/usr/include/tbb/flow_graph.h is in libtbb-dev 4.0+r233-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 | /*
Copyright 2005-2011 Intel Corporation. All Rights Reserved.
This file is part of Threading Building Blocks.
Threading Building Blocks is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
Threading Building Blocks is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Threading Building Blocks; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, you may use this file as part of a free software
library without restriction. Specifically, if other files instantiate
templates or use macros or inline functions from this file, or you compile
this file and link it with other files to produce an executable, this
file does not by itself cause the resulting executable to be covered by
the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
#ifndef __TBB_flow_graph_H
#define __TBB_flow_graph_H
#include "tbb_stddef.h"
#include "atomic.h"
#include "spin_mutex.h"
#include "null_mutex.h"
#include "spin_rw_mutex.h"
#include "null_rw_mutex.h"
#include "task.h"
#include "concurrent_vector.h"
#include "internal/_aggregator_impl.h"
// use the VC10 or gcc version of tuple if it is available.
#if TBB_IMPLEMENT_CPP0X && (!defined(_MSC_VER) || _MSC_VER < 1600)
#define TBB_PREVIEW_TUPLE 1
#include "compat/tuple"
#else
#include <tuple>
#endif
#include<list>
#include<queue>
/** @file
\brief The graph related classes and functions
There are some applications that best express dependencies as messages
passed between nodes in a graph. These messages may contain data or
simply act as signals that a predecessors has completed. The graph
class and its associated node classes can be used to express such
applcations.
*/
namespace tbb {
namespace flow {
//! An enumeration the provides the two most common concurrency levels: unlimited and serial
enum concurrency { unlimited = 0, serial = 1 };
namespace interface6 {
//! The base of all graph nodes. Allows them to be stored in a collection for deletion.
class graph_node {
public:
virtual ~graph_node() {}
};
//! An empty class used for messages that mean "I'm done"
class continue_msg {};
template< typename T > class sender;
template< typename T > class receiver;
class continue_receiver;
//! Pure virtual template class that defines a sender of messages of type T
template< typename T >
class sender {
public:
//! The output type of this sender
typedef T output_type;
//! The successor type for this node
typedef receiver<T> successor_type;
virtual ~sender() {}
//! Add a new successor to this node
virtual bool register_successor( successor_type &r ) = 0;
//! Removes a successor from this node
virtual bool remove_successor( successor_type &r ) = 0;
//! Request an item from the sender
virtual bool try_get( T & ) { return false; }
//! Reserves an item in the sender
virtual bool try_reserve( T & ) { return false; }
//! Releases the reserved item
virtual bool try_release( ) { return false; }
//! Consumes the reserved item
virtual bool try_consume( ) { return false; }
};
//! Pure virtual template class that defines a receiver of messages of type T
template< typename T >
class receiver {
public:
//! The input type of this receiver
typedef T input_type;
//! The predecessor type for this node
typedef sender<T> predecessor_type;
//! Destructor
virtual ~receiver() {}
//! Put an item to the receiver
virtual bool try_put( const T& t ) = 0;
//! Add a predecessor to the node
virtual bool register_predecessor( predecessor_type & ) { return false; }
//! Remove a predecessor from the node
virtual bool remove_predecessor( predecessor_type & ) { return false; }
};
//! Base class for receivers of completion messages
/** These receivers automatically reset, but cannot be explicitly waited on */
class continue_receiver : public receiver< continue_msg > {
public:
//! The input type
typedef continue_msg input_type;
//! The predecessor type for this node
typedef sender< continue_msg > predecessor_type;
//! Constructor
continue_receiver( int number_of_predecessors = 0 ) {
my_predecessor_count = my_initial_predecessor_count = number_of_predecessors;
my_current_count = 0;
}
//! Copy constructor
continue_receiver( const continue_receiver& src ) : receiver<continue_msg>() {
my_predecessor_count = my_initial_predecessor_count = src.my_initial_predecessor_count;
my_current_count = 0;
}
//! Destructor
virtual ~continue_receiver() { }
//! Increments the trigger threshold
/* override */ bool register_predecessor( predecessor_type & ) {
spin_mutex::scoped_lock l(my_mutex);
++my_predecessor_count;
return true;
}
//! Decrements the trigger threshold
/** Does not check to see if the removal of the predecessor now makes the current count
exceed the new threshold. So removing a predecessor while the graph is active can cause
unexpected results. */
/* override */ bool remove_predecessor( predecessor_type & ) {
spin_mutex::scoped_lock l(my_mutex);
--my_predecessor_count;
return true;
}
//! Puts a continue_msg to the receiver
/** If the message causes the message count to reach the predecessor count, execute() is called and
the message count is reset to 0. Otherwise the message count is incremented. */
/* override */ bool try_put( const input_type & ) {
{
spin_mutex::scoped_lock l(my_mutex);
if ( ++my_current_count < my_predecessor_count )
return true;
else
my_current_count = 0;
}
execute();
return true;
}
protected:
spin_mutex my_mutex;
int my_predecessor_count;
int my_current_count;
int my_initial_predecessor_count;
//! Does whatever should happen when the threshold is reached
/** This should be very fast or else spawn a task. This is
called while the sender is blocked in the try_put(). */
virtual void execute() = 0;
};
#include "internal/_flow_graph_impl.h"
using namespace internal::graph_policy_namespace;
//! The graph class
/** This class serves as a handle to the graph */
class graph : tbb::internal::no_copy {
template< typename Body >
class run_task : public task {
public:
run_task( Body& body ) : my_body(body) {}
task *execute() {
my_body();
return NULL;
}
private:
Body my_body;
};
template< typename Receiver, typename Body >
class run_and_put_task : public task {
public:
run_and_put_task( Receiver &r, Body& body ) : my_receiver(r), my_body(body) {}
task *execute() {
my_receiver.try_put( my_body() );
return NULL;
}
private:
Receiver &my_receiver;
Body my_body;
};
public:
//! Constructs a graph withy no nodes.
graph() : my_root_task( new ( task::allocate_root( ) ) empty_task ) {
my_root_task->set_ref_count(1);
}
//! Destroys the graph.
