/usr/include/octave-3.2.4/octave/Array.h is in octave3.2-headers 3.2.4-12.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 | // Template array classes
/*
Copyright (C) 2008, 2009 Jaroslav Hajek
Copyright (C) 1993, 1994, 1995, 1996, 1997, 2000, 2001, 2002, 2003,
2004, 2005, 2006, 2007 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
#if !defined (octave_Array_h)
#define octave_Array_h 1
#include <cassert>
#include <cstddef>
#include <algorithm>
#include <iosfwd>
#include "dim-vector.h"
#include "idx-vector.h"
#include "lo-traits.h"
#include "lo-utils.h"
#include "oct-sort.h"
#include "quit.h"
// One dimensional array class. Handles the reference counting for
// all the derived classes.
template <class T>
class
Array
{
protected:
//--------------------------------------------------------------------
// The real representation of all arrays.
//--------------------------------------------------------------------
class ArrayRep
{
public:
T *data;
octave_idx_type len;
int count;
ArrayRep (T *d, octave_idx_type l, bool copy = false)
: data (copy ? new T [l] : d), len (l), count (1)
{
if (copy)
std::copy (d, d + l, data);
}
ArrayRep (void) : data (0), len (0), count (1) { }
explicit ArrayRep (octave_idx_type n) : data (new T [n]), len (n), count (1) { }
explicit ArrayRep (octave_idx_type n, const T& val)
: data (new T [n]), len (n), count (1)
{
std::fill (data, data + n, val);
}
ArrayRep (const ArrayRep& a)
: data (new T [a.len]), len (a.len), count (1)
{
std::copy (a.data, a.data + a.len, data);
}
~ArrayRep (void) { delete [] data; }
octave_idx_type length (void) const { return len; }
private:
// No assignment!
ArrayRep& operator = (const ArrayRep& a);
};
//--------------------------------------------------------------------
public:
void make_unique (void);
typedef T element_type;
typedef bool (*compare_fcn_type) (typename ref_param<T>::type,
typename ref_param<T>::type);
protected:
typename Array<T>::ArrayRep *rep;
dim_vector dimensions;
// Rationale:
// slice_data is a pointer to rep->data, denoting together with slice_len the
// actual portion of the data referenced by this Array<T> object. This allows
// to make shallow copies not only of a whole array, but also of contiguous
// subranges. Every time rep is directly manipulated, slice_data and slice_len
// need to be properly updated.
T* slice_data;
octave_idx_type slice_len;
Array (T *d, octave_idx_type n)
: rep (new typename Array<T>::ArrayRep (d, n)), dimensions (n)
{
slice_data = rep->data;
slice_len = rep->len;
}
Array (T *d, const dim_vector& dv)
: rep (new typename Array<T>::ArrayRep (d, get_size (dv))),
dimensions (dv)
{
slice_data = rep->data;
slice_len = rep->len;
}
// slice constructor
Array (const Array<T>& a, const dim_vector& dv,
octave_idx_type l, octave_idx_type u)
: rep(a.rep), dimensions (dv)
{
rep->count++;
slice_data = a.slice_data + l;
slice_len = std::min (u, a.slice_len) - l;
}
private:
typename Array<T>::ArrayRep *nil_rep (void) const
{
static typename Array<T>::ArrayRep *nr
= new typename Array<T>::ArrayRep ();
return nr;
}
template <class U>
T *
coerce (const U *a, octave_idx_type len)
{
T *retval = new T [len];
for (octave_idx_type i = 0; i < len; i++)
retval[i] = T (a[i]);
return retval;
}
public:
Array (void)
: rep (nil_rep ()), dimensions ()
{
rep->count++;
slice_data = rep->data;
slice_len = rep->len;
}
explicit Array (octave_idx_type n)
: rep (new typename Array<T>::ArrayRep (n)), dimensions (n)
{
slice_data = rep->data;
slice_len = rep->len;
}
explicit Array (octave_idx_type n, const T& val)
: rep (new typename Array<T>::ArrayRep (n)), dimensions (n)
{
slice_data = rep->data;
slice_len = rep->len;
fill (val);
}
// Type conversion case.
template <class U>
Array (const Array<U>& a)
: rep (new typename Array<T>::ArrayRep (coerce (a.data (), a.length ()), a.length ())),
dimensions (a.dims ())
{
slice_data = rep->data;
slice_len = rep->len;
}
// No type conversion case.
