This file is indexed.

/usr/share/doc/maxima-doc/html/maxima_14.html is in maxima-doc 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on January, 10 2014 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
            Karl Berry  <karl@freefriends.org>
            Olaf Bachmann <obachman@mathematik.uni-kl.de>
            and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>

-->
<head>
<title>Maxima 5.32.1 Manual: 14. Polynomials</title>

<meta name="description" content="Maxima 5.32.1 Manual: 14. Polynomials">
<meta name="keywords" content="Maxima 5.32.1 Manual: 14. Polynomials">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
    color: black;
    background: white; 
    margin-left: 8%;
    margin-right: 13%;
}

h1
{
    margin-left: +8%;
    font-size: 150%;
    font-family: sans-serif
}

h2
{
    font-size: 125%;
    font-family: sans-serif
}

h3
{
    font-size: 100%;
    font-family: sans-serif
}

h2,h3,h4,h5,h6 { margin-left: +4%; }

div.textbox
{
    border: solid;
    border-width: thin;
    /* width: 100%; */
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em
}

div.titlebox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
    background: rgb(200,255,255);
    font-family: sans-serif
}

div.synopsisbox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
     background: rgb(255,220,255);
    /*background: rgb(200,255,255); */
    /* font-family: fixed */
}

pre.example
{
    border: 1px solid gray;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 1em;
    padding-right: 1em;
    /* background: rgb(247,242,180); */ /* kind of sandy */
    /* background: rgb(200,255,255); */ /* sky blue */
    background-color: #F1F5F9; /* light blue-gray */
    /* font-family: "Lucida Console", monospace */
}

div.spacerbox
{
    border: none;
    padding-top: 2em;
    padding-bottom: 2em
}

div.image
{
    margin: 0;
    padding: 1em;
    text-align: center;
}

div.categorybox
{
    border: 1px solid gray;
    padding-top: 0px;
    padding-bottom: 0px;
    padding-left: 1em;
    padding-right: 1em;
    background: rgb(247,242,220);
}


-->
</style>

<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">

<a name="Polynomials"></a>
<a name="SEC74"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_13.html#SEC73" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC75" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima_13.html#SEC68" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_15.html#SEC77" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_82.html#SEC380" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 14. Polynomials </h1>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC75">14.1 Introduction to Polynomials</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">  
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC76">14.2 Functions and Variables for Polynomials</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">  
</td></tr>
</table>

<p><a name="Item_003a-Introduction-to-Polynomials"></a>
</p><hr size="6">
<a name="Introduction-to-Polynomials"></a>
<a name="SEC75"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC74" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC76" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC74" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC74" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_15.html#SEC77" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_82.html#SEC380" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 14.1 Introduction to Polynomials </h2>

<p>Polynomials are stored in Maxima either in General Form or as
Canonical Rational Expressions (CRE) form.  The latter is a standard
form, and is used internally by operations such as factor, ratsimp, and
so on.
</p>
<p>Canonical Rational Expressions constitute a kind of representation
which is especially suitable for expanded polynomials and rational
functions (as well as for partially factored polynomials and rational
functions when RATFAC is set to <code>true</code>).  In this CRE form an
ordering of variables (from most to least main) is assumed for each
expression.  Polynomials are represented recursively by a list
consisting of the main variable followed by a series of pairs of
expressions, one for each term of the polynomial.  The first member of
each pair is the exponent of the main variable in that term and the
second member is the coefficient of that term which could be a number or
a polynomial in another variable again represented in this form.  Thus
the principal part of the CRE form of 3*X^2-1 is (X 2 3 0 -1) and that
of 2*X*Y+X-3 is (Y 1 (X 1 2) 0 (X 1 1 0 -3)) assuming Y is the main
variable, and is (X 1 (Y 1 2 0 1) 0 -3) assuming X is the main
variable.  &quot;Main&quot;-ness is usually determined by reverse alphabetical
order.  The &quot;variables&quot; of a CRE expression needn't be atomic.  In fact
any subexpression whose main operator is not + - * / or ^ with integer
power will be considered a &quot;variable&quot; of the expression (in CRE form) in
which it occurs.  For example the CRE variables of the expression
X+SIN(X+1)+2*SQRT(X)+1 are X, SQRT(X), and SIN(X+1).  If the user does
not specify an ordering of variables by using the RATVARS function
Maxima will choose an alphabetic one.  In general, CRE's represent
rational expressions, that is, ratios of polynomials, where the
numerator and denominator have no common factors, and the denominator is
positive.  The internal form is essentially a pair of polynomials (the
numerator and denominator) preceded by the variable ordering list.  If
an expression to be displayed is in CRE form or if it contains any
subexpressions in CRE form, the symbol /R/ will follow the line label.
See the RAT function for converting an expression to CRE form.  An
extended CRE form is used for the representation of Taylor series.  The
notion of a rational expression is extended so that the exponents of the
variables can be positive or negative rational numbers rather than just
positive integers and the coefficients can themselves be rational
expressions as described above rather than just polynomials.  These are
represented internally by a recursive polynomial form which is similar
to and is a generalization of CRE form, but carries additional
information such as the degree of truncation.  As with CRE form, the
symbol /T/ follows the line label of such expressions.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials} &middot;
@ref{Category: Rational expressions}
</div>
</p>

<p><a name="Item_003a-Functions-and-Variables-for-Polynomials"></a>
</p><hr size="6">
<a name="Functions-and-Variables-for-Polynomials"></a>
<a name="SEC76"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC75" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_15.html#SEC77" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC74" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC74" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_15.html#SEC77" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_82.html#SEC380" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 14.2 Functions and Variables for Polynomials </h2>

<p><a name="algebraic"></a>
<a name="Item_003a-algebraic"></a>
</p><dl>
<dt><u>Option variable:</u> <b>algebraic</b>
<a name="IDX631"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p><code>algebraic</code> must be set to <code>true</code> in order for the simplification of
algebraic integers to take effect.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Simplification flags and variables}
</div>
</p></dd></dl>

<p><a name="Item_003a-berlefact"></a>
</p><dl>
<dt><u>Option variable:</u> <b>berlefact</b>
<a name="IDX632"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>berlefact</code> is <code>false</code> then the Kronecker factoring
algorithm will be used otherwise the Berlekamp algorithm, which is the
default, will be used.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>


<p><a name="bezout"></a>
<a name="Item_003a-bezout"></a>
</p><dl>
<dt><u>Function:</u> <b>bezout</b><i> (<var>p1</var>, <var>p2</var>, <var>x</var>)</i>
<a name="IDX633"></a>
</dt>
<dd><p>an alternative to the <code><a href="#resultant">resultant</a></code> command.  It
returns a matrix.  <code>determinant</code> of this matrix is the desired resultant.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) bezout(a*x+b, c*x^2+d, x);
                         [ b c  - a d ]
(%o1)                    [            ]
                         [  a     b   ]
(%i2) determinant(%);
                            2      2
(%o2)                      a  d + b  c
(%i3) resultant(a*x+b, c*x^2+d, x);
                            2      2
(%o3)                      a  d + b  c
</pre><div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>


