This file is indexed.

/usr/share/acl2-6.3/books/leftist-trees/leftist-tree-defthms.lisp is in acl2-books-source 6.3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#|

   Leftist Trees, Version 0.1
   Copyright (C) 2012 by Ben Selfridge <benself@cs.utexas.edu>

 leftist-tree-defthms.lisp

   This file contains the basic theory of leftist trees,
   proving the basic operations correct. 

   This implementation follows "Purely Functional Data
   Structures" by Chris Okasaki.

|#

(in-package "ACL2")
(include-book "leftist-tree-defuns")

;; We need this much arithmetic to prove theorems about the
;; rank of the tree.

(local (include-book "arithmetic-5/top" :dir :system))

(defdoc leftist-tree-thms
  ":doc-section leftist-trees
Useful theorems about leftist trees.~/~/
~/")

;;;;;;;;;;;;;;;;;;;
;; MISCELLANEOUS ;;
;;;;;;;;;;;;;;;;;;;

(defdoc leftist-tree-misc-thms
  ":doc-section leftist-tree-thms
Miscellaneous theorems~/~/
Includes proofs that the rank, length of right spine, and length of
the shortest path to an empty node are all equal. We also prove that
the rank and size of a tree are always natp, as this is helpful in
a later theorem.~/")

(defthm lrt-equals-rank-lt
  (implies (proper-lt tree)
           (equal (length-right-spine-lt tree)
                  (rank-lt tree)))
  :doc ":doc-section leftist-tree-misc-thms 
~/~/
(length-right-spine-lt tree) ==> (rank-lt tree)~/")

(defthm ltn-equals-rank-lt
  (implies (proper-lt tree)
           (equal (length-to-nil-lt tree)
                  (rank-lt tree)))
  :doc ":doc-section leftist-tree-misc-thms
~/~/
(length-to-nil-lt tree) ==> (rank-lt tree)~/")

(defthm member-insert-lt
  (implies (proper-lt tree)
           (member-lt x (insert-lt x tree)))
  :doc ":doc-section leftist-tree-misc-thms
~/~/
(proper-lt tree) ==> (member-lt x (insert-lt x tree))~/")

; rank and size are naturals
(defthm rank-is-natp-lt
  (implies (proper-lt tree)
           (natp (rank-lt tree)))
  :doc ":doc-section leftist-tree-misc-thms
~/~/
(proper-lt tree) ==> (natp (rank-lt tree))~/")

(defthm size-is-natp-lt
  (implies (proper-lt tree)
           (natp (size-lt tree)))
  :doc ":doc-section leftist-tree-misc-thms
~/~/
(proper-lt tree) ==> (natp (size-lt tree))~/")

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; BASIC OPERATIONS RESPECT STRUCTURE ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defdoc leftist-tree-structure-thms
  ":doc-section leftist-tree-thms
Theorems proving that the basic operations respect PROPER-LT~/~/~/")

(local 
 (defthmd proper-merge-lt-L1
   (implies (and (consp right_tree1)
                 (consp tree2)
                 (proper-lt right_tree1)
                 (proper-lt tree2)
                 (lexorder x (root-lt right_tree1))
                 (lexorder x (root-lt tree2)))
            (lexorder x (root-lt (merge-lt right_tree1 tree2))))
   :hints (("Goal"
            :induct (merge-lt right_tree1 tree2)))))

(local
 (defthmd proper-merge-lt-L2
   (implies (and (consp tree1)
                 (consp right_tree2)
                 (proper-lt tree1)
                 (proper-lt right_tree2)
                 (not (lexorder (root-lt tree1) x))
                 (lexorder x (root-lt right_tree2)))
            (lexorder x (root-lt (merge-lt tree1 right_tree2))))
   :hints (("Goal"
            :induct (merge-lt tree1 right_tree2)))))