Array (const Array<T>& a)
: rep (a.rep), dimensions (a.dimensions)
{
rep->count++;
slice_data = a.slice_data;
slice_len = a.slice_len;
}
public:
Array (const dim_vector& dv)
: rep (new typename Array<T>::ArrayRep (get_size (dv))),
dimensions (dv)
{
slice_data = rep->data;
slice_len = rep->len;
}
Array (const dim_vector& dv, const T& val)
: rep (new typename Array<T>::ArrayRep (get_size (dv))),
dimensions (dv)
{
slice_data = rep->data;
slice_len = rep->len;
fill (val);
}
Array (const Array<T>& a, const dim_vector& dv);
virtual ~Array (void);
Array<T>& operator = (const Array<T>& a);
void fill (const T& val);
octave_idx_type capacity (void) const { return slice_len; }
octave_idx_type length (void) const { return capacity (); }
octave_idx_type nelem (void) const { return capacity (); }
octave_idx_type numel (void) const { return nelem (); }
octave_idx_type dim1 (void) const { return dimensions(0); }
octave_idx_type dim2 (void) const { return dimensions(1); }
octave_idx_type dim3 (void) const { return dimensions(2); }
octave_idx_type rows (void) const { return dim1 (); }
octave_idx_type cols (void) const { return dim2 (); }
octave_idx_type columns (void) const { return dim2 (); }
octave_idx_type pages (void) const { return dim3 (); }
size_t byte_size (void) const { return numel () * sizeof (T); }
// Return a const-reference so that dims ()(i) works efficiently.
const dim_vector& dims (void) const { return dimensions; }
Array<T> squeeze (void) const;
void chop_trailing_singletons (void)
{ dimensions.chop_trailing_singletons (); }
static octave_idx_type get_size (octave_idx_type r, octave_idx_type c);
static octave_idx_type get_size (octave_idx_type r, octave_idx_type c, octave_idx_type p);
static octave_idx_type get_size (const dim_vector& dv);
octave_idx_type compute_index (const Array<octave_idx_type>& ra_idx) const;
T range_error (const char *fcn, octave_idx_type n) const;
T& range_error (const char *fcn, octave_idx_type n);
T range_error (const char *fcn, octave_idx_type i, octave_idx_type j) const;
T& range_error (const char *fcn, octave_idx_type i, octave_idx_type j);
T range_error (const char *fcn, octave_idx_type i, octave_idx_type j, octave_idx_type k) const;
T& range_error (const char *fcn, octave_idx_type i, octave_idx_type j, octave_idx_type k);
T range_error (const char *fcn, const Array<octave_idx_type>& ra_idx) const;
T& range_error (const char *fcn, const Array<octave_idx_type>& ra_idx);
// No checking, even for multiple references, ever.
T& xelem (octave_idx_type n) { return slice_data [n]; }
T xelem (octave_idx_type n) const { return slice_data [n]; }
T& xelem (octave_idx_type i, octave_idx_type j) { return xelem (dim1()*j+i); }
T xelem (octave_idx_type i, octave_idx_type j) const { return xelem (dim1()*j+i); }
T& xelem (octave_idx_type i, octave_idx_type j, octave_idx_type k) { return xelem (i, dim2()*k+j); }
T xelem (octave_idx_type i, octave_idx_type j, octave_idx_type k) const { return xelem (i, dim2()*k+j); }
T& xelem (const Array<octave_idx_type>& ra_idx)
{ return xelem (compute_index (ra_idx)); }
T xelem (const Array<octave_idx_type>& ra_idx) const
{ return xelem (compute_index (ra_idx)); }
// FIXME -- would be nice to fix this so that we don't
// unnecessarily force a copy, but that is not so easy, and I see no
// clean way to do it.