<p><a name="Item_003a-bothcoef"></a>
</p><dl>
<dt><u>Function:</u> <b>bothcoef</b><i> (<var>expr</var>, <var>x</var>)</i>
<a name="IDX634"></a>
</dt>
<dd><p>Returns a list whose first member is the coefficient of <var>x</var> in <var>expr</var>
(as found by <code>ratcoef</code> if <var>expr</var> is in CRE form
otherwise by <code>coeff</code>) and whose second member is the remaining part of
<var>expr</var>.  That is, <code>[A, B]</code> where <code><var>expr</var> = A*<var>x</var> + B</code>.
</p>
<p>Example:
</p>
<pre class="example">(%i1) islinear (expr, x) := block ([c],
        c: bothcoef (rat (expr, x), x),
        is (freeof (x, c) and c[1] # 0))$
(%i2) islinear ((r^2 - (x - r)^2)/x, x);
(%o2)                         true
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="Item_003a-coeff"></a>
</p><dl>
<dt><u>Function:</u> <b>coeff</b><i> (<var>expr</var>, <var>x</var>, <var>n</var>)</i>
<a name="IDX635"></a>
</dt>
<dt><u>Function:</u> <b>coeff</b><i> (<var>expr</var>, <var>x</var>)</i>
<a name="IDX636"></a>
</dt>
<dd><p>Returns the coefficient of <code><var>x</var>^<var>n</var></code> in <var>expr</var>,
where <var>expr</var> is a polynomial or a monomial term in <var>x</var>.
</p>
<p><code>coeff(<var>expr</var>, <var>x</var>^<var>n</var>)</code> is equivalent
to <code>coeff(<var>expr</var>, <var>x</var>, <var>n</var>)</code>.
<code>coeff(<var>expr</var>, <var>x</var>, 0)</code> returns the remainder of <var>expr</var>
which is free of <var>x</var>.
If omitted, <var>n</var> is assumed to be 1.
</p>
<p><var>x</var> may be a simple variable or a subscripted variable,
or a subexpression of <var>expr</var> which
comprises an operator and all of its arguments.
</p>
<p>It may be possible to compute coefficients of expressions which are equivalent
to <var>expr</var> by applying <code>expand</code> or <code>factor</code>.  <code>coeff</code> itself
does not apply <code>expand</code> or <code>factor</code> or any other function.
</p>
<p><code>coeff</code> distributes over lists, matrices, and equations.
</p>
<p>Examples:
</p>
<p><code>coeff</code> returns the coefficient <code><var>x</var>^<var>n</var></code> in <var>expr</var>.
</p>
<pre class="example">(%i1) coeff (b^3*a^3 + b^2*a^2 + b*a + 1, a^3);
                                3
(%o1)                          b
</pre>
<p><code>coeff(<var>expr</var>, <var>x</var>^<var>n</var>)</code> is equivalent
to <code>coeff(<var>expr</var>, <var>x</var>, <var>n</var>)</code>.
</p>
<pre class="example">(%i1) coeff (c[4]*z^4 - c[3]*z^3 - c[2]*z^2 + c[1]*z, z, 3);
(%o1)                         - c
                                 3
(%i2) coeff (c[4]*z^4 - c[3]*z^3 - c[2]*z^2 + c[1]*z, z^3);
(%o2)                         - c
                                 3
</pre>
<p><code>coeff(<var>expr</var>, <var>x</var>, 0)</code> returns the remainder of <var>expr</var>
which is free of <var>x</var>.
</p>
<pre class="example">(%i1) coeff (a*u + b^2*u^2 + c^3*u^3, b, 0);
                            3  3
(%o1)                      c  u  + a u
</pre>
<p><var>x</var> may be a simple variable or a subscripted variable,
or a subexpression of <var>expr</var> which
comprises an operator and all of its arguments.
</p>
<pre class="example">(%i1) coeff (h^4 - 2*%pi*h^2 + 1, h, 2);
(%o1)                        - 2 %pi
(%i2) coeff (v[1]^4 - 2*%pi*v[1]^2 + 1, v[1], 2);
(%o2)                        - 2 %pi
(%i3) coeff (sin(1+x)*sin(x) + sin(1+x)^3*sin(x)^3, sin(1+x)^3);
                                3
(%o3)                        sin (x)
(%i4) coeff ((d - a)^2*(b + c)^3 + (a + b)^4*(c - d), a + b, 4);
(%o4)                         c - d
</pre>
<p><code>coeff</code> itself does not apply <code>expand</code> or <code>factor</code> or any other
function.
</p>
<pre class="example">(%i1) coeff (c*(a + b)^3, a);
(%o1)                           0
(%i2) expand (c*(a + b)^3);
                 3          2        2        3
(%o2)           b  c + 3 a b  c + 3 a  b c + a  c
(%i3) coeff (%, a);
                                2
(%o3)                        3 b  c
(%i4) coeff (b^3*c + 3*a*b^2*c + 3*a^2*b*c + a^3*c, (a + b)^3);
(%o4)                           0
(%i5) factor (b^3*c + 3*a*b^2*c + 3*a^2*b*c + a^3*c);
                                  3
(%o5)                      (b + a)  c
(%i6) coeff (%, (a + b)^3);
(%o6)                           c
</pre>
<p><code>coeff</code> distributes over lists, matrices, and equations.
</p>
<pre class="example">(%i1) coeff ([4*a, -3*a, 2*a], a);
(%o1)                      [4, - 3, 2]
(%i2) coeff (matrix ([a*x, b*x], [-c*x, -d*x]), x);
                          [  a    b  ]
(%o2)                     [          ]
                          [ - c  - d ]
(%i3) coeff (a*u - b*v = 7*u + 3*v, u);
(%o3)                         a = 7
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="Item_003a-content"></a>
</p><dl>
<dt><u>Function:</u> <b>content</b><i> (<var>p_1</var>, <var>x_1</var>, &hellip;, <var>x_n</var>)</i>
<a name="IDX637"></a>
</dt>
<dd><p>Returns a list whose first element is
the greatest common divisor of the coefficients of the terms of the
polynomial <var>p_1</var> in the variable <var>x_n</var> (this is the content) and whose
second element is the polynomial <var>p_1</var> divided by the content.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) content (2*x*y + 4*x^2*y^2, y);
                                   2
(%o1)                   [2 x, 2 x y  + y]
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="Item_003a-denom"></a>
</p><dl>
<dt><u>Function:</u> <b>denom</b><i> (<var>expr</var>)</i>
<a name="IDX638"></a>
</dt>
<dd><p>Returns the denominator of the rational expression <var>expr</var>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-divide"></a>
</p><dl>
<dt><u>Function:</u> <b>divide</b><i> (<var>p_1</var>, <var>p_2</var>, <var>x_1</var>, &hellip;, <var>x_n</var>)</i>
<a name="IDX639"></a>
</dt>
<dd><p>computes the quotient and remainder
of the polynomial <var>p_1</var> divided by the polynomial <var>p_2</var>, in a main
polynomial variable, <var>x_n</var>.
The other variables are as in the <code>ratvars</code> function.
The result is a list whose first element is the quotient
and whose second element is the remainder.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) divide (x + y, x - y, x);
(%o1)                       [1, 2 y]
(%i2) divide (x + y, x - y);
(%o2)                      [- 1, 2 x]
</pre>

<p>Note that <code>y</code> is the main variable in the second example.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="Item_003a-eliminate"></a>
</p><dl>
<dt><u>Function:</u> <b>eliminate</b><i> ([<var>eqn_1</var>, &hellip;, <var>eqn_n</var>], [<var>x_1</var>, &hellip;, <var>x_k</var>])</i>
<a name="IDX640"></a>
</dt>
<dd><p>Eliminates variables from equations (or expressions assumed equal to zero) by
taking successive resultants. This returns a list of <code><var>n</var> - <var>k</var></code>
expressions with the <var>k</var> variables <var>x_1</var>, &hellip;, <var>x_k</var> eliminated.
First <var>x_1</var> is eliminated yielding <code><var>n</var> - 1</code> expressions, then
<code>x_2</code> is eliminated, etc.  If <code><var>k</var> = <var>n</var></code> then a single
expression in a list is returned free of the variables <var>x_1</var>, &hellip;,
<var>x_k</var>.  In this case <code>solve</code> is called to solve the last resultant for
the last variable.
</p>
<p>Example:
</p>
<pre class="example">(%i1) expr1: 2*x^2 + y*x + z;
                                      2
(%o1)                    z + x y + 2 x
(%i2) expr2: 3*x + 5*y - z - 1;
(%o2)                  - z + 5 y + 3 x - 1
(%i3) expr3: z^2 + x - y^2 + 5;
                          2    2
(%o3)                    z  - y  + x + 5
(%i4) eliminate ([expr3, expr2, expr1], [y, z]);
             8         7         6          5          4
(%o4) [7425 x  - 1170 x  + 1299 x  + 12076 x  + 22887 x

                                    3         2
                            - 5154 x  - 1291 x  + 7688 x + 15376]
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials} &middot;
@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="ezgcd"></a>
<a name="Item_003a-ezgcd"></a>
</p><dl>
<dt><u>Function:</u> <b>ezgcd</b><i> (<var>p_1</var>, <var>p_2</var>, <var>p_3</var>, &hellip;)</i>
<a name="IDX641"></a>
</dt>
<dd><p>Returns a list whose first element is the greatest common divisor of the
polynomials <var>p_1</var>, <var>p_2</var>, <var>p_3</var>, &hellip; and whose remaining
elements are the polynomials divided by the greatest common divisor.  This
always uses the <code>ezgcd</code> algorithm.
</p>
<p>See also <code><a href="#gcd">gcd</a></code>, <code><a href="#gcdex">gcdex</a></code>, <code><a href="maxima_73.html#gcdivide">gcdivide</a></code>, and
<code><a href="maxima_57.html#poly_005fgcd">poly_gcd</a></code>.
</p>
<p>Examples:
</p>
<p>The three polynomials have the greatest common divisor <code>2*x-3</code>.  The
gcd is first calculated with the function <code>gcd</code> and then with the function
<code>ezgcd</code>.
</p>
<pre class="example">(%i1) p1 : 6*x^3-17*x^2+14*x-3;
                        3       2
(%o1)                6 x  - 17 x  + 14 x - 3
(%i2) p2 : 4*x^4-14*x^3+12*x^2+2*x-3;
                    4       3       2
(%o2)            4 x  - 14 x  + 12 x  + 2 x - 3
(%i3) p3 : -8*x^3+14*x^2-x-3;
                          3       2
(%o3)                - 8 x  + 14 x  - x - 3

