/usr/share/doc/axiom-doc/hypertex/series.xhtml is in axiom-hypertex-data 20120501-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | <?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" 
      xmlns:xlink="http://www.w3.org/1999/xlink"
      xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
  <meta http-equiv="Content-Type" content="text/html" charset="us-ascii"/>
  <title>Axiom Documentation</title>
  <style>
   html {
     background-color: #ECEA81;
   }
   body { 
     margin: 0px;
     padding: 0px;
   }
   div.command { 
     color:red;
   }
   div.center {
     color:blue;
   }
   div.reset {
     visibility:hidden;
   }
   div.mathml { 
     color:blue;
   }
   input.subbut {
     background-color:#ECEA81;
     border: 0;
     color:green;
     font-family: "Courier New", Courier, monospace;
   }
   input.noresult {
     background-color:#ECEA81;
     border: 0;
     color:black;
     font-family: "Courier New", Courier, monospace;
   }
   span.cmd { 
     color:green;
     font-family: "Courier New", Courier, monospace;
   }
   pre {
     font-family: "Courier New", Courier, monospace;
   }
  </style>
 </head>
 <body>
  <div align="center"><img align="middle" src="doctitle.png"/></div>
  <hr/>
  Create a series by
  <table>
   <tr>
    <td width="100">
     <a href="seriesexpand.xhtml">
      <b>Expansion</b>
     </a>
    </td>
    <td>
     Expand a function in a series around a point
    </td>
   </tr>
   <tr>
    <td width="100">
     <a href="taylorseries.xhtml">
      <b>Taylor Series</b>
     </a>
    </td>
    <td><br/>
     Series where the exponent ranges over the integers from a 
     non-negative integer value to plus infinity by an arbitrary
     positive integer step size.
    </td>
   </tr>
   <tr>
    <td width="100">
     <a href="laurentseries.xhtml">
      <b>Laurent Series</b>
     </a>
    </td>
    <td><br/>
     Series where the exponent ranges from an arbitrary integer value
     to plus infinity by an arbitrary positive integer step size.
    </td>
   </tr>
   <tr>
    <td width="100">
     <a href="puiseuxseries.xhtml">
      <b>Puiseux Series</b>
     </a>
    </td>
    <td><br/>
     Series where the exponent ranges from an arbitrary rational value
     to plus infinity by an arbitrary positive rational number step size.
    </td>
   </tr>
  </table>
 </body>
</html>
 |