/** Calls wait_for_all on the graph, deletes all of the nodes appended by calls to add, and then
destroys the root task of the graph. */
~graph() {
wait_for_all();
my_root_task->set_ref_count(0);
task::destroy( *my_root_task );
}
//! Used to register that an external entity may still interact with the graph.
/** The graph will not return from wait_for_all until a matching number of decrement_wait_count calls
is made. */
void increment_wait_count() {
if (my_root_task)
my_root_task->increment_ref_count();
}
//! Deregisters an external entity that may have interacted with the graph.
/** The graph will not return from wait_for_all until all the number of decrement_wait_count calls
matches the number of increment_wait_count calls. */
void decrement_wait_count() {
if (my_root_task)
my_root_task->decrement_ref_count();
}
//! Spawns a task that runs a body and puts its output to a specific receiver
/** The task is spawned as a child of the graph. This is useful for running tasks
that need to block a wait_for_all() on the graph. For example a one-off source. */
template< typename Receiver, typename Body >
void run( Receiver &r, Body body ) {
task::enqueue( * new ( task::allocate_additional_child_of( *my_root_task ) )
run_and_put_task< Receiver, Body >( r, body ) );
}
//! Spawns a task that runs a function object
/** The task is spawned as a child of the graph. This is useful for running tasks
that need to block a wait_for_all() on the graph. For example a one-off source. */
template< typename Body >
void run( Body body ) {
task::enqueue( * new ( task::allocate_additional_child_of( *my_root_task ) )
run_task< Body >( body ) );
}
//! Waits until the graph is idle and the number of decrement_wait_count calls equals the number of increment_wait_count calls.
/** The waiting thread will go off and steal work while it is block in the wait_for_all. */
void wait_for_all() {
if (my_root_task)
my_root_task->wait_for_all();
my_root_task->set_ref_count(1);
}
//! Returns the root task of the graph
task * root_task() {
return my_root_task;
}
private:
task *my_root_task;
};
#include "internal/_flow_graph_node_impl.h"
//! An executable node that acts as a source, i.e. it has no predecessors
template < typename Output >
class source_node : public graph_node, public sender< Output > {
public:
//! The type of the output message, which is complete
typedef Output output_type;
//! The type of successors of this node
typedef receiver< Output > successor_type;
//! Constructor for a node with a successor
template< typename Body >
source_node( graph &g, Body body, bool is_active = true )
: my_root_task(g.root_task()), my_active(is_active), init_my_active(is_active),
my_body( new internal::source_body_leaf< output_type, Body>(body) ),
my_reserved(false), my_has_cached_item(false)
{
my_successors.set_owner(this);
}
//! Copy constructor
source_node( const source_node& src ) :
graph_node(), sender<Output>(),
my_root_task( src.my_root_task), my_active(src.init_my_active),
init_my_active(src.init_my_active), my_body( src.my_body->clone() ),
my_reserved(false), my_has_cached_item(false)
{
my_successors.set_owner(this);
}
//! The destructor
~source_node() { delete my_body; }
//! Add a new successor to this node
/* override */ bool register_successor( receiver<output_type> &r ) {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.register_successor(r);
if ( my_active )
spawn_put();
return true;
}
//! Removes a successor from this node
/* override */ bool remove_successor( receiver<output_type> &r ) {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.remove_successor(r);
return true;
}
//! Request an item from the node
/*override */ bool try_get( output_type &v ) {
spin_mutex::scoped_lock lock(my_mutex);
if ( my_reserved )
return false;
if ( my_has_cached_item ) {
v = my_cached_item;
my_has_cached_item = false;
} else if ( (*my_body)(v) == false ) {
return false;
}
return true;
}
//! Reserves an item.
/* override */ bool try_reserve( output_type &v ) {
spin_mutex::scoped_lock lock(my_mutex);
if ( my_reserved ) {
return false;
}
if ( !my_has_cached_item && (*my_body)(my_cached_item) )
my_has_cached_item = true;
if ( my_has_cached_item ) {
v = my_cached_item;
my_reserved = true;
return true;
} else {
return false;
}
}
//! Release a reserved item.