(%i4) gcd(p1, gcd(p2, p3));
(%o4)                        2 x - 3

(%i5) ezgcd(p1, p2, p3);
                   2               3      2           2
(%o5) [2 x - 3, 3 x  - 4 x + 1, 2 x  - 4 x  + 1, - 4 x  + x + 1]
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="Item_003a-facexpand"></a>
</p><dl>
<dt><u>Option variable:</u> <b>facexpand</b>
<a name="IDX642"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p><code>facexpand</code> controls whether the irreducible factors returned by
<code>factor</code> are in expanded (the default) or recursive (normal CRE) form.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="factor"></a>
<a name="Item_003a-factor"></a>
</p><dl>
<dt><u>Function:</u> <b>factor</b><i> (<var>expr</var>)</i>
<a name="IDX643"></a>
</dt>
<dt><u>Function:</u> <b>factor</b><i> (<var>expr</var>, <var>p</var>)</i>
<a name="IDX644"></a>
</dt>
<dd><p>Factors the expression <var>expr</var>, containing any number of variables or 
functions, into factors irreducible over the integers.
<code>factor (<var>expr</var>, <var>p</var>)</code> factors <var>expr</var> over the field of 
rationals with an element adjoined whose minimum polynomial is <var>p</var>.
</p>
<p><code>factor</code> uses <code>ifactors</code> function for factoring integers.
</p>
<p><code>factorflag</code> if <code>false</code> suppresses the factoring of integer factors
of rational expressions.
</p>
<p><code>dontfactor</code> may be set to a list of variables with respect to which
factoring is not to occur.  (It is initially empty).  Factoring also
will not take place with respect to any variables which are less
important (using the variable ordering assumed for CRE form) than
those on the <code>dontfactor</code> list.
</p>
<p><code>savefactors</code> if <code>true</code> causes the factors of an expression which
is a product of factors to be saved by certain functions in order to
speed up later factorizations of expressions containing some of the
same factors.
</p>
<p><code>berlefact</code> if <code>false</code> then the Kronecker factoring algorithm will
be used otherwise the Berlekamp algorithm, which is the default, will
be used.
</p>
<p><code>intfaclim</code> if <code>true</code> maxima will give up factorization of
integers if no factor is found after trial divisions and Pollard's rho
method.  If set to <code>false</code> (this is the case when the user calls
<code>factor</code> explicitly), complete factorization of the integer will be
attempted.  The user's setting of <code>intfaclim</code> is used for internal
calls to <code>factor</code>.  Thus, <code>intfaclim</code> may be reset to prevent
Maxima from taking an inordinately long time factoring large integers.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) factor (2^63 - 1);
                    2
(%o1)              7  73 127 337 92737 649657
(%i2) factor (-8*y - 4*x + z^2*(2*y + x));
(%o2)               (2 y + x) (z - 2) (z + 2)
(%i3) -1 - 2*x - x^2 + y^2 + 2*x*y^2 + x^2*y^2;
                2  2        2    2    2
(%o3)          x  y  + 2 x y  + y  - x  - 2 x - 1
(%i4) block ([dontfactor: [x]], factor (%/36/(1 + 2*y + y^2)));
                       2
                     (x  + 2 x + 1) (y - 1)
(%o4)                ----------------------
                           36 (y + 1)
(%i5) factor (1 + %e^(3*x));
                      x         2 x     x
(%o5)              (%e  + 1) (%e    - %e  + 1)
(%i6) factor (1 + x^4, a^2 - 2);
                    2              2
(%o6)             (x  - a x + 1) (x  + a x + 1)
(%i7) factor (-y^2*z^2 - x*z^2 + x^2*y^2 + x^3);
                       2
(%o7)              - (y  + x) (z - x) (z + x)
(%i8) (2 + x)/(3 + x)/(b + x)/(c + x)^2;
                             x + 2
(%o8)               ------------------------
                                           2
                    (x + 3) (x + b) (x + c)
(%i9) ratsimp (%);
                4                  3
(%o9) (x + 2)/(x  + (2 c + b + 3) x

     2                       2             2                   2
 + (c  + (2 b + 6) c + 3 b) x  + ((b + 3) c  + 6 b c) x + 3 b c )
(%i10) partfrac (%, x);
           2                   4                3
(%o10) - (c  - 4 c - b + 6)/((c  + (- 2 b - 6) c

     2              2         2                2
 + (b  + 12 b + 9) c  + (- 6 b  - 18 b) c + 9 b ) (x + c))

                 c - 2
 - ---------------------------------
     2                             2
   (c  + (- b - 3) c + 3 b) (x + c)

                         b - 2
 + -------------------------------------------------
             2             2       3      2
   ((b - 3) c  + (6 b - 2 b ) c + b  - 3 b ) (x + b)

                         1
 - ----------------------------------------------
             2
   ((b - 3) c  + (18 - 6 b) c + 9 b - 27) (x + 3)
(%i11) map ('factor, %);
              2
             c  - 4 c - b + 6                 c - 2
(%o11) - ------------------------- - ------------------------
                2        2                                  2
         (c - 3)  (c - b)  (x + c)   (c - 3) (c - b) (x + c)

                       b - 2                        1
            + ------------------------ - ------------------------
                             2                          2
              (b - 3) (c - b)  (x + b)   (b - 3) (c - 3)  (x + 3)
(%i12) ratsimp ((x^5 - 1)/(x - 1));
                       4    3    2
(%o12)                x  + x  + x  + x + 1
(%i13) subst (a, x, %);
                       4    3    2
(%o13)                a  + a  + a  + a + 1
(%i14) factor (%th(2), %);
                       2        3        3    2
(%o14)   (x - a) (x - a ) (x - a ) (x + a  + a  + a + 1)
(%i15) factor (1 + x^12);
                       4        8    4
(%o15)               (x  + 1) (x  - x  + 1)
(%i16) factor (1 + x^99);
                 2            6    3
(%o16) (x + 1) (x  - x + 1) (x  - x  + 1)

   10    9    8    7    6    5    4    3    2
 (x   - x  + x  - x  + x  - x  + x  - x  + x  - x + 1)

   20    19    17    16    14    13    11    10    9    7    6
 (x   + x   - x   - x   + x   + x   - x   - x   - x  + x  + x

    4    3            60    57    51    48    42    39    33
 - x  - x  + x + 1) (x   + x   - x   - x   + x   + x   - x

    30    27    21    18    12    9    3
 - x   - x   + x   + x   - x   - x  + x  + 1)
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="Item_003a-factorflag"></a>
</p><dl>
<dt><u>Option variable:</u> <b>factorflag</b>
<a name="IDX645"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>factorflag</code> is <code>false</code>, suppresses the factoring of
integer factors of rational expressions.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="Item_003a-factorout"></a>
</p><dl>
<dt><u>Function:</u> <b>factorout</b><i> (<var>expr</var>, <var>x_1</var>, <var>x_2</var>, &hellip;)</i>
<a name="IDX646"></a>
</dt>
<dd><p>Rearranges the sum <var>expr</var> into a sum of terms of the form 
<code>f (<var>x_1</var>, <var>x_2</var>, &hellip;)*g</code> where <code>g</code> is a product of 
expressions not containing any <var>x_i</var> and <code>f</code> is factored.
</p>
<p>Note that the option variable <code>keepfloat</code> is ignored by <code>factorout</code>.
</p>
<p>Example:
</p>
<pre class="example">(%i1) expand (a*(x+1)*(x-1)*(u+1)^2);
             2  2          2      2      2
(%o1)     a u  x  + 2 a u x  + a x  - a u  - 2 a u - a
(%i2) factorout(%,x);
         2
(%o2) a u  (x - 1) (x + 1) + 2 a u (x - 1) (x + 1)
                                              + a (x - 1) (x + 1)
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-factorsum"></a>
</p><dl>
<dt><u>Function:</u> <b>factorsum</b><i> (<var>expr</var>)</i>
<a name="IDX647"></a>
</dt>
<dd><p>Tries to group terms in factors of <var>expr</var> which are sums into groups of
terms such that their sum is factorable.  <code>factorsum</code> can recover the
result of <code>expand ((x + y)^2 + (z + w)^2)</code> but it can't recover
<code>expand ((x + 1)^2 + (x + y)^2)</code> because the terms have variables in
common.
</p>
<p>Example:
</p>
<pre class="example">(%i1) expand ((x + 1)*((u + v)^2 + a*(w + z)^2));
           2      2                            2      2
(%o1) a x z  + a z  + 2 a w x z + 2 a w z + a w  x + v  x

                                     2        2    2            2
                        + 2 u v x + u  x + a w  + v  + 2 u v + u
(%i2) factorsum (%);
                                   2          2
(%o2)            (x + 1) (a (z + w)  + (v + u) )
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-fasttimes"></a>
</p><dl>
<dt><u>Function:</u> <b>fasttimes</b><i> (<var>p_1</var>, <var>p_2</var>)</i>
<a name="IDX648"></a>
</dt>
<dd><p>Returns the product of the polynomials <var>p_1</var> and <var>p_2</var> by using a
special algorithm for multiplication of polynomials.  <code>p_1</code> and <code>p_2</code>
should be multivariate, dense, and nearly the same size.  Classical
multiplication is of order <code>n_1 n_2</code> where
<code>n_1</code> is the degree of <code>p_1</code>
and <code>n_2</code> is the degree of <code>p_2</code>.
<code>fasttimes</code> is of order <code>max (n_1, n_2)^1.585</code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="Item_003a-fullratsimp"></a>
</p><dl>
<dt><u>Function:</u> <b>fullratsimp</b><i> (<var>expr</var>)</i>
<a name="IDX649"></a>
</dt>
<dd><p><code>fullratsimp</code> repeatedly
applies <code>ratsimp</code> followed by non-rational simplification to an
expression until no further change occurs,
and returns the result.
</p>
<p>When non-rational expressions are involved, one call
to <code>ratsimp</code> followed as is usual by non-rational (&quot;general&quot;)
simplification may not be sufficient to return a simplified result.
Sometimes, more than one such call may be necessary.
<code>fullratsimp</code> makes this process convenient.
</p>
<p><code>fullratsimp (<var>expr</var>, <var>x_1</var>, ..., <var>x_n</var>)</code> takes one or more
arguments similar to <code>ratsimp</code> and <code>rat</code>.
</p>
<p>Example:
</p>
<pre class="example">(%i1) expr: (x^(a/2) + 1)^2*(x^(a/2) - 1)^2/(x^a - 1);
                       a/2     2   a/2     2
                     (x    - 1)  (x    + 1)
(%o1)                -----------------------
                              a
                             x  - 1
(%i2) ratsimp (expr);
                          2 a      a
                         x    - 2 x  + 1
(%o2)                    ---------------
                              a
                             x  - 1
(%i3) fullratsimp (expr);
                              a
(%o3)                        x  - 1
(%i4) rat (expr);
                       a/2 4       a/2 2
                     (x   )  - 2 (x   )  + 1
(%o4)/R/             -----------------------
                              a
                             x  - 1
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Simplification functions} &middot;
@ref{Category: Rational expressions}
<div class=categorybox>
</p></dd></dl>