T& checkelem (octave_idx_type n)
{
if (n < 0 || n >= slice_len)
return range_error ("T& Array<T>::checkelem", n);
else
{
make_unique ();
return xelem (n);
}
}
T& checkelem (octave_idx_type i, octave_idx_type j)
{
if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ())
return range_error ("T& Array<T>::checkelem", i, j);
else
return elem (dim1()*j+i);
}
T& checkelem (octave_idx_type i, octave_idx_type j, octave_idx_type k)
{
if (i < 0 || j < 0 || k < 0 || i >= dim1 () || j >= dim2 () || k >= dim3 ())
return range_error ("T& Array<T>::checkelem", i, j, k);
else
return elem (i, dim2()*k+j);
}
T& checkelem (const Array<octave_idx_type>& ra_idx)
{
octave_idx_type i = compute_index (ra_idx);
if (i < 0)
return range_error ("T& Array<T>::checkelem", ra_idx);
else
return elem (i);
}
T& elem (octave_idx_type n)
{
make_unique ();
return xelem (n);
}
T& elem (octave_idx_type i, octave_idx_type j) { return elem (dim1()*j+i); }
T& elem (octave_idx_type i, octave_idx_type j, octave_idx_type k) { return elem (i, dim2()*k+j); }
T& elem (const Array<octave_idx_type>& ra_idx)
{ return Array<T>::elem (compute_index (ra_idx)); }
#if defined (BOUNDS_CHECKING)
T& operator () (octave_idx_type n) { return checkelem (n); }
T& operator () (octave_idx_type i, octave_idx_type j) { return checkelem (i, j); }
T& operator () (octave_idx_type i, octave_idx_type j, octave_idx_type k) { return checkelem (i, j, k); }
T& operator () (const Array<octave_idx_type>& ra_idx) { return checkelem (ra_idx); }
#else
T& operator () (octave_idx_type n) { return elem (n); }
T& operator () (octave_idx_type i, octave_idx_type j) { return elem (i, j); }
T& operator () (octave_idx_type i, octave_idx_type j, octave_idx_type k) { return elem (i, j, k); }
T& operator () (const Array<octave_idx_type>& ra_idx) { return elem (ra_idx); }
#endif
T checkelem (octave_idx_type n) const
{
if (n < 0 || n >= slice_len)
return range_error ("T Array<T>::checkelem", n);
else
return xelem (n);
}
T checkelem (octave_idx_type i, octave_idx_type j) const
{
if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ())
return range_error ("T Array<T>::checkelem", i, j);
else
return elem (dim1()*j+i);
}
T checkelem (octave_idx_type i, octave_idx_type j, octave_idx_type k) const
{
if (i < 0 || j < 0 || k < 0 || i >= dim1 () || j >= dim2 () || k >= dim3 ())
return range_error ("T Array<T>::checkelem", i, j, k);
else
return Array<T>::elem (i, Array<T>::dim1()*k+j);
}
T checkelem (const Array<octave_idx_type>& ra_idx) const
{
octave_idx_type i = compute_index (ra_idx);
if (i < 0)
return range_error ("T Array<T>::checkelem", ra_idx);
else
return Array<T>::elem (i);
}
T elem (octave_idx_type n) const { return xelem (n); }
T elem (octave_idx_type i, octave_idx_type j) const { return elem (dim1()*j+i); }
T elem (octave_idx_type i, octave_idx_type j, octave_idx_type k) const { return elem (i, dim2()*k+j); }
T elem (const Array<octave_idx_type>& ra_idx) const
{ return Array<T>::elem (compute_index (ra_idx)); }
#if defined (BOUNDS_CHECKING)
T operator () (octave_idx_type n) const { return checkelem (n); }
T operator () (octave_idx_type i, octave_idx_type j) const { return checkelem (i, j); }
T operator () (octave_idx_type i, octave_idx_type j, octave_idx_type k) const { return checkelem (i, j, k); }
T operator () (const Array<octave_idx_type>& ra_idx) const { return checkelem (ra_idx); }
#else
T operator () (octave_idx_type n) const { return elem (n); }