/** true = item has been released and so remains in sender, dest must request or reserve future items */
/* override */ bool try_release( ) {
spin_mutex::scoped_lock lock(my_mutex);
__TBB_ASSERT( my_reserved && my_has_cached_item, "releasing non-existent reservation" );
my_reserved = false;
spawn_put();
return true;
}
//! Consumes a reserved item
/* override */ bool try_consume( ) {
spin_mutex::scoped_lock lock(my_mutex);
__TBB_ASSERT( my_reserved && my_has_cached_item, "consuming non-existent reservation" );
my_reserved = false;
my_has_cached_item = false;
if ( !my_successors.empty() ) {
spawn_put();
}
return true;
}
//! Activates a node that was created in the inactive state
void activate() {
spin_mutex::scoped_lock lock(my_mutex);
my_active = true;
if ( !my_successors.empty() )
spawn_put();
}
private:
task *my_root_task;
spin_mutex my_mutex;
bool my_active;
bool init_my_active;
internal::source_body<output_type> *my_body;
internal::broadcast_cache< output_type > my_successors;
bool my_reserved;
bool my_has_cached_item;
output_type my_cached_item;
friend class internal::source_task< source_node< output_type > >;
//! Applies the body
/* override */ void apply_body( ) {
output_type v;
if ( try_reserve(v) == false )
return;
if ( my_successors.try_put( v ) )
try_consume();
else
try_release();
}
//! Spawns a task that applies the body
/* override */ void spawn_put( ) {
task::enqueue( * new ( task::allocate_additional_child_of( *my_root_task ) )
internal::source_task< source_node< output_type > >( *this ) );
}
};
//! Implements a function node that supports Input -> Output
template < typename Input, typename Output = continue_msg, graph_buffer_policy = queueing, typename Allocator=cache_aligned_allocator<Input> >
class function_node : public graph_node, public internal::function_input<Input,Output,Allocator>, public internal::function_output<Output> {
public:
typedef Input input_type;
typedef Output output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
typedef internal::function_output<output_type> fOutput_type;
//! Constructor
template< typename Body >
function_node( graph &g, size_t concurrency, Body body )
: internal::function_input<input_type,output_type,Allocator>( g, concurrency, body ) {
}
//! Copy constructor
function_node( const function_node& src ) :
graph_node(), internal::function_input<input_type,output_type,Allocator>( src ),
fOutput_type() {}
protected:
/* override */ internal::broadcast_cache<output_type> &successors () { return fOutput_type::my_successors; }
};
//! Implements a function node that supports Input -> Output
template < typename Input, typename Output, typename Allocator >
class function_node<Input,Output,queueing,Allocator> : public graph_node, public internal::function_input<Input,Output,Allocator>, public internal::function_output<Output> {
public:
typedef Input input_type;
typedef Output output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
typedef internal::function_input<input_type,output_type,Allocator> fInput_type;
typedef internal::function_input_queue<input_type, Allocator> queue_type;
typedef internal::function_output<output_type> fOutput_type;
//! Constructor
template< typename Body >
function_node( graph &g, size_t concurrency, Body body ) : fInput_type( g, concurrency, body, new queue_type() ) {
}
//! Copy constructor
function_node( const function_node& src ) :
graph_node(), fInput_type( src, new queue_type() ) , fOutput_type() { }
protected:
/* override */ internal::broadcast_cache<output_type> &successors () { return fOutput_type::my_successors; }
};
#include "tbb/internal/_flow_graph_types_impl.h"
#if TBB_PREVIEW_GRAPH_NODES
//! implements a function node that supports Input -> (set of outputs)
// Output is a tuple of output types.
template < typename Input, typename Output, graph_buffer_policy = queueing, typename Allocator=cache_aligned_allocator<Input> >
class multioutput_function_node :
public graph_node,
public internal::multioutput_function_input
<
Input,
typename internal::wrap_tuple_elements<
std::tuple_size<Output>::value, // #elements in tuple
internal::function_output, // wrap this around each element
Output // the tuple providing the types
>::type,
Allocator
> {
private:
static const int N = std::tuple_size<Output>::value;
public:
typedef Input input_type;
typedef typename internal::wrap_tuple_elements<N,internal::function_output, Output>::type ports_type;
private:
typedef typename internal::multioutput_function_input<input_type, ports_type, Allocator> base_type;
typedef typename internal::function_input_queue<input_type,Allocator> queue_type;
public:
template<typename Body>
multioutput_function_node( graph &g, size_t concurrency, Body body ) : base_type(g,concurrency, body) {}
multioutput_function_node( const multioutput_function_node &other) :
graph_node(), base_type(other) {}
// all the guts are in multioutput_function_input...
}; // multioutput_function_node
template < typename Input, typename Output, typename Allocator >
class multioutput_function_node<Input,Output,queueing,Allocator> : public graph_node, public internal::multioutput_function_input<Input,
typename internal::wrap_tuple_elements<std::tuple_size<Output>::value, internal::function_output, Output>::type, Allocator> {
static const int N = std::tuple_size<Output>::value;
public:
typedef Input input_type;
typedef typename internal::wrap_tuple_elements<N, internal::function_output, Output>::type ports_type;
private:
typedef typename internal::multioutput_function_input<input_type, ports_type, Allocator> base_type;
typedef typename internal::function_input_queue<input_type,Allocator> queue_type;
public:
template<typename Body>
multioutput_function_node( graph &g, size_t concurrency, Body body) : base_type(g,concurrency, body, new queue_type()) {}
multioutput_function_node( const multioutput_function_node &other) :
graph_node(), base_type(other, new queue_type()) {}
}; // multioutput_function_node
//! split_node: accepts a tuple as input, forwards each element of the tuple to its
// successors. The node has unlimited concurrency, so though it is marked as
// "rejecting" it does not reject inputs.
template<typename TupleType, typename Allocator=cache_aligned_allocator<TupleType> >
class split_node : public multioutput_function_node<TupleType, TupleType, rejecting, Allocator> {
static const int N = std::tuple_size<TupleType>::value;
typedef multioutput_function_node<TupleType,TupleType,rejecting,Allocator> base_type;
public:
typedef typename base_type::ports_type ports_type;
private:
struct splitting_body {
void operator()(const TupleType& t, ports_type &p) {
internal::emit_element<N>::emit_this(t, p);
}
};
public:
typedef TupleType input_type;
typedef Allocator allocator_type;
split_node(graph &g) : base_type(g, unlimited, splitting_body()) { }
split_node( const split_node & other) : base_type(other) { }
};
#endif // TBB_PREVIEW_GRAPH_NODES
//! Implements an executable node that supports continue_msg -> Output
template <typename Output>
class continue_node : public graph_node, public internal::continue_input<Output>, public internal::function_output<Output> {
public:
typedef continue_msg input_type;
typedef Output output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
typedef internal::function_output<output_type> fOutput_type;
//! Constructor for executable node with continue_msg -> Output
template <typename Body >
continue_node( graph &g, Body body )
: internal::continue_input<output_type>( g, body ) {
}
//! Constructor for executable node with continue_msg -> Output
template <typename Body >
continue_node( graph &g, int number_of_predecessors, Body body )
: internal::continue_input<output_type>( g, number_of_predecessors, body )
{
}
//! Copy constructor
continue_node( const continue_node& src ) :
graph_node(), internal::continue_input<output_type>(src),
internal::function_output<Output>() { }
protected:
/* override */ internal::broadcast_cache<output_type> &successors () { return fOutput_type::my_successors; }
};
template< typename T >
class overwrite_node : public graph_node, public receiver<T>, public sender<T> {
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
overwrite_node() : my_buffer_is_valid(false) {
my_successors.set_owner( this );
}
// Copy constructor; doesn't take anything from src; default won't work
overwrite_node( const overwrite_node& ) :
graph_node(), receiver<T>(), sender<T>(), my_buffer_is_valid(false) {
my_successors.set_owner( this );
}
~overwrite_node() {}
/* override */ bool register_successor( successor_type &s ) {
spin_mutex::scoped_lock l( my_mutex );
if ( my_buffer_is_valid ) {
// We have a valid value that must be forwarded immediately.