<p><a name="Item_003a-fullratsubst"></a>
</p><dl>
<dt><u>Function:</u> <b>fullratsubst</b><i> (<var>a</var>, <var>b</var>, <var>c</var>)</i>
<a name="IDX650"></a>
</dt>
<dd><p>is the same as <code>ratsubst</code> except that it calls
itself recursively on its result until that result stops changing.
This function is useful when the replacement expression and the
replaced expression have one or more variables in common.
</p>
<p><code>fullratsubst</code> will also accept its arguments in the format of
<code>lratsubst</code>.  That is, the first argument may be a single substitution
equation or a list of such equations, while the second argument is the
expression being processed.
</p>
<p><code>load (&quot;lrats&quot;)</code> loads <code>fullratsubst</code> and <code>lratsubst</code>.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) load (&quot;lrats&quot;)$
</pre><ul>
<li>
<code>subst</code> can carry out multiple substitutions.
<code>lratsubst</code> is analogous to <code>subst</code>.
</li></ul>
<pre class="example">(%i2) subst ([a = b, c = d], a + c);
(%o2)                         d + b
(%i3) lratsubst ([a^2 = b, c^2 = d], (a + e)*c*(a + c));
(%o3)                (d + a c) e + a d + b c
</pre><ul>
<li>
If only one substitution is desired, then a single
equation may be given as first argument.
</li></ul>
<pre class="example">(%i4) lratsubst (a^2 = b, a^3);
(%o4)                          a b
</pre><ul>
<li>
<code>fullratsubst</code> is equivalent to <code>ratsubst</code>
except that it recurses until its result stops changing.
</li></ul>
<pre class="example">(%i5) ratsubst (b*a, a^2, a^3);
                               2
(%o5)                         a  b
(%i6) fullratsubst (b*a, a^2, a^3);
                                 2
(%o6)                         a b
</pre><ul>
<li>
<code>fullratsubst</code> also accepts a list of equations or a single
equation as first argument.
</li></ul>
<pre class="example">(%i7) fullratsubst ([a^2 = b, b^2 = c, c^2 = a], a^3*b*c);
(%o7)                           b
(%i8) fullratsubst (a^2 = b*a, a^3);
                                 2
(%o8)                         a b
</pre><ul>
<li>
<code>fullratsubst</code> may cause an indefinite recursion.
</li></ul>
<pre class="example">(%i9) errcatch (fullratsubst (b*a^2, a^2, a^3));

*** - Lisp stack overflow. RESET
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions}
</div>
</p></dd></dl>


<p><a name="gcd"></a>
<a name="Item_003a-gcd"></a>
</p><dl>
<dt><u>Function:</u> <b>gcd</b><i> (<var>p_1</var>, <var>p_2</var>, <var>x_1</var>, &hellip;)</i>
<a name="IDX651"></a>
</dt>
<dd><p>Returns the greatest common divisor of <var>p_1</var> and <var>p_2</var>.  The flag
<code>gcd</code> determines which algorithm is employed.  Setting <code>gcd</code> to
<code>ez</code>, <code>subres</code>, <code>red</code>, or <code>spmod</code> selects the <code>ezgcd</code>,
subresultant <code>prs</code>, reduced, or modular algorithm, respectively.  If
<code>gcd</code> <code>false</code> then <code>gcd (<var>p_1</var>, <var>p_2</var>, <var>x</var>)</code> always
returns 1 for all <var>x</var>.  Many functions (e.g. <code><a href="#ratsimp">ratsimp</a></code>,
<code><a href="#factor">factor</a></code>, etc.) cause gcd's to be taken implicitly.  For homogeneous
polynomials it is recommended that <code>gcd</code> equal to <code>subres</code> be used.
To take the gcd when an algebraic is present, e.g.,
<code>gcd (<var>x</var>^2 - 2*sqrt(2)* <var>x</var> + 2, <var>x</var> - sqrt(2))</code>, the option
variable <code><a href="#algebraic">algebraic</a></code> must be <code>true</code> and <code>gcd</code> must not be
<code>ez</code>.
</p>
<p>The <code>gcd</code> flag, default: <code>spmod</code>, if <code>false</code> will also prevent
the greatest common divisor from being taken when expressions are converted to
canonical rational expression (CRE) form.  This will sometimes speed the
calculation if gcds are not required.
</p>
<p>See also <code><a href="#ezgcd">ezgcd</a></code>, <code><a href="#gcdex">gcdex</a></code>, <code><a href="maxima_73.html#gcdivide">gcdivide</a></code>, and
<code><a href="maxima_57.html#poly_005fgcd">poly_gcd</a></code>.
</p>
<p>Example:
</p>
<pre class="example">(%i1) p1:6*x^3+19*x^2+19*x+6; 
                        3       2
(%o1)                6 x  + 19 x  + 19 x + 6
(%i2) p2:6*x^5+13*x^4+12*x^3+13*x^2+6*x;
                  5       4       3       2
(%o2)          6 x  + 13 x  + 12 x  + 13 x  + 6 x
(%i3) gcd(p1, p2);
                            2
(%o3)                    6 x  + 13 x + 6
(%i4) p1/gcd(p1, p2), ratsimp;
(%o4)                         x + 1
(%i5) p2/gcd(p1, p2), ratsimp;
                              3
(%o5)                        x  + x
</pre>
<p><code><a href="#ezgcd">ezgcd</a></code> returns a list whose first element is the greatest common divisor
of the polynomials <var>p_1</var> and <var>p_2</var>, and whose remaining elements are
the polynomials divided by the greatest common divisor.
</p>
<pre class="example">(%i6) ezgcd(p1, p2);
                    2                     3
(%o6)           [6 x  + 13 x + 6, x + 1, x  + x]
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials} &middot;
@ref{Category: Rational expressions}
</div>
</p></dd></dl>


<p><a name="gcdex"></a>
<a name="Item_003a-gcdex"></a>
</p><dl>
<dt><u>Function:</u> <b>gcdex</b><i> (<var>f</var>, <var>g</var>)</i>
<a name="IDX652"></a>
</dt>
<dt><u>Function:</u> <b>gcdex</b><i> (<var>f</var>, <var>g</var>, <var>x</var>)</i>
<a name="IDX653"></a>
</dt>
<dd><p>Returns a list <code>[<var>a</var>, <var>b</var>, <var>u</var>]</code> where <var>u</var> is the greatest
common divisor (gcd) of <var>f</var> and <var>g</var>, and <var>u</var> is equal to
<code><var>a</var> <var>f</var> + <var>b</var> <var>g</var></code>.  The arguments <var>f</var> and <var>g</var>
should be univariate polynomials, or else polynomials in <var>x</var> a supplied
main variable since we need to be in a principal ideal domain for this to
work.  The gcd means the gcd regarding <var>f</var> and <var>g</var> as univariate
polynomials with coefficients being rational functions in the other variables.
</p>
<p><code>gcdex</code> implements the Euclidean algorithm, where we have a sequence of
<code>L[i]: [a[i], b[i], r[i]]</code> which are all perpendicular to <code>[f, g, -1]</code>
and the next one is built as if <code>q = quotient(r[i]/r[i+1])</code> then
<code>L[i+2]: L[i] - q L[i+1]</code>, and it terminates at <code>L[i+1]</code> when the
remainder <code>r[i+2]</code> is zero.
</p>
<p>The arguments <var>f</var> and <var>g</var> can be integers.  For this case the function
<code><a href="maxima_29.html#igcdex">igcdex</a></code> is called by <code>gcdex</code>.
</p>
<p>See also <code><a href="#ezgcd">ezgcd</a></code>, <code><a href="#gcd">gcd</a></code>, <code><a href="maxima_73.html#gcdivide">gcdivide</a></code>, and
<code><a href="maxima_57.html#poly_005fgcd">poly_gcd</a></code>.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) gcdex (x^2 + 1, x^3 + 4);
                       2
                      x  + 4 x - 1  x + 4
(%o1)/R/           [- ------------, -----, 1]
                           17        17
(%i2) % . [x^2 + 1, x^3 + 4, -1];
(%o2)/R/                        0
</pre>
<p>Note that the gcd in the following is <code>1</code> since we work in <code>k(y)[x]</code>,
not the  <code>y+1</code> we would expect in <code>k[y, x]</code>.
</p>
<pre class="example">(%i1) gcdex (x*(y + 1), y^2 - 1, x);
                               1
(%o1)/R/                 [0, ------, 1]
                              2
                             y  - 1
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials} &middot;
@ref{Category: Rational expressions}
</div>
</p></dd></dl>


