/usr/include/thunderbird/skia/SkTemplates.h is in thunderbird-dev 1:24.4.0+build1-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | /*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTemplates_DEFINED
#define SkTemplates_DEFINED
#include "SkTypes.h"
/** \file SkTemplates.h
This file contains light-weight template classes for type-safe and exception-safe
resource management.
*/
/**
* SkTIsConst<T>::value is true if the type T is const.
* The type T is constrained not to be an array or reference type.
*/
template <typename T> struct SkTIsConst {
static T* t;
static uint16_t test(const volatile void*);
static uint32_t test(volatile void *);
static const bool value = (sizeof(uint16_t) == sizeof(test(t)));
};
///@{
/** SkTConstType<T, CONST>::type will be 'const T' if CONST is true, 'T' otherwise. */
template <typename T, bool CONST> struct SkTConstType {
typedef T type;
};
template <typename T> struct SkTConstType<T, true> {
typedef const T type;
};
///@}
/** \class SkAutoTCallVProc
Call a function when this goes out of scope. The template uses two
parameters, the object, and a function that is to be called in the destructor.
If detach() is called, the object reference is set to null. If the object
reference is null when the destructor is called, we do not call the
function.
*/
template <typename T, void (*P)(T*)> class SkAutoTCallVProc : SkNoncopyable {
public:
SkAutoTCallVProc(T* obj): fObj(obj) {}
~SkAutoTCallVProc() { if (fObj) P(fObj); }
T* detach() { T* obj = fObj; fObj = NULL; return obj; }
private:
T* fObj;
};
/** \class SkAutoTCallIProc
Call a function when this goes out of scope. The template uses two
parameters, the object, and a function that is to be called in the destructor.
If detach() is called, the object reference is set to null. If the object
reference is null when the destructor is called, we do not call the
function.
*/
template <typename T, int (*P)(T*)> class SkAutoTCallIProc : SkNoncopyable {
public:
SkAutoTCallIProc(T* obj): fObj(obj) {}
~SkAutoTCallIProc() { if (fObj) P(fObj); }
T* detach() { T* obj = fObj; fObj = NULL; return obj; }
private:
T* fObj;
};
// See also SkTScopedPtr.
template <typename T> class SkAutoTDelete : SkNoncopyable {
public:
SkAutoTDelete(T* obj, bool deleteWhenDone = true) : fObj(obj) {
fDeleteWhenDone = deleteWhenDone;
}
~SkAutoTDelete() { if (fDeleteWhenDone) delete fObj; }
T* get() const { return fObj; }
void free() { delete fObj; fObj = NULL; }
T* detach() { T* obj = fObj; fObj = NULL; return obj; }
private:
T* fObj;
bool fDeleteWhenDone;
};
template <typename T> class SkAutoTDeleteArray : SkNoncopyable {
public:
SkAutoTDeleteArray(T array[]) : fArray(array) {}
~SkAutoTDeleteArray() { SkDELETE_ARRAY(fArray); }
T* get() const { return fArray; }
void free() { SkDELETE_ARRAY(fArray); fArray = NULL; }
T* detach() { T* array = fArray; fArray = NULL; return array; }
private:
T* fArray;
};
/** Allocate an array of T elements, and free the array in the destructor
*/
template <typename T> class SkAutoTArray : SkNoncopyable {
public:
SkAutoTArray() {
fArray = NULL;
SkDEBUGCODE(fCount = 0;)
}
/** Allocate count number of T elements
*/
explicit SkAutoTArray(int count) {
SkASSERT(count >= 0);
fArray = NULL;
if (count) {
fArray = new T[count];
}
SkDEBUGCODE(fCount = count;)
}
/** Reallocates given a new count. Reallocation occurs even if new count equals old count.