if ( s.try_put( my_buffer ) || !s.register_predecessor( *this ) ) {
// We add the successor: it accepted our put or it rejected it but won't let use become a predecessor
my_successors.register_successor( s );
return true;
} else {
// We don't add the successor: it rejected our put and we became its predecessor instead
return false;
}
} else {
// No valid value yet, just add as successor
my_successors.register_successor( s );
return true;
}
}
/* override */ bool remove_successor( successor_type &s ) {
spin_mutex::scoped_lock l( my_mutex );
my_successors.remove_successor(s);
return true;
}
/* override */ bool try_put( const T &v ) {
spin_mutex::scoped_lock l( my_mutex );
my_buffer = v;
my_buffer_is_valid = true;
my_successors.try_put(v);
return true;
}
/* override */ bool try_get( T &v ) {
spin_mutex::scoped_lock l( my_mutex );
if ( my_buffer_is_valid ) {
v = my_buffer;
return true;
} else {
return false;
}
}
bool is_valid() {
spin_mutex::scoped_lock l( my_mutex );
return my_buffer_is_valid;
}
void clear() {
spin_mutex::scoped_lock l( my_mutex );
my_buffer_is_valid = false;
}
protected:
spin_mutex my_mutex;
internal::broadcast_cache< T, null_rw_mutex > my_successors;
T my_buffer;
bool my_buffer_is_valid;
};
template< typename T >
class write_once_node : public overwrite_node<T> {
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
//! Constructor
write_once_node() : overwrite_node<T>() {}
//! Copy constructor: call base class copy constructor
write_once_node( const write_once_node& src ) : overwrite_node<T>(src) {}
/* override */ bool try_put( const T &v ) {
spin_mutex::scoped_lock l( this->my_mutex );
if ( this->my_buffer_is_valid ) {
return false;
} else {
this->my_buffer = v;
this->my_buffer_is_valid = true;
this->my_successors.try_put(v);
return true;
}
}
};
//! Forwards messages of type T to all successors
template <typename T>
class broadcast_node : public graph_node, public receiver<T>, public sender<T> {
internal::broadcast_cache<T> my_successors;
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
broadcast_node( ) {
my_successors.set_owner( this );
}
// Copy constructor
broadcast_node( const broadcast_node& ) : graph_node(), receiver<T>(), sender<T>() {
my_successors.set_owner( this );
}
//! Adds a successor
virtual bool register_successor( receiver<T> &r ) {
my_successors.register_successor( r );
return true;
}
//! Removes s as a successor
virtual bool remove_successor( receiver<T> &r ) {
my_successors.remove_successor( r );
return true;
}
/* override */ bool try_put( const T &t ) {
my_successors.try_put(t);
return true;
}
};
#include "internal/_flow_graph_item_buffer_impl.h"
//! Forwards messages in arbitrary order
template <typename T, typename A=cache_aligned_allocator<T> >
class buffer_node : public graph_node, public reservable_item_buffer<T, A>, public receiver<T>, public sender<T> {
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
typedef buffer_node<T, A> my_class;
protected:
typedef size_t size_type;
internal::round_robin_cache< T, null_rw_mutex > my_successors;
task *my_parent;
friend class internal::forward_task< buffer_node< T, A > >;
enum op_type {reg_succ, rem_succ, req_item, res_item, rel_res, con_res, put_item, try_fwd};
enum op_stat {WAIT=0, SUCCEEDED, FAILED};
// implements the aggregator_operation concept
class buffer_operation : public internal::aggregated_operation< buffer_operation > {
public:
char type;
T *elem;
successor_type *r;
buffer_operation(const T& e, op_type t) :
type(char(t)), elem(const_cast<T*>(&e)), r(NULL) {}
buffer_operation(op_type t) : type(char(t)), r(NULL) {}
};
bool forwarder_busy;
typedef internal::aggregating_functor<my_class, buffer_operation> my_handler;
friend class internal::aggregating_functor<my_class, buffer_operation>;
internal::aggregator< my_handler, buffer_operation> my_aggregator;
virtual void handle_operations(buffer_operation *op_list) {
buffer_operation *tmp;
bool try_forwarding=false;
while (op_list) {
tmp = op_list;
op_list = op_list->next;
switch (tmp->type) {
case reg_succ: internal_reg_succ(tmp); try_forwarding = true; break;
case rem_succ: internal_rem_succ(tmp); break;
case req_item: internal_pop(tmp); break;
case res_item: internal_reserve(tmp); break;
case rel_res: internal_release(tmp); try_forwarding = true; break;
case con_res: internal_consume(tmp); try_forwarding = true; break;
case put_item: internal_push(tmp); try_forwarding = true; break;
case try_fwd: internal_forward(tmp); break;
}
}
if (try_forwarding && !forwarder_busy) {
forwarder_busy = true;
task::enqueue(*new(task::allocate_additional_child_of(*my_parent)) internal::forward_task< buffer_node<input_type, A> >(*this));
}
}
//! This is executed by an enqueued task, the "forwarder"
virtual void forward() {
buffer_operation op_data(try_fwd);
do {
op_data.status = WAIT;
my_aggregator.execute(&op_data);
} while (op_data.status == SUCCEEDED);
}
//! Register successor
virtual void internal_reg_succ(buffer_operation *op) {
my_successors.register_successor(*(op->r));
__TBB_store_with_release(op->status, SUCCEEDED);
}
//! Remove successor
virtual void internal_rem_succ(buffer_operation *op) {
my_successors.remove_successor(*(op->r));
__TBB_store_with_release(op->status, SUCCEEDED);
}
//! Tries to forward valid items to successors
virtual void internal_forward(buffer_operation *op) {
T i_copy;
bool success = false; // flagged when a successor accepts