<p><a name="Item_003a-gcfactor"></a>
</p><dl>
<dt><u>Function:</u> <b>gcfactor</b><i> (<var>n</var>)</i>
<a name="IDX654"></a>
</dt>
<dd><p>Factors the Gaussian integer <var>n</var> over the Gaussian integers, i.e., numbers
of the form <code><var>a</var> + <var>b</var> <code>%i</code></code> where <var>a</var> and <var>b</var> are
rational integers (i.e.,  ordinary integers).  Factors are normalized by making
<var>a</var> and <var>b</var> non-negative.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Integers}
</div>
</p></dd></dl>


<p><a name="Item_003a-gfactor"></a>
</p><dl>
<dt><u>Function:</u> <b>gfactor</b><i> (<var>expr</var>)</i>
<a name="IDX655"></a>
</dt>
<dd><p>Factors the polynomial <var>expr</var> over the Gaussian integers
(that is, the integers with the imaginary unit <code>%i</code> adjoined).
This is like <code>factor (<var>expr</var>, <var>a</var>^2+1)</code> where <var>a</var> is <code>%i</code>.
</p>
<p>Example:
</p>
<pre class="example">(%i1) gfactor (x^4 - 1);
(%o1)           (x - 1) (x + 1) (x - %i) (x + %i)
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>


<p><a name="Item_003a-gfactorsum"></a>
</p><dl>
<dt><u>Function:</u> <b>gfactorsum</b><i> (<var>expr</var>)</i>
<a name="IDX656"></a>
</dt>
<dd><p>is similar to <code>factorsum</code> but applies <code>gfactor</code> instead
of <code>factor</code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-hipow"></a>
</p><dl>
<dt><u>Function:</u> <b>hipow</b><i> (<var>expr</var>, <var>x</var>)</i>
<a name="IDX657"></a>
</dt>
<dd><p>Returns the highest explicit exponent of <var>x</var> in <var>expr</var>.
<var>x</var> may be a variable or a general expression.
If <var>x</var> does not appear in <var>expr</var>,
<code>hipow</code> returns <code>0</code>.
</p>
<p><code>hipow</code> does not consider expressions equivalent to <code>expr</code>.  In
particular, <code>hipow</code> does not expand <code>expr</code>, so 
<code>hipow (<var>expr</var>, <var>x</var>)</code> and
<code>hipow (expand (<var>expr</var>, <var>x</var>))</code> may yield different results.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) hipow (y^3 * x^2 + x * y^4, x);
(%o1)                           2
(%i2) hipow ((x + y)^5, x);
(%o2)                           1
(%i3) hipow (expand ((x + y)^5), x);
(%o3)                           5
(%i4) hipow ((x + y)^5, x + y);
(%o4)                           5
(%i5) hipow (expand ((x + y)^5), x + y);
(%o5)                           0
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Expressions}
</div>
</p></dd></dl>


<p><a name="Item_003a-intfaclim"></a>
</p><dl>
<dt><u>Option variable:</u> <b>intfaclim</b>
<a name="IDX658"></a>
</dt>
<dd><p>Default value: true
</p>
<p>If <code>true</code>, maxima will give up factorization of
integers if no factor is found after trial divisions and Pollard's rho
method and factorization will not be complete.
</p>
<p>When <code>intfaclim</code> is <code>false</code> (this is the case when the user
calls <code>factor</code> explicitly), complete factorization will be
attempted.  <code>intfaclim</code> is set to <code>false</code> when factors are
computed in <code>divisors</code>, <code>divsum</code> and <code>totient</code>.
</p>
<p>Internal calls to <code>factor</code> respect the user-specified value of
<code>intfaclim</code>.  Setting <code>intfaclim</code> to <code>true</code> may reduce
the time spent factoring large integers.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Integers}
</div>
</p></dd></dl>

<p><a name="Item_003a-keepfloat"></a>
</p><dl>
<dt><u>Option variable:</u> <b>keepfloat</b>
<a name="IDX659"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>keepfloat</code> is <code>true</code>, prevents floating
point numbers from being rationalized when expressions which contain
them are converted to canonical rational expression (CRE) form.
</p>
<p>Note that the function <code>solve</code> and those functions calling it 
(<code>eigenvalues</code>, for example) currently ignore this flag, converting 
floating point numbers anyway.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) rat(x/2.0);

`rat' replaced 0.5 by 1/2 = 0.5
                                       x
(%o1)/R/                               -
                                       2
(%i2) rat(x/2.0), keepfloat;

(%o2)/R/                             0.5 x
</pre>
<p><code>solve</code> ignores <code>keepfloat</code>:
</p>
<pre class="example">(%i3) solve(1.0-x,x), keepfloat;

`rat' replaced 1.0 by 1/1 = 1.0
(%o3)                               [x = 1]
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Numerical evaluation}
</div>
</p></dd></dl>

<p><a name="lowpow"></a>
<a name="Item_003a-lopow"></a>
</p><dl>
<dt><u>Function:</u> <b>lopow</b><i> (<var>expr</var>, <var>x</var>)</i>
<a name="IDX660"></a>
</dt>
<dd><p>Returns the lowest exponent of <var>x</var> which explicitly appears in
<var>expr</var>.  Thus
</p>
<pre class="example">(%i1) lopow ((x+y)^2 + (x+y)^a, x+y);
(%o1)                       min(a, 2)
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Expressions}
</div>
</p></dd></dl>


<p><a name="Item_003a-lratsubst"></a>
</p><dl>
<dt><u>Function:</u> <b>lratsubst</b><i> (<var>L</var>, <var>expr</var>)</i>
<a name="IDX661"></a>
</dt>
<dd><p>is analogous to <code>subst (<var>L</var>, <var>expr</var>)</code>
except that it uses <code>ratsubst</code> instead of <code>subst</code>.
</p>
<p>The first argument of
<code>lratsubst</code> is an equation or a list of equations identical in
format to that accepted by <code>subst</code>.  The
substitutions are made in the order given by the list of equations,
that is, from left to right.
</p>
<p><code>load (&quot;lrats&quot;)</code> loads <code>fullratsubst</code> and <code>lratsubst</code>.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) load (&quot;lrats&quot;)$
</pre><ul>
<li>
<code>subst</code> can carry out multiple substitutions.
<code>lratsubst</code> is analogous to <code>subst</code>.
</li></ul>
<pre class="example">(%i2) subst ([a = b, c = d], a + c);
(%o2)                         d + b
(%i3) lratsubst ([a^2 = b, c^2 = d], (a + e)*c*(a + c));
(%o3)                (d + a c) e + a d + b c
</pre><ul>
<li>
If only one substitution is desired, then a single
equation may be given as first argument.
</li></ul>
<pre class="example">(%i4) lratsubst (a^2 = b, a^3);
(%o4)                          a b
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials} &middot;
@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="modulus"></a>
<a name="Item_003a-modulus"></a>
</p><dl>
<dt><u>Option variable:</u> <b>modulus</b>
<a name="IDX662"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>modulus</code> is a positive number <var>p</var>, operations on rational numbers
(as returned by <code>rat</code> and related functions) are carried out modulo
<var>p</var>, using the so-called &quot;balanced&quot; modulus system in which <code><var>n</var>
modulo <var>p</var></code> is defined as an integer <var>k</var> in
<code>[-(<var>p</var>-1)/2, ..., 0, ..., (<var>p</var>-1)/2]</code> when <var>p</var> is odd, or
<code>[-(<var>p</var>/2 - 1), ..., 0, ...., <var>p</var>/2]</code> when <var>p</var> is even, such
that <code><var>a</var> <var>p</var> + <var>k</var></code> equals <var>n</var> for some integer <var>a</var>.
</p>
<p>If <var>expr</var> is already in canonical rational expression (CRE) form when
<code>modulus</code> is reset, then you may need to re-rat <var>expr</var>, e.g.,
<code>expr: rat (ratdisrep (expr))</code>, in order to get correct results.
</p>
<p>Typically <code>modulus</code> is set to a prime number.  If <code>modulus</code> is set to
a positive non-prime integer, this setting is accepted, but a warning message is
displayed.  Maxima signals an error, when zero or a negative integer is
assigned to <code>modulus</code>.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) modulus:7;
(%o1)                           7
(%i2) polymod([0,1,2,3,4,5,6,7]);
(%o2)            [0, 1, 2, 3, - 3, - 2, - 1, 0]
(%i3) modulus:false;
(%o3)                         false
(%i4) poly:x^6+x^2+1;
                            6    2
(%o4)                      x  + x  + 1
(%i5) factor(poly);
                            6    2
(%o5)                      x  + x  + 1
(%i6) modulus:13;
(%o6)                          13
(%i7) factor(poly);
                      2        4      2
(%o7)               (x  + 6) (x  - 6 x  - 2)
(%i8) polymod(%);
                            6    2
(%o8)                      x  + x  + 1
</pre><div class=categorybox>
&middot;
<p>@ref{Category: Integers}
</div>
</p></dd></dl>


