasing column order (see also {\tt csr\_sort}).
\ENDNOTE
\BEGIN
nnzz := 0 \\
\FORTO {i := 0} {nrowa-1}
nnzc += xply\_size (ja(ia(i):ia(i+1)-1), jb(ib(i):ib(i+1)-1))
\ENDFOR
\END
\end{algorithmic} \end{algorithm}
\vfill \pagebreak \mbox{} \vfill
*/
template <
class InputIterator1,
class InputIterator2,
class InputIterator3,
class InputIterator4,
class Size>
Size
aplb_size (
InputIterator1 ia,
InputIterator1 last_ia,
InputIterator2 ja,
InputIterator3 ib,
InputIterator4 jb,
const Size&)
{
Size nnzc = 0;
InputIterator2 first_ja = ja + *ia++;
InputIterator4 first_jb = jb + *ib++;
while (ia != last_ia) {
InputIterator2 last_ja = ja + *ia++;
InputIterator4 last_jb = jb + *ib++;
nnzc += xply_size (first_ja, last_ja, first_jb, last_jb, Size());
first_ja = last_ja;
first_jb = last_jb;
}
return nnzc;
}
/*@!
\vfill \pagebreak \mbox{} \vfill \begin{algorithm}[h]
\caption{{\tt aplb}: compute $c=a\pm b$.}
\begin{algorithmic}
\INPUT {sparse matrix in CSR format}
ia(0:nrowa), ja(0:nnza-1), a(0:nnza-1), \\
ib(0:nrowb), jb(0:nnzb-1), b(0:nnzb-1)
\ENDINPUT
\OUTPUT {the result $c=a\pm b$ in CSR format}
ic(0:nrowa), jc(0:nnzc-1), c(0:nnzc-1)
\ENDOUTPUT
\NOTE {}
The input sparse matrixes may be sorted by increasing column order (see also {\tt csr\_sort}).
\ENDNOTE
\BEGIN
nnzc := 0 \\
\FORTO {i := 0}{nrowa-1}
jx := ja(ia(i):ia(i+1)-1) \\
x := a(ia(i):ia(i+1)-1) \\
jb := jb(ib(i):ib(i+1)-1) \\
b := b(ib(i):ib(i+1)-1) \\
nzzz += xply(jx, x, jy, y, jc(ic(i):ic(i+1)-1), c(ic(i):ic(i+1)-1))
\ENDFOR
\END
\end{algorithmic} \end{algorithm}
\vfill \pagebreak \mbox{} \vfill
*/
template <
class BinaryOperation,
class InputIterator1,
class InputIterator2,
class InputIterator3,
class InputIterator4,
class InputIterator5,
class InputIterator6,
class OutputIterator1,
class OutputIterator2,
class OutputIterator3,
class Size>
Size
aplb (
BinaryOperation binary_op,
InputIterator1 ia,
InputIterator1 last_ia,
InputIterator2 ja,
InputIterator3 a,
InputIterator4 ib,
InputIterator5 jb,
InputIterator6 b,
OutputIterator1 ic,
OutputIterator2 jc,
OutputIterator3 c,
const Size&)
{
Size nnzc = *ic++ = 0;
Size a_offset = *ia++;
Size b_offset = *ib++;
InputIterator2 first_ja = ja + a_offset;
InputIterator3 first_a = a + a_offset;
InputIterator5 first_jb = jb + b_offset;
InputIterator6 first_b = b + b_offset;
OutputIterator2 first_jc = jc + nnzc;
OutputIterator3 first_c = c + nnzc;
while (ia != last_ia) {
a_offset = *ia++;
b_offset = *ib++;
InputIterator2 last_ja = ja + a_offset;
InputIterator5 last_jb = jb + b_offset;
nnzc += xply (binary_op,
first_ja, last_ja, first_a,
first_jb, last_jb, first_b,
first_jc, first_c,
Size());
first_ja = last_ja;
first_a = a + a_offset;
first_jb = last_jb;
first_b = b + b_offset;
*ic++ = nnzc;
first_jc = jc + nnzc;
first_c = c + nnzc;
}
return nnzc;
}
//@!\vfill
}// namespace rheolef
# endif // _SKIT_CSR_ALGO_APLB_H
|