T operator () (octave_idx_type i, octave_idx_type j) const { return elem (i, j); }
T operator () (octave_idx_type i, octave_idx_type j, octave_idx_type k) const { return elem (i, j, k); }
T operator () (const Array<octave_idx_type>& ra_idx) const { return elem (ra_idx); }
#endif
Array<T> reshape (const dim_vector& new_dims) const;
Array<T> permute (const Array<octave_idx_type>& vec, bool inv = false) const;
Array<T> ipermute (const Array<octave_idx_type>& vec) const
{ return permute (vec, true); }
bool is_square (void) const { return (dim1 () == dim2 ()); }
bool is_empty (void) const { return numel () == 0; }
bool is_vector (void) const { return dimensions.is_vector (); }
Array<T> transpose (void) const;
Array<T> hermitian (T (*fcn) (const T&) = 0) const;
const T *data (void) const { return slice_data; }
const T *fortran_vec (void) const { return data (); }
T *fortran_vec (void);
int ndims (void) const { return dimensions.length (); }
void maybe_delete_dims (void);
// Indexing without resizing.
Array<T> index (const idx_vector& i) const;
Array<T> index (const idx_vector& i, const idx_vector& j) const;
Array<T> index (const Array<idx_vector>& ia) const;
static T resize_fill_value ();
// Resizing (with fill).
void resize_fill (octave_idx_type n, const T& rfv);
void resize_fill (octave_idx_type nr, octave_idx_type nc, const T& rfv);
void resize_fill (const dim_vector& dv, const T& rfv);
// Resizing with default fill.
// Rationale:
// These use the default fill value rather than leaving memory uninitialized.
// Resizing without fill leaves the resulting array in a rather weird state,
// where part of the data is initialized an part isn't.
void resize (octave_idx_type n)
{ resize_fill (n, resize_fill_value ()); }
// FIXME -- this method cannot be defined here because it would
// clash with
//
// void resize (octave_idx_type, const T&)
//
// (these become indistinguishable when T = octave_idx_type).
// In the future, I think the resize (.., const T& rfv) overloads
// should go away in favor of using resize_fill.
// void resize (octave_idx_type nr, octave_idx_type nc)
// { resize_fill (nr, nc, resize_fill_value ()); }
void resize (dim_vector dv)
{ resize_fill (dv, resize_fill_value ()); }
// FIXME -- these are here for backward compatibility. They should
// go away in favor of using resize_fill directly.
void resize (octave_idx_type n, const T& rfv)
{ resize_fill (n, static_cast<T> (rfv)); }
void resize (octave_idx_type nr, octave_idx_type nc, const T& rfv)
{ resize_fill (nr, nc, rfv); }
void resize (dim_vector dv, const T& rfv)
{ resize_fill (dv, rfv); }
// Indexing with possible resizing and fill
// FIXME -- this is really a corner case, that should better be
// handled directly in liboctinterp.
Array<T> index (const idx_vector& i, bool resize_ok,
const T& rfv = resize_fill_value ()) const;
Array<T> index (const idx_vector& i, const idx_vector& j,
bool resize_ok, const T& rfv = resize_fill_value ()) const;
Array<T> index (const Array<idx_vector>& ia,
bool resize_ok, const T& rfv = resize_fill_value ()) const;
// Indexed assignment (always with resize & fill).
void assign (const idx_vector& i, const Array<T>& rhs,
const T& rfv = resize_fill_value ());
void assign (const idx_vector& i, const idx_vector& j, const Array<T>& rhs,
const T& rfv = resize_fill_value ());
void assign (const Array<idx_vector>& ia, const Array<T>& rhs,
const T& rfv = resize_fill_value ());
// Deleting elements.