size_type counter = my_successors.size();
// Try forwarding, giving each successor a chance
while (counter>0 && !this->buffer_empty() && this->item_valid(this->my_tail-1)) {
this->fetch_back(i_copy);
if( my_successors.try_put(i_copy) ) {
this->invalidate_back();
--(this->my_tail);
success = true; // found an accepting successor
}
--counter;
}
if (success && !counter)
__TBB_store_with_release(op->status, SUCCEEDED);
else {
__TBB_store_with_release(op->status, FAILED);
forwarder_busy = false;
}
}
virtual void internal_push(buffer_operation *op) {
this->push_back(*(op->elem));
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_pop(buffer_operation *op) {
if(this->pop_back(*(op->elem))) {
__TBB_store_with_release(op->status, SUCCEEDED);
}
else {
__TBB_store_with_release(op->status, FAILED);
}
}
virtual void internal_reserve(buffer_operation *op) {
if(this->reserve_front(*(op->elem))) {
__TBB_store_with_release(op->status, SUCCEEDED);
}
else {
__TBB_store_with_release(op->status, FAILED);
}
}
virtual void internal_consume(buffer_operation *op) {
this->consume_front();
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_release(buffer_operation *op) {
this->release_front();
__TBB_store_with_release(op->status, SUCCEEDED);
}
public:
//! Constructor
buffer_node( graph &g ) : reservable_item_buffer<T>(),
my_parent( g.root_task() ), forwarder_busy(false) {
my_successors.set_owner(this);
my_aggregator.initialize_handler(my_handler(this));
}
//! Copy constructor
buffer_node( const buffer_node& src ) :
graph_node(), reservable_item_buffer<T>(), receiver<T>(), sender<T>(),
my_parent( src.my_parent ) {
forwarder_busy = false;
my_successors.set_owner(this);
my_aggregator.initialize_handler(my_handler(this));
}
virtual ~buffer_node() {}
//
// message sender implementation
//
//! Adds a new successor.
/** Adds successor r to the list of successors; may forward tasks. */
/* override */ bool register_successor( receiver<output_type> &r ) {
buffer_operation op_data(reg_succ);
op_data.r = &r;
my_aggregator.execute(&op_data);
return true;
}
//! Removes a successor.
/** Removes successor r from the list of successors.
It also calls r.remove_predecessor(*this) to remove this node as a predecessor. */
/* override */ bool remove_successor( receiver<output_type> &r ) {
r.remove_predecessor(*this);
buffer_operation op_data(rem_succ);
op_data.r = &r;
my_aggregator.execute(&op_data);
return true;
}
//! Request an item from the buffer_node
/** true = v contains the returned item<BR>
false = no item has been returned */
/* override */ bool try_get( T &v ) {
buffer_operation op_data(req_item);
op_data.elem = &v;
my_aggregator.execute(&op_data);
return (op_data.status==SUCCEEDED);
}
//! Reserves an item.
/** false = no item can be reserved<BR>
true = an item is reserved */
/* override */ bool try_reserve( T &v ) {
buffer_operation op_data(res_item);
op_data.elem = &v;
my_aggregator.execute(&op_data);
return (op_data.status==SUCCEEDED);
}
//! Release a reserved item.
/** true = item has been released and so remains in sender */
/* override */ bool try_release() {
buffer_operation op_data(rel_res);
my_aggregator.execute(&op_data);
return true;
}
//! Consumes a reserved item.
/** true = item is removed from sender and reservation removed */
/* override */ bool try_consume() {
buffer_operation op_data(con_res);
my_aggregator.execute(&op_data);
return true;
}
//! Receive an item
/** true is always returned */
/* override */ bool try_put(const T &t) {
buffer_operation op_data(t, put_item);
my_aggregator.execute(&op_data);
return true;
}
};
//! Forwards messages in FIFO order
template <typename T, typename A=cache_aligned_allocator<T> >
class queue_node : public buffer_node<T, A> {
protected:
typedef typename buffer_node<T, A>::size_type size_type;
typedef typename buffer_node<T, A>::buffer_operation queue_operation;
enum op_stat {WAIT=0, SUCCEEDED, FAILED};
//! Tries to forward valid items to successors
/* override */ void internal_forward(queue_operation *op) {
T i_copy;
bool success = false; // flagged when a successor accepts
size_type counter = this->my_successors.size();
if (this->my_reserved || !this->item_valid(this->my_head)){
__TBB_store_with_release(op->status, FAILED);
this->forwarder_busy = false;
return;
}
// Keep trying to send items while there is at least one accepting successor
while (counter>0 && this->item_valid(this->my_head)) {
this->fetch_front(i_copy);
if(this->my_successors.try_put(i_copy)) {
this->invalidate_front();
++(this->my_head);
success = true; // found an accepting successor
}
--counter;
}
if (success && !counter)
__TBB_store_with_release(op->status, SUCCEEDED);
else {
__TBB_store_with_release(op->status, FAILED);
this->forwarder_busy = false;
}
}
/* override */ void internal_pop(queue_operation *op) {
if ( this->my_reserved || !this->item_valid(this->my_head)){
__TBB_store_with_release(op->status, FAILED);
}
else {
this->pop_front(*(op->elem));
__TBB_store_with_release(op->status, SUCCEEDED);
}
}
/* override */ void internal_reserve(queue_operation *op) {
if (this->my_reserved || !this->item_valid(this->my_head)) {
__TBB_store_with_release(op->status, FAILED);
}
else {
this->my_reserved = true;
this->fetch_front(*(op->elem));
this->invalidate_front();
__TBB_store_with_release(op->status, SUCCEEDED);
}
}
/* override */ void internal_consume(queue_operation *op) {
this->consume_front();