<p><a name="Item_003a-num"></a>
</p><dl>
<dt><u>Function:</u> <b>num</b><i> (<var>expr</var>)</i>
<a name="IDX663"></a>
</dt>
<dd><p>Returns the numerator of <var>expr</var> if it is a ratio.
If <var>expr</var> is not a ratio, <var>expr</var> is returned.
</p>
<p><code>num</code> evaluates its argument.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Expressions}
</div>
</p></dd></dl>

<p><a name="polydecomp"></a>
<a name="Item_003a-polydecomp"></a>
</p><dl>
<dt><u>Function:</u> <b>polydecomp</b><i> (<var>p</var>, <var>x</var>)</i>
<a name="IDX664"></a>
</dt>
<dd><p>Decomposes the polynomial <var>p</var> in the variable <var>x</var>
into the functional composition of polynomials in <var>x</var>.
<code>polydecomp</code> returns a list <code>[<var>p_1</var>, ..., <var>p_n</var>]</code> such that
</p>
<pre class="example">lambda ([x], p_1) (lambda ([x], p_2) (... (lambda ([x], p_n) (x))
  ...))
</pre>
<p>is equal to <var>p</var>.
The degree of <var>p_i</var> is greater than 1 for <var>i</var> less than <var>n</var>.
</p>
<p>Such a decomposition is not unique.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) polydecomp (x^210, x);
                          7   5   3   2
(%o1)                   [x , x , x , x ]
(%i2) p : expand (subst (x^3 - x - 1, x, x^2 - a));
                6      4      3    2
(%o2)          x  - 2 x  - 2 x  + x  + 2 x - a + 1
(%i3) polydecomp (p, x);
                        2       3
(%o3)                 [x  - a, x  - x - 1]
</pre>
<p>The following function composes <code>L = [e_1, ..., e_n]</code> as functions in
<code>x</code>; it is the inverse of polydecomp:
</p>
<pre class="example">compose (L, x) :=
  block ([r : x], for e in L do r : subst (e, x, r), r) $
</pre>
<p>Re-express above example using <code>compose</code>:
</p>
<pre class="example">(%i3) polydecomp (compose ([x^2 - a, x^3 - x - 1], x), x);
                        2       3
(%o3)                 [x  - a, x  - x - 1]
</pre>
<p>Note that though <code>compose (polydecomp (<var>p</var>, <var>x</var>), <var>x</var>)</code> always
returns <var>p</var> (unexpanded), <code>polydecomp (compose ([<var>p_1</var>, ...,
<var>p_n</var>], <var>x</var>), <var>x</var>)</code> does <i>not</i> necessarily return
<code>[<var>p_1</var>, ..., <var>p_n</var>]</code>:
</p>
<pre class="example">(%i4) polydecomp (compose ([x^2 + 2*x + 3, x^2], x), x);
                          2       2
(%o4)                   [x  + 2, x  + 1]
(%i5) polydecomp (compose ([x^2 + x + 1, x^2 + x + 1], x), x);
                      2       2
                     x  + 3  x  + 5
(%o5)               [------, ------, 2 x + 1]
                       4       2
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="polymod"></a>
<a name="Item_003a-polymod"></a>
</p><dl>
<dt><u>Function:</u> <b>polymod</b><i> (<var>p</var>)</i>
<a name="IDX665"></a>
</dt>
<dt><u>Function:</u> <b>polymod</b><i> (<var>p</var>, <var>m</var>)</i>
<a name="IDX666"></a>
</dt>
<dd><p>Converts the polynomial <var>p</var> to a modular representation with respect to the
current modulus which is the value of the variable <code>modulus</code>.
</p>
<p><code>polymod (<var>p</var>, <var>m</var>)</code> specifies a modulus <var>m</var> to be used 
instead of the current value of <code>modulus</code>.
</p>
<p>See <code><a href="#modulus">modulus</a></code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>


<p><a name="quotient"></a>
<a name="Item_003a-quotient"></a>
</p><dl>
<dt><u>Function:</u> <b>quotient</b><i> (<var>p_1</var>, <var>p_2</var>)</i>
<a name="IDX667"></a>
</dt>
<dt><u>Function:</u> <b>quotient</b><i> (<var>p_1</var>, <var>p_2</var>, <var>x_1</var>, &hellip;, <var>x_n</var>)</i>
<a name="IDX668"></a>
</dt>
<dd><p>Returns the polynomial <var>p_1</var> divided by the polynomial <var>p_2</var>.  The
arguments <var>x_1</var>, &hellip;, <var>x_n</var> are interpreted as in <code>ratvars</code>.
</p>
<p><code>quotient</code> returns the first element of the two-element list returned by
<code>divide</code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>


<p><a name="Item_003a-rat"></a>
</p><dl>
<dt><u>Function:</u> <b>rat</b><i> (<var>expr</var>)</i>
<a name="IDX669"></a>
</dt>
<dt><u>Function:</u> <b>rat</b><i> (<var>expr</var>, <var>x_1</var>, &hellip;, <var>x_n</var>)</i>
<a name="IDX670"></a>
</dt>
<dd><p>Converts <var>expr</var> to canonical rational expression (CRE) form by expanding and
combining all terms over a common denominator and cancelling out the
greatest common divisor of the numerator and denominator, as well as
converting floating point numbers to rational numbers within a
tolerance of <code>ratepsilon</code>.
The variables are ordered according
to the <var>x_1</var>, &hellip;, <var>x_n</var>, if specified, as in <code>ratvars</code>.
</p>
<p><code>rat</code> does not generally simplify functions other than addition <code>+</code>,
subtraction <code>-</code>, multiplication <code>*</code>, division <code>/</code>, and
exponentiation to an integer power,
whereas <code>ratsimp</code> does handle those cases.
Note that atoms (numbers and variables) in CRE form are not the
same as they are in the general form.
For example, <code>rat(x)- x</code> yields 
<code>rat(0)</code> which has a different internal representation than 0.
</p>
<p>When <code>ratfac</code> is <code>true</code>, <code>rat</code> yields a partially factored
form for CRE.  During rational operations the expression is
maintained as fully factored as possible without an actual call to the
factor package.  This should always save space and may save some time
in some computations.  The numerator and denominator are still made
relatively prime
(e.g.,  <code>rat((x^2 - 1)^4/(x + 1)^2)</code> yields <code>(x - 1)^4 (x + 1)^2</code>
when <code>ratfac</code> is <code>true</code>),
but the factors within each part may not be relatively prime.
</p>
<p><code>ratprint</code> if <code>false</code> suppresses the printout of the message
informing the user of the conversion of floating point numbers to
rational numbers.
</p>
<p><code>keepfloat</code> if <code>true</code> prevents floating point numbers from being
converted to rational numbers.
</p>
<p>See also <code>ratexpand</code> and  <code>ratsimp</code>.
</p>
<p>Examples:
</p><pre class="example">(%i1) ((x - 2*y)^4/(x^2 - 4*y^2)^2 + 1)*(y + a)*(2*y + x) /
      (4*y^2 + x^2);
                                           4
                                  (x - 2 y)
              (y + a) (2 y + x) (------------ + 1)
                                   2      2 2
                                 (x  - 4 y )
(%o1)         ------------------------------------
                              2    2
                           4 y  + x
(%i2) rat (%, y, a, x);
                            2 a + 2 y
(%o2)/R/                    ---------
                             x + 2 y
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratalgdenom"></a>
</p><dl>
<dt><u>Option variable:</u> <b>ratalgdenom</b>
<a name="IDX671"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>ratalgdenom</code> is <code>true</code>, allows rationalization of denominators
with respect to radicals to take effect.  <code>ratalgdenom</code> has an effect only
when canonical rational expressions (CRE) are used in algebraic mode.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Simplification flags and variables}
</div>
</p></dd></dl>