*/
void reset(int count) {
delete[] fArray;
SkASSERT(count >= 0);
fArray = NULL;
if (count) {
fArray = new T[count];
}
SkDEBUGCODE(fCount = count;)
}
~SkAutoTArray() {
delete[] fArray;
}
/** Return the array of T elements. Will be NULL if count == 0
*/
T* get() const { return fArray; }
/** Return the nth element in the array
*/
T& operator[](int index) const {
SkASSERT((unsigned)index < (unsigned)fCount);
return fArray[index];
}
private:
T* fArray;
SkDEBUGCODE(int fCount;)
};
/** Wraps SkAutoTArray, with room for up to N elements preallocated
*/
template <size_t N, typename T> class SkAutoSTArray : SkNoncopyable {
public:
/** Allocate count number of T elements
*/
SkAutoSTArray(size_t count) {
if (count > N) {
fArray = new T[count];
} else if (count) {
fArray = new (fStorage) T[count];
} else {
fArray = NULL;
}
fCount = count;
}
~SkAutoSTArray() {
if (fCount > N) {
delete[] fArray;
} else {
T* start = fArray;
T* iter = start + fCount;
while (iter > start) {
(--iter)->~T();
}
}
}
/** Return the number of T elements in the array
*/
size_t count() const { return fCount; }
/** Return the array of T elements. Will be NULL if count == 0
*/
T* get() const { return fArray; }
/** Return the nth element in the array
*/
T& operator[](int index) const {
SkASSERT((unsigned)index < fCount);
return fArray[index];
}
private:
size_t fCount;
T* fArray;
// since we come right after fArray, fStorage should be properly aligned
char fStorage[N * sizeof(T)];
};
/** Allocate a temp array on the stack/heap.
Does NOT call any constructors/destructors on T (i.e. T must be POD)
*/
template <typename T> class SkAutoTMalloc : SkNoncopyable {
public:
SkAutoTMalloc(size_t count) {
fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
}
~SkAutoTMalloc() {
sk_free(fPtr);
}
// doesn't preserve contents
void reset (size_t count) {
sk_free(fPtr);
fPtr = fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
}
T* get() const { return fPtr; }
operator T*() {
return fPtr;
}
operator const T*() const {
return fPtr;
}
T& operator[](int index) {
return fPtr[index];
}
const T& operator[](int index) const {
return fPtr[index];
}
private:
T* fPtr;
};
template <size_t N, typename T> class SK_API SkAutoSTMalloc : SkNoncopyable {
public:
SkAutoSTMalloc(size_t count) {
if (count <= N) {
fPtr = fTStorage;
} else {
fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
}
}
~SkAutoSTMalloc() {
if (fPtr != fTStorage) {
sk_free(fPtr);
}
}
// doesn't preserve contents
void reset(size_t count) {
if (fPtr != fTStorage) {
sk_free(fPtr);
}
if (count <= N) {
fPtr = fTStorage;
} else {
fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
}
}
T* get() const { return fPtr; }
operator T*() {
return fPtr;
}
operator const T*() const {
return fPtr;
}
T& operator[](int index) {
return fPtr[index];
}
const T& operator[](int index) const {
return fPtr[index];
}
private:
T* fPtr;
union {
uint32_t fStorage32[(N*sizeof(T) + 3) >> 2];
T fTStorage[1]; // do NOT want to invoke T::T()
};
};
/**
* Reserves memory that is aligned on double and pointer boundaries.
* Hopefully this is sufficient for all practical purposes.
*/
template <size_t N> class SkAlignedSStorage : SkNoncopyable {
public:
void* get() { return fData; }
private:
union {
void* fPtr;
double fDouble;
char fData[N];
};
};
/**
* Reserves memory that is aligned on double and pointer boundaries.
* Hopefully this is sufficient for all practical purposes. Otherwise,
* we have to do some arcane trickery to determine alignment of non-POD
* types. Lifetime of the memory is the lifetime of the object.
*/
template <int N, typename T> class SkAlignedSTStorage : SkNoncopyable {
public:
/**
* Returns void* because this object does not initialize the
* memory. Use placement new for types that require a cons.
*/
void* get() { return fStorage.get(); }
private:
SkAlignedSStorage<sizeof(T)*N> fStorage;
};
#endif
|