__TBB_store_with_release(op->status, SUCCEEDED);
}
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
//! Constructor
queue_node( graph &g ) : buffer_node<T, A>(g) {}
//! Copy constructor
queue_node( const queue_node& src) : buffer_node<T, A>(src) {}
};
//! Forwards messages in sequence order
template< typename T, typename A=cache_aligned_allocator<T> >
class sequencer_node : public queue_node<T, A> {
internal::function_body< T, size_t > *my_sequencer;
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
//! Constructor
template< typename Sequencer >
sequencer_node( graph &g, const Sequencer& s ) : queue_node<T, A>(g),
my_sequencer(new internal::function_body_leaf< T, size_t, Sequencer>(s) ) {}
//! Copy constructor
sequencer_node( const sequencer_node& src ) : queue_node<T, A>(src),
my_sequencer( src.my_sequencer->clone() ) {}
//! Destructor
~sequencer_node() { delete my_sequencer; }
protected:
typedef typename buffer_node<T, A>::size_type size_type;
typedef typename buffer_node<T, A>::buffer_operation sequencer_operation;
enum op_stat {WAIT=0, SUCCEEDED, FAILED};
private:
/* override */ void internal_push(sequencer_operation *op) {
size_type tag = (*my_sequencer)(*(op->elem));
this->my_tail = (tag+1 > this->my_tail) ? tag+1 : this->my_tail;
if(this->size() > this->capacity())
this->grow_my_array(this->size()); // tail already has 1 added to it
this->item(tag) = std::make_pair( *(op->elem), true );
__TBB_store_with_release(op->status, SUCCEEDED);
}
};
//! Forwards messages in priority order
template< typename T, typename Compare = std::less<T>, typename A=cache_aligned_allocator<T> >
class priority_queue_node : public buffer_node<T, A> {
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
//! Constructor
priority_queue_node( graph &g ) : buffer_node<T, A>(g), mark(0) {}
//! Copy constructor
priority_queue_node( const priority_queue_node &src ) : buffer_node<T, A>(src), mark(0) {}
protected:
typedef typename buffer_node<T, A>::size_type size_type;
typedef typename buffer_node<T, A>::item_type item_type;
typedef typename buffer_node<T, A>::buffer_operation prio_operation;
enum op_stat {WAIT=0, SUCCEEDED, FAILED};
/* override */ void handle_operations(prio_operation *op_list) {
prio_operation *tmp /*, *pop_list*/ ;
bool try_forwarding=false;
while (op_list) {
tmp = op_list;
op_list = op_list->next;
switch (tmp->type) {
case buffer_node<T, A>::reg_succ: this->internal_reg_succ(tmp); try_forwarding = true; break;
case buffer_node<T, A>::rem_succ: this->internal_rem_succ(tmp); break;
case buffer_node<T, A>::put_item: internal_push(tmp); try_forwarding = true; break;
case buffer_node<T, A>::try_fwd: internal_forward(tmp); break;
case buffer_node<T, A>::rel_res: internal_release(tmp); try_forwarding = true; break;
case buffer_node<T, A>::con_res: internal_consume(tmp); try_forwarding = true; break;
case buffer_node<T, A>::req_item: internal_pop(tmp); break;
case buffer_node<T, A>::res_item: internal_reserve(tmp); break;
}
}
// process pops! for now, no special pop processing
if (mark<this->my_tail) heapify();
if (try_forwarding && !this->forwarder_busy) {
this->forwarder_busy = true;
task::enqueue(*new(task::allocate_additional_child_of(*(this->my_parent))) internal::forward_task< buffer_node<input_type, A> >(*this));
}
}
//! Tries to forward valid items to successors
/* override */ void internal_forward(prio_operation *op) {
T i_copy;
bool success = false; // flagged when a successor accepts
size_type counter = this->my_successors.size();
if (this->my_reserved || this->my_tail == 0) {
__TBB_store_with_release(op->status, FAILED);
this->forwarder_busy = false;
return;
}
// Keep trying to send while there exists an accepting successor
while (counter>0 && this->my_tail > 0) {
i_copy = this->my_array[0].first;
bool msg = this->my_successors.try_put(i_copy);
if ( msg == true ) {
if (mark == this->my_tail) --mark;
--(this->my_tail);
this->my_array[0].first=this->my_array[this->my_tail].first;
if (this->my_tail > 1) // don't reheap for heap of size 1
reheap();
success = true; // found an accepting successor
}
--counter;
}
if (success && !counter)
__TBB_store_with_release(op->status, SUCCEEDED);
else {
__TBB_store_with_release(op->status, FAILED);
this->forwarder_busy = false;
}
}
/* override */ void internal_push(prio_operation *op) {
if ( this->my_tail >= this->my_array_size )
this->grow_my_array( this->my_tail + 1 );
this->my_array[this->my_tail] = std::make_pair( *(op->elem), true );
++(this->my_tail);
__TBB_store_with_release(op->status, SUCCEEDED);
}
/* override */ void internal_pop(prio_operation *op) {
if ( this->my_reserved == true || this->my_tail == 0 ) {
__TBB_store_with_release(op->status, FAILED);
}
else {
if (mark<this->my_tail &&
compare(this->my_array[0].first,
this->my_array[this->my_tail-1].first)) {
// there are newly pushed elems; last one higher than top
// copy the data
*(op->elem) = this->my_array[this->my_tail-1].first;
--(this->my_tail);
__TBB_store_with_release(op->status, SUCCEEDED);
}
else { // extract and push the last element down heap
*(op->elem) = this->my_array[0].first; // copy the data
if (mark == this->my_tail) --mark;
--(this->my_tail);
__TBB_store_with_release(op->status, SUCCEEDED);
this->my_array[0].first=this->my_array[this->my_tail].first;
if (this->my_tail > 1) // don't reheap for heap of size 1
reheap();
}
}
}
/* override */ void internal_reserve(prio_operation *op) {