<p><a name="Item_003a-ratcoef"></a>
</p><dl>
<dt><u>Function:</u> <b>ratcoef</b><i> (<var>expr</var>, <var>x</var>, <var>n</var>)</i>
<a name="IDX672"></a>
</dt>
<dt><u>Function:</u> <b>ratcoef</b><i> (<var>expr</var>, <var>x</var>)</i>
<a name="IDX673"></a>
</dt>
<dd><p>Returns the coefficient of the expression <code><var>x</var>^<var>n</var></code>
in the expression <var>expr</var>.
If omitted, <var>n</var> is assumed to be 1.
</p>
<p>The return value is free
(except possibly in a non-rational sense) of the variables in <var>x</var>.
If no coefficient of this type exists, 0 is returned.
</p>
<p><code>ratcoef</code>
expands and rationally simplifies its first argument and thus it may
produce answers different from those of <code>coeff</code> which is purely
syntactic.
Thus <code>ratcoef ((x + 1)/y + x, x)</code> returns <code>(y + 1)/y</code> whereas
<code>coeff</code> returns 1.
</p>
<p><code>ratcoef (<var>expr</var>, <var>x</var>, 0)</code>, viewing <var>expr</var> as a sum,
returns a sum of those terms which do not contain <var>x</var>.
Therefore if <var>x</var> occurs to any negative powers, <code>ratcoef</code> should not
be used.
</p>
<p>Since <var>expr</var> is rationally
simplified before it is examined, coefficients may not appear quite
the way they were envisioned.
</p>
<p>Example:
</p>
<pre class="example">(%i1) s: a*x + b*x + 5$
(%i2) ratcoef (s, a + b);
(%o2)                           x
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials} &middot;
@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratdenom"></a>
</p><dl>
<dt><u>Function:</u> <b>ratdenom</b><i> (<var>expr</var>)</i>
<a name="IDX674"></a>
</dt>
<dd><p>Returns the denominator of <var>expr</var>,
after coercing <var>expr</var> to a canonical rational expression (CRE).
The return value is a CRE.
</p>
<p><var>expr</var> is coerced to a CRE by <code>rat</code>
if it is not already a CRE.
This conversion may change the form of <var>expr</var> by putting all terms
over a common denominator.
</p>
<p><code>denom</code> is similar, but returns an ordinary expression instead of a CRE.
Also, <code>denom</code> does not attempt to place all terms over a common
denominator, and thus some expressions which are considered ratios by
<code>ratdenom</code> are not considered ratios by <code>denom</code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratdenomdivide"></a>
</p><dl>
<dt><u>Option variable:</u> <b>ratdenomdivide</b>
<a name="IDX675"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>ratdenomdivide</code> is <code>true</code>,
<code>ratexpand</code> expands a ratio in which the numerator is a sum 
into a sum of ratios,
all having a common denominator.
Otherwise, <code>ratexpand</code> collapses a sum of ratios into a single ratio,
the numerator of which is the sum of the numerators of each ratio.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) expr: (x^2 + x + 1)/(y^2 + 7);
                            2
                           x  + x + 1
(%o1)                      ----------
                              2
                             y  + 7
(%i2) ratdenomdivide: true$
(%i3) ratexpand (expr);
                       2
                      x        x        1
(%o3)               ------ + ------ + ------
                     2        2        2
                    y  + 7   y  + 7   y  + 7
(%i4) ratdenomdivide: false$
(%i5) ratexpand (expr);
                            2
                           x  + x + 1
(%o5)                      ----------
                              2
                             y  + 7
(%i6) expr2: a^2/(b^2 + 3) + b/(b^2 + 3);
                                     2
                           b        a
(%o6)                    ------ + ------
                          2        2
                         b  + 3   b  + 3
(%i7) ratexpand (expr2);
                                  2
                             b + a
(%o7)                        ------
                              2
                             b  + 3
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Simplification flags and variables} &middot;
@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratdiff"></a>
</p><dl>
<dt><u>Function:</u> <b>ratdiff</b><i> (<var>expr</var>, <var>x</var>)</i>
<a name="IDX676"></a>
</dt>
<dd><p>Differentiates the rational expression <var>expr</var> with respect to <var>x</var>.
<var>expr</var> must be a ratio of polynomials or a polynomial in <var>x</var>.
The argument <var>x</var> may be a variable or a subexpression of <var>expr</var>.
</p>
<p>The result is equivalent to <code>diff</code>, although perhaps in a different form.
<code>ratdiff</code> may be faster than <code>diff</code>, for rational expressions.
</p>
<p><code>ratdiff</code> returns a canonical rational expression (CRE) if <code>expr</code> is
a CRE.  Otherwise, <code>ratdiff</code> returns a general expression.
</p>
<p><code>ratdiff</code> considers only the dependence of <var>expr</var> on <var>x</var>,
and ignores any dependencies established by <code>depends</code>.
</p>

<p>Example:
</p>
<pre class="example">(%i1) expr: (4*x^3 + 10*x - 11)/(x^5 + 5);
                           3
                        4 x  + 10 x - 11
(%o1)                   ----------------
                              5
                             x  + 5
(%i2) ratdiff (expr, x);
                    7       5       4       2
                 8 x  + 40 x  - 55 x  - 60 x  - 50
(%o2)          - ---------------------------------
                          10       5
                         x   + 10 x  + 25
(%i3) expr: f(x)^3 - f(x)^2 + 7;
                         3       2
(%o3)                   f (x) - f (x) + 7
(%i4) ratdiff (expr, f(x));
                           2
(%o4)                   3 f (x) - 2 f(x)
(%i5) expr: (a + b)^3 + (a + b)^2;
                              3          2
(%o5)                  (b + a)  + (b + a)
(%i6) ratdiff (expr, a + b);
                    2                    2
(%o6)            3 b  + (6 a + 2) b + 3 a  + 2 a
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratdisrep"></a>
</p><dl>
<dt><u>Function:</u> <b>ratdisrep</b><i> (<var>expr</var>)</i>
<a name="IDX677"></a>
</dt>
<dd><p>Returns its argument as a general expression.
If <var>expr</var> is a general expression, it is returned unchanged.
</p>
<p>Typically <code>ratdisrep</code> is called to convert a canonical rational expression
(CRE) into a general expression.
This is sometimes convenient if one wishes to stop the &quot;contagion&quot;, or
use rational functions in non-rational contexts.
</p>
<p>See also <code>totaldisrep</code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratexpand"></a>
</p><dl>
<dt><u>Function:</u> <b>ratexpand</b><i> (<var>expr</var>)</i>
<a name="IDX678"></a>
</dt>
<dt><u>Option variable:</u> <b>ratexpand</b>
<a name="IDX679"></a>
</dt>
<dd><p>Expands <var>expr</var> by multiplying out products of sums and
exponentiated sums, combining fractions over a common denominator,
cancelling the greatest common divisor of the numerator and
denominator, then splitting the numerator (if a sum) into its
respective terms divided by the denominator.
</p>
<p>The return value of <code>ratexpand</code> is a general expression,
even if <var>expr</var> is a canonical rational expression (CRE).
</p>
<p>The switch <code>ratexpand</code> if <code>true</code> will cause CRE
expressions to be fully expanded when they are converted back to
general form or displayed, while if it is <code>false</code> then they will be put
into a recursive form.
See also <code>ratsimp</code>.
</p>
<p>When <code>ratdenomdivide</code> is <code>true</code>,
<code>ratexpand</code> expands a ratio in which the numerator is a sum 
into a sum of ratios,
all having a common denominator.
Otherwise, <code>ratexpand</code> collapses a sum of ratios into a single ratio,
the numerator of which is the sum of the numerators of each ratio.
</p>
<p>When <code>keepfloat</code> is <code>true</code>, prevents floating
point numbers from being rationalized when expressions which contain
them are converted to canonical rational expression (CRE) form.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) ratexpand ((2*x - 3*y)^3);
                     3         2       2        3
(%o1)          - 27 y  + 54 x y  - 36 x  y + 8 x
(%i2) expr: (x - 1)/(x + 1)^2 + 1/(x - 1);
                         x - 1       1
(%o2)                   -------- + -----
                               2   x - 1
                        (x + 1)
(%i3) expand (expr);
                    x              1           1
(%o3)          ------------ - ------------ + -----
                2              2             x - 1
               x  + 2 x + 1   x  + 2 x + 1
(%i4) ratexpand (expr);
                        2
                     2 x                 2
(%o4)           --------------- + ---------------
                 3    2            3    2
                x  + x  - x - 1   x  + x  - x - 1
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="ratfac"></a>
<a name="Item_003a-ratfac"></a>
</p><dl>
<dt><u>Option variable:</u> <b>ratfac</b>
<a name="IDX680"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>ratfac</code> is <code>true</code>, canonical rational expressions (CRE) are
manipulated in a partially factored form.
</p>
<p>During rational operations the expression is maintained as fully factored as
possible without calling <code>factor</code>.
This should always save space and may save time in some computations.
The numerator and denominator are made relatively prime, for example
<code>factor ((x^2 - 1)^4/(x + 1)^2)</code> yields <code>(x - 1)^4 (x + 1)^2</code>,
but the factors within each part may not be relatively prime.
</p>
<p>In the <code>ctensr</code> (Component Tensor Manipulation) package,
Ricci, Einstein, Riemann, and Weyl tensors and the scalar curvature 
are factored automatically when <code>ratfac</code> is <code>true</code>.
<i><code>ratfac</code> should only be
set for cases where the tensorial components are known to consist of
few terms.</i>
</p>
<p>The <code>ratfac</code> and <code>ratweight</code> schemes are incompatible and may not
both be used at the same time.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratnumer"></a>
</p><dl>
<dt><u>Function:</u> <b>ratnumer</b><i> (<var>expr</var>)</i>
<a name="IDX681"></a>
</dt>
<dd><p>Returns the numerator of <var>expr</var>,
after coercing <var>expr</var> to a canonical rational expression (CRE).
The return value is a CRE.
</p>
<p><var>expr</var> is coerced to a CRE by <code>rat</code>
if it is not already a CRE.
This conversion may change the form of <var>expr</var> by putting all terms
over a common denominator.
</p>
<p><code>num</code> is similar, but returns an ordinary expression instead of a CRE.
Also, <code>num</code> does not attempt to place all terms over a common denominator,
and thus some expressions which are considered ratios by <code>ratnumer</code>
are not considered ratios by <code>num</code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratp"></a>
</p><dl>
<dt><u>Function:</u> <b>ratp</b><i> (<var>expr</var>)</i>
<a name="IDX682"></a>
</dt>
<dd><p>Returns <code>true</code> if <var>expr</var> is a canonical rational expression (CRE) or
extended CRE, otherwise <code>false</code>.
</p>
<p>CRE are created by <code>rat</code> and related functions.
Extended CRE are created by <code>taylor</code> and related functions.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Predicate functions} &middot;
@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratprint"></a>
</p><dl>
<dt><u>Option variable:</u> <b>ratprint</b>
<a name="IDX683"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>ratprint</code> is <code>true</code>,
a message informing the user of the conversion of floating point numbers
to rational numbers is displayed.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions} &middot;
@ref{Category: Numerical evaluation} &middot;
@ref{Category: Console interaction}
</div>
</p></dd></dl>