(local
 (defthmd proper-merge-lt-L3
   (implies (and (consp (cadddr tree1))
                 (consp tree2)
                 (proper-lt (cadddr tree1))
                 (proper-lt tree2)
                 (lexorder (cadr tree1)
                           (cadadr (cddr tree1)))
                 (lexorder (cadr tree1)
                           (cadr tree2)))
            (lexorder (cadr tree1)
                      (cadr (merge-lt (cadddr tree1) tree2))))
   :hints (("Goal"
            :use ((:instance proper-merge-lt-L1
                             (right_tree1 (cadddr tree1))
                             (tree2 tree2)
                             (x (cadr tree1))))))))

(local
 (defthmd proper-merge-lt-L4
   (implies (and (consp tree1)
                 (consp (cadddr tree2))
                 (proper-lt tree1)
                 (proper-lt (cadddr tree2))
                 (not (lexorder (cadr tree1)
                                (cadr tree2)))
                 (lexorder (cadr tree2) (cadadr (cddr tree2))))
            (lexorder (cadr tree2)
                      (cadr (merge-lt tree1 (cadddr tree2)))))
   :hints (("Goal"
            :use ((:instance proper-merge-lt-L2
                             (tree1 tree1)
                             (right_tree2 (cadddr tree2))
                             (x (cadr tree2))))))))

(defthm proper-merge-lt
  (implies (and (proper-lt tree1)
                (proper-lt tree2))
           (proper-lt (merge-lt tree1 tree2)))
  :hints (("Goal"
           :in-theory (enable proper-merge-lt-L3 proper-merge-lt-L4)
           :induct (merge-lt tree1 tree2)))
  :doc ":doc-section leftist-tree-structure-thms
~/~/
(and (proper-lt tree1) (proper-lt tree2)) 
    ==> (proper-lt (merge-lt tree1 tree2))~/")

(defthm proper-insert-lt
  (implies (proper-lt tree)
           (proper-lt (insert-lt x tree)))
  :doc ":doc-section leftist-tree-structure-thms
~/~/
(proper-lt tree) ==> (proper-lt (insert-lt x tree))~/")

(defthm proper-build-lt
  (proper-lt (build-lt l))
  :doc ":doc-section leftist-tree-structure-thms
~/~/
(proper-lt (build-lt l))~/")

(defthm proper-delete-min-lt
  (implies (proper-lt tree)
           (proper-lt (delete-min-lt tree)))
  :doc ":doc-section leftist-tree-structure-thms
~/~/
(proper-lt tree) ==> (proper-lt (delete-min-lt tree))~/")

;;;;;;;;;;;;;;;;;;;
;; RANK THEOREMS ;;
;;;;;;;;;;;;;;;;;;;

(defdoc leftist-tree-rank-thms
  ":doc-section leftist-tree-thms
Theorems about the rank of leftist trees~/~/~/")

(local
 (defthmd size-rank-lt-L1
   (implies (and (natp b)
                 (natp c)
                 (natp p)
                 (natp q)
                 (natp r)
                 (equal p (+ 1 r))
                 (<= (expt 2 q) (+ b 1))
                 (<= (expt 2 r) (+ c 1))
                 (<= r q))
            (<= (expt 2 p) (+ 2 b c)))
   :hints (("Goal"
            :use ((:instance (:theorem (implies (and (<= x y)
                                                     (<= y z))
                                                (<= x z)))
                             (x (expt 2 p))
                             (y (+ (expt 2 q) (expt 2 r)))
                             (z (+ 2 b c))))))))

(defthm size-rank-lt
  (implies (proper-lt tree)
           (<= (- (expt 2 (rank-lt tree)) 1)
               (size-lt tree)))
  :hints (("Goal"
           :induct (size-lt tree))
          ("Subgoal *1/2.11''"
           :use ((:instance size-rank-lt-L1
                            (b (size-lt (caddr tree)))
                            (c (size-lt (cadddr tree)))
                            (p (car tree))
                            (q (caaddr tree))
                            (r (caaddr (cdr tree))))))
          ("Subgoal *1/2.6''"
           :use ((:instance rank-is-natp-lt
                            (tree (caddr tree))))))
  :doc ":doc-section leftist-tree-rank-thms
~/~/
(proper-lt tree)
    ==> (<= (- (expt 2 (rank-lt tree)) 1)
            (size-lt tree))~/")