if (this->my_reserved == true || this->my_tail == 0) {
__TBB_store_with_release(op->status, FAILED);
}
else {
this->my_reserved = true;
*(op->elem) = reserved_item = this->my_array[0].first;
if (mark == this->my_tail) --mark;
--(this->my_tail);
__TBB_store_with_release(op->status, SUCCEEDED);
this->my_array[0].first = this->my_array[this->my_tail].first;
if (this->my_tail > 1) // don't reheap for heap of size 1
reheap();
}
}
/* override */ void internal_consume(prio_operation *op) {
this->my_reserved = false;
__TBB_store_with_release(op->status, SUCCEEDED);
}
/* override */ void internal_release(prio_operation *op) {
if (this->my_tail >= this->my_array_size)
this->grow_my_array( this->my_tail + 1 );
this->my_array[this->my_tail] = std::make_pair(reserved_item, true);
++(this->my_tail);
this->my_reserved = false;
__TBB_store_with_release(op->status, SUCCEEDED);
heapify();
}
private:
Compare compare;
size_type mark;
input_type reserved_item;
void heapify() {
if (!mark) mark = 1;
for (; mark<this->my_tail; ++mark) { // for each unheaped element
size_type cur_pos = mark;
input_type to_place = this->my_array[mark].first;
do { // push to_place up the heap
size_type parent = (cur_pos-1)>>1;
if (!compare(this->my_array[parent].first, to_place))
break;
this->my_array[cur_pos].first = this->my_array[parent].first;
cur_pos = parent;
} while( cur_pos );
this->my_array[cur_pos].first = to_place;
}
}
void reheap() {
size_type cur_pos=0, child=1;
while (child < mark) {
size_type target = child;
if (child+1<mark &&
compare(this->my_array[child].first,
this->my_array[child+1].first))
++target;
// target now has the higher priority child
if (compare(this->my_array[target].first,
this->my_array[this->my_tail].first))
break;
this->my_array[cur_pos].first = this->my_array[target].first;
cur_pos = target;
child = (cur_pos<<1)+1;
}
this->my_array[cur_pos].first = this->my_array[this->my_tail].first;
}
};
//! Forwards messages only if the threshold has not been reached
/** This node forwards items until its threshold is reached.
It contains no buffering. If the downstream node rejects, the
message is dropped. */
template< typename T >
class limiter_node : public graph_node, public receiver< T >, public sender< T > {
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
private:
task *my_root_task;
size_t my_threshold;
size_t my_count;
internal::predecessor_cache< T > my_predecessors;
spin_mutex my_mutex;
internal::broadcast_cache< T > my_successors;
int init_decrement_predecessors;
friend class internal::forward_task< limiter_node<T> >;
// Let decrementer call decrement_counter()
friend class internal::decrementer< limiter_node<T> >;
void decrement_counter() {
input_type v;
// If we can't get / put an item immediately then drop the count
if ( my_predecessors.get_item( v ) == false
|| my_successors.try_put(v) == false ) {
spin_mutex::scoped_lock lock(my_mutex);
--my_count;
if ( !my_predecessors.empty() )
task::enqueue( * new ( task::allocate_additional_child_of( *my_root_task ) )
internal::forward_task< limiter_node<T> >( *this ) );
}
}
void forward() {
{
spin_mutex::scoped_lock lock(my_mutex);
if ( my_count < my_threshold )
++my_count;
else
return;
}
decrement_counter();
}
public:
//! The internal receiver< continue_msg > that decrements the count
internal::decrementer< limiter_node<T> > decrement;
//! Constructor
limiter_node(graph &g, size_t threshold, int num_decrement_predecessors=0) :
my_root_task(g.root_task()), my_threshold(threshold), my_count(0),
init_decrement_predecessors(num_decrement_predecessors),
decrement(num_decrement_predecessors)
{
my_predecessors.set_owner(this);
my_successors.set_owner(this);
decrement.set_owner(this);
}
//! Copy constructor
limiter_node( const limiter_node& src ) :
graph_node(), receiver<T>(), sender<T>(),
my_root_task(src.my_root_task), my_threshold(src.my_threshold), my_count(0),
init_decrement_predecessors(src.init_decrement_predecessors),
decrement(src.init_decrement_predecessors)
{
my_predecessors.set_owner(this);
my_successors.set_owner(this);
decrement.set_owner(this);
}
//! Replace the current successor with this new successor
/* override */ bool register_successor( receiver<output_type> &r ) {
my_successors.register_successor(r);
return true;
}
//! Removes a successor from this node
/** r.remove_predecessor(*this) is also called. */
/* override */ bool remove_successor( receiver<output_type> &r ) {
r.remove_predecessor(*this);
my_successors.remove_successor(r);
return true;
}
//! Puts an item to this receiver
/* override */ bool try_put( const T &t ) {
{
spin_mutex::scoped_lock lock(my_mutex);
if ( my_count >= my_threshold )
return false;
else
++my_count;
}
bool msg = my_successors.try_put(t);
if ( msg != true ) {
spin_mutex::scoped_lock lock(my_mutex);
--my_count;
if ( !my_predecessors.empty() )
task::enqueue( * new ( task::allocate_additional_child_of( *my_root_task ) )
internal::forward_task< limiter_node<T> >( *this ) );
}
return msg;
}
//! Removes src from the list of cached predecessors.
/* override */ bool register_predecessor( predecessor_type &src ) {
spin_mutex::scoped_lock lock(my_mutex);
my_predecessors.add( src );
if ( my_count < my_threshold && !my_successors.empty() )
task::enqueue( * new ( task::allocate_additional_child_of( *my_root_task ) )
internal::forward_task< limiter_node<T> >( *this ) );
return true;
}
//! Removes src from the list of cached predecessors.