// A(I) = [] (with a single subscript)
void delete_elements (const idx_vector& i);
// A(:,...,I,...,:) = [] (>= 2 subscripts, one of them is non-colon)
void delete_elements (int dim, const idx_vector& i);
// Dispatcher to the above two.
void delete_elements (const Array<idx_vector>& ia);
// FIXME -- are these required? What exactly are they supposed to do?.
Array<T>& insert (const Array<T>& a, octave_idx_type r, octave_idx_type c);
Array<T>& insert2 (const Array<T>& a, octave_idx_type r, octave_idx_type c);
Array<T>& insertN (const Array<T>& a, octave_idx_type r, octave_idx_type c);
Array<T>& insert (const Array<T>& a, const Array<octave_idx_type>& idx);
void maybe_economize (void)
{
if (rep->count == 1 && slice_len != rep->len)
{
ArrayRep *new_rep = new ArrayRep (slice_data, slice_len, true);
delete rep;
rep = new_rep;
slice_data = rep->data;
}
}
void print_info (std::ostream& os, const std::string& prefix) const;
// Unsafe. This function exists to support the MEX interface.
// You should not use it anywhere else.
void *mex_get_data (void) const { return const_cast<T *> (data ()); }
Array<T> sort (octave_idx_type dim = 0, sortmode mode = ASCENDING) const;
Array<T> sort (Array<octave_idx_type> &sidx, octave_idx_type dim = 0,
sortmode mode = ASCENDING) const;
// Ordering is auto-detected or can be specified.
sortmode is_sorted (sortmode mode = UNSORTED) const;
// Sort by rows returns only indices.
Array<octave_idx_type> sort_rows_idx (sortmode mode = ASCENDING) const;
// Ordering is auto-detected or can be specified.
sortmode is_sorted_rows (sortmode mode = UNSORTED) const;
// Do a binary lookup in a sorted array.
// Mode can be specified or is auto-detected by comparing 1st and last element.
octave_idx_type lookup (const T& value, sortmode mode = UNSORTED) const;
// Ditto, but for an array of values, specializing on long runs.
// If linf is true, the leftmost interval is extended to infinity
// (indices will be >= 1).
// If rinf is true, the rightmost interval is extended to infinity
// (indices will be <= length ()-1).
Array<octave_idx_type> lookup (const Array<T>& values, sortmode mode = UNSORTED,
bool linf = false, bool rinf = false) const;
// Find indices of (at most n) nonzero elements. If n is specified, backward
// specifies search from backward.
Array<octave_idx_type> find (octave_idx_type n = -1, bool backward = false) const;
Array<T> diag (octave_idx_type k = 0) const;
template <class U, class F>
Array<U>
map (F fcn) const
{
octave_idx_type len = length ();
const T *m = data ();
Array<U> result (dims ());
U *p = result.fortran_vec ();
for (octave_idx_type i = 0; i < len; i++)
{
OCTAVE_QUIT;
p[i] = fcn (m[i]);
}
return result;
}
// This is non-breakable map, suitable for fast functions. Efficiency
// relies on compiler's ability to inline a function pointer. This seems
// to be OK with recent GCC.
template <class U>
Array<U>
fastmap (U (*fcn) (typename ref_param<T>::type)) const
{
octave_idx_type len = length ();
const T *m = data ();
Array<U> result (dims ());
U *p = result.fortran_vec ();
std::transform (m, m + len, p, fcn);
return result;
}
template <class U> friend class Array;
private:
static void instantiation_guard ();
};
#endif
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/
|