/* override */ bool remove_predecessor( predecessor_type &src ) {
my_predecessors.remove( src );
return true;
}
};
#include "internal/_flow_graph_join_impl.h"
using internal::reserving_port;
using internal::queueing_port;
using internal::tag_matching_port;
using internal::input_port;
using internal::tag_value;
using internal::NO_TAG;
template<typename OutputTuple, graph_buffer_policy JP=queueing> class join_node;
template<typename OutputTuple>
class join_node<OutputTuple,reserving>: public internal::unfolded_join_node<std::tuple_size<OutputTuple>::value, reserving_port, OutputTuple, reserving> {
private:
static const int N = std::tuple_size<OutputTuple>::value;
typedef typename internal::unfolded_join_node<N, reserving_port, OutputTuple, reserving> unfolded_type;
public:
typedef OutputTuple output_type;
typedef typename unfolded_type::input_ports_tuple_type input_ports_tuple_type;
join_node(graph &g) : unfolded_type(g) { }
join_node(const join_node &other) : unfolded_type(other) {}
};
template<typename OutputTuple>
class join_node<OutputTuple,queueing>: public internal::unfolded_join_node<std::tuple_size<OutputTuple>::value, queueing_port, OutputTuple, queueing> {
private:
static const int N = std::tuple_size<OutputTuple>::value;
typedef typename internal::unfolded_join_node<N, queueing_port, OutputTuple, queueing> unfolded_type;
public:
typedef OutputTuple output_type;
typedef typename unfolded_type::input_ports_tuple_type input_ports_tuple_type;
join_node(graph &g) : unfolded_type(g) { }
join_node(const join_node &other) : unfolded_type(other) {}
};
// template for tag_matching join_node
template<typename OutputTuple>
class join_node<OutputTuple, tag_matching> : public internal::unfolded_join_node<std::tuple_size<OutputTuple>::value,
tag_matching_port, OutputTuple, tag_matching> {
private:
static const int N = std::tuple_size<OutputTuple>::value;
typedef typename internal::unfolded_join_node<N, tag_matching_port, OutputTuple, tag_matching> unfolded_type;
public:
typedef OutputTuple output_type;
typedef typename unfolded_type::input_ports_tuple_type input_ports_tuple_type;
template<typename B0, typename B1>
join_node(graph &g, B0 b0, B1 b1) : unfolded_type(g, b0, b1) { }
template<typename B0, typename B1, typename B2>
join_node(graph &g, B0 b0, B1 b1, B2 b2) : unfolded_type(g, b0, b1, b2) { }
template<typename B0, typename B1, typename B2, typename B3>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3) : unfolded_type(g, b0, b1, b2, b3) { }
template<typename B0, typename B1, typename B2, typename B3, typename B4>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4) : unfolded_type(g, b0, b1, b2, b3, b4) { }
template<typename B0, typename B1, typename B2, typename B3, typename B4, typename B5>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5) : unfolded_type(g, b0, b1, b2, b3, b4, b5) { }
template<typename B0, typename B1, typename B2, typename B3, typename B4, typename B5, typename B6>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6) { }
template<typename B0, typename B1, typename B2, typename B3, typename B4, typename B5, typename B6, typename B7>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7) { }
template<typename B0, typename B1, typename B2, typename B3, typename B4, typename B5, typename B6, typename B7, typename B8>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7, B8 b8) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7, b8) { }
template<typename B0, typename B1, typename B2, typename B3, typename B4, typename B5, typename B6, typename B7, typename B8, typename B9>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7, B8 b8, B9 b9) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) { }
join_node(const join_node &other) : unfolded_type(other) {}
};
#if TBB_PREVIEW_GRAPH_NODES
// or node
#include "internal/_flow_graph_or_impl.h"
template<typename InputTuple>
class or_node : public internal::unfolded_or_node<InputTuple> {
private:
static const int N = std::tuple_size<InputTuple>::value;
public:
typedef typename internal::or_output_type<InputTuple>::type output_type;
typedef typename internal::unfolded_or_node<InputTuple> unfolded_type;
or_node() : unfolded_type() { }
// Copy constructor
or_node( const or_node& /*other*/ ) : unfolded_type() { }
};
#endif // TBB_PREVIEW_GRAPH_NODES
//! Makes an edge between a single predecessor and a single successor
template< typename T >
inline void make_edge( sender<T> &p, receiver<T> &s ) {
p.register_successor( s );
}
//! Makes an edge between a single predecessor and a single successor
template< typename T >
inline void remove_edge( sender<T> &p, receiver<T> &s ) {
p.remove_successor( s );
}
//! Returns a copy of the body from a function or continue node
template< typename Body, typename Node >
Body copy_body( Node &n ) {
return n.template copy_function_object<Body>();
}
} // interface6
using interface6::graph;
using interface6::graph_node;
using interface6::continue_msg;
using interface6::sender;
using interface6::receiver;
using interface6::continue_receiver;
using interface6::source_node;
using interface6::function_node;
#if TBB_PREVIEW_GRAPH_NODES
using interface6::multioutput_function_node;
using interface6::split_node;
using interface6::internal::output_port;
using interface6::or_node;
#endif
using interface6::continue_node;
using interface6::overwrite_node;
using interface6::write_once_node;
using interface6::broadcast_node;
using interface6::buffer_node;
using interface6::queue_node;
using interface6::sequencer_node;
using interface6::priority_queue_node;
using interface6::limiter_node;
using namespace interface6::internal::graph_policy_namespace;
using interface6::join_node;
using interface6::input_port;
using interface6::copy_body;
using interface6::make_edge;
using interface6::remove_edge;
using interface6::internal::NO_TAG;
using interface6::internal::tag_value;
} // flow
} // tbb
#endif // __TBB_flow_graph_H
|