<p><a name="ratsimp"></a>
<a name="Item_003a-ratsimp"></a>
</p><dl>
<dt><u>Function:</u> <b>ratsimp</b><i> (<var>expr</var>)</i>
<a name="IDX684"></a>
</dt>
<dt><u>Function:</u> <b>ratsimp</b><i> (<var>expr</var>, <var>x_1</var>, &hellip;, <var>x_n</var>)</i>
<a name="IDX685"></a>
</dt>
<dd><p>Simplifies the expression <var>expr</var> and all of its subexpressions, including
the arguments to non-rational functions.  The result is returned as the quotient
of two polynomials in a recursive form, that is, the coefficients of the main
variable are polynomials in the other variables.  Variables may include
non-rational functions (e.g., <code>sin (x^2 + 1)</code>) and the arguments to any
such functions are also rationally simplified.
</p>
<p><code>ratsimp (<var>expr</var>, <var>x_1</var>, ..., <var>x_n</var>)</code>
enables rational simplification with the
specification of variable ordering as in <code>ratvars</code>.
</p>
<p>When <code>ratsimpexpons</code> is <code>true</code>,
<code>ratsimp</code> is applied to the exponents of expressions during simplification.
</p>
<p>See also <code>ratexpand</code>.
Note that <code>ratsimp</code> is affected by some of the
flags which affect <code>ratexpand</code>.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) sin (x/(x^2 + x)) = exp ((log(x) + 1)^2 - log(x)^2);
                                         2      2
                   x         (log(x) + 1)  - log (x)
(%o1)        sin(------) = %e
                  2
                 x  + x
(%i2) ratsimp (%);
                             1          2
(%o2)                  sin(-----) = %e x
                           x + 1
(%i3) ((x - 1)^(3/2) - (x + 1)*sqrt(x - 1))/sqrt((x - 1)*(x + 1));
                       3/2
                (x - 1)    - sqrt(x - 1) (x + 1)
(%o3)           --------------------------------
                     sqrt((x - 1) (x + 1))
(%i4) ratsimp (%);
                           2 sqrt(x - 1)
(%o4)                    - -------------
                                 2
                           sqrt(x  - 1)
(%i5) x^(a + 1/a), ratsimpexpons: true;
                               2
                              a  + 1
                              ------
                                a
(%o5)                        x
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Simplification functions} &middot;
@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratsimpexpons"></a>
</p><dl>
<dt><u>Option variable:</u> <b>ratsimpexpons</b>
<a name="IDX686"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>ratsimpexpons</code> is <code>true</code>,
<code>ratsimp</code> is applied to the exponents of expressions during simplification.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Simplification flags and variables} &middot;
@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="radsubstflag"></a>
<a name="Item_003a-radsubstflag"></a>
</p><dl>
<dt><u>Option variable:</u> <b>radsubstflag</b>
<a name="IDX687"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p><code>radsubstflag</code>, if <code>true</code>, permits <code>ratsubst</code> to make
substitutions such as <code>u</code> for <code>sqrt (x)</code> in <code>x</code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Simplification flags and variables}
</div>
</p></dd></dl>

<p><a name="ratsubst"></a>
<a name="Item_003a-ratsubst"></a>
</p><dl>
<dt><u>Function:</u> <b>ratsubst</b><i> (<var>a</var>, <var>b</var>, <var>c</var>)</i>
<a name="IDX688"></a>
</dt>
<dd><p>Substitutes <var>a</var> for <var>b</var> in <var>c</var> and returns the resulting expression.
<var>b</var> may be a sum, product, power, etc.
</p>
<p><code>ratsubst</code> knows something of the meaning of expressions
whereas <code>subst</code> does a purely syntactic substitution.
Thus <code>subst (a, x + y, x + y + z)</code> returns <code>x + y + z</code>
whereas <code>ratsubst</code> returns <code>z + a</code>.
</p>
<p>When <code>radsubstflag</code> is <code>true</code>,
<code>ratsubst</code> makes substitutions for radicals in expressions
which don't explicitly contain them.
</p>
<p><code>ratsubst</code> ignores the value <code>true</code> of the option variable 
<code>keepfloat</code>.
</p>
<p>Examples:
</p>

<pre class="example">(%i1) ratsubst (a, x*y^2, x^4*y^3 + x^4*y^8);
                              3      4
(%o1)                      a x  y + a
(%i2) cos(x)^4 + cos(x)^3 + cos(x)^2 + cos(x) + 1;
               4         3         2
(%o2)       cos (x) + cos (x) + cos (x) + cos(x) + 1
(%i3) ratsubst (1 - sin(x)^2, cos(x)^2, %);
            4           2                     2
(%o3)    sin (x) - 3 sin (x) + cos(x) (2 - sin (x)) + 3
(%i4) ratsubst (1 - cos(x)^2, sin(x)^2, sin(x)^4);
                        4           2
(%o4)                cos (x) - 2 cos (x) + 1
(%i5) radsubstflag: false$
(%i6) ratsubst (u, sqrt(x), x);
(%o6)                           x
(%i7) radsubstflag: true$
(%i8) ratsubst (u, sqrt(x), x);
                                2
(%o8)                          u
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratvars"></a>
</p><dl>
<dt><u>Function:</u> <b>ratvars</b><i> (<var>x_1</var>, &hellip;, <var>x_n</var>)</i>
<a name="IDX689"></a>
</dt>
<dt><u>Function:</u> <b>ratvars</b><i> ()</i>
<a name="IDX690"></a>
</dt>
<dt><u>System variable:</u> <b>ratvars</b>
<a name="IDX691"></a>
</dt>
<dd><p>Declares main variables <var>x_1</var>, &hellip;, <var>x_n</var> for rational expressions.
<var>x_n</var>, if present in a rational expression, is considered the main variable.
Otherwise, <var>x_[n-1]</var> is considered the main variable if present, and so on
through the preceding variables to <var>x_1</var>, which is considered the main
variable only if none of the succeeding variables are present.
</p>
<p>If a variable in a rational expression is not present in the <code>ratvars</code>
list, it is given a lower priority than <var>x_1</var>.
</p>
<p>The arguments to <code>ratvars</code> can be either variables or non-rational
functions such as <code>sin(x)</code>.
</p>
<p>The variable <code>ratvars</code> is a list of the arguments of 
the function <code>ratvars</code> when it was called most recently.
Each call to the function <code>ratvars</code> resets the list.
<code>ratvars ()</code> clears the list.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratvarswitch"></a>
</p><dl>
<dt><u>Option variable:</u> <b>ratvarswitch</b>
<a name="IDX692"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>Maxima keeps an internal list in the Lisp variable <code>VARLIST</code> of the main
variables for rational expressions.  If <code>ratvarswitch</code> is <code>true</code>, 
every evaluation starts with a fresh list <code>VARLIST</code>.  This is the default
behavior.  Otherwise, the main variables from previous evaluations are not 
removed from the internal list <code>VARLIST</code>.
</p>
<p>The main variables, which are declared with the function <code>ratvars</code> are
not affected by the option variable <code>ratvarswitch</code>.
</p>
<p>Examples:
</p>
<p>If <code>ratvarswitch</code> is <code>true</code>, every evaluation starts with a fresh
list <code>VARLIST</code>.
</p>
<pre class="example">(%i1) ratvarswitch:true$

(%i2) rat(2*x+y^2);
                             2
(%o2)/R/                    y  + 2 x
(%i3) :lisp varlist
($X $Y)

(%i3) rat(2*a+b^2);
                             2
(%o3)/R/                    b  + 2 a

(%i4) :lisp varlist
($A $B)
</pre>
<p>If <code>ratvarswitch</code> is <code>false</code>, the main variables from the last 
evaluation are still present.
</p>
<pre class="example">(%i4) ratvarswitch:false$

(%i5) rat(2*x+y^2);
                             2
(%o5)/R/                    y  + 2 x
(%i6) :lisp varlist
($X $Y)

(%i6) rat(2*a+b^2);
                             2
(%o6)/R/                    b  + 2 a

(%i7) :lisp varlist
($A $B $X $Y)
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions} &middot;
@ref{Category: Global flags}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratweight"></a>
</p><dl>
<dt><u>Function:</u> <b>ratweight</b><i> (<var>x_1</var>, <var>w_1</var>, &hellip;, <var>x_n</var>, <var>w_n</var>)</i>
<a name="IDX693"></a>
</dt>
<dt><u>Function:</u> <b>ratweight</b><i> ()</i>
<a name="IDX694"></a>
</dt>
<dd><p>Assigns a weight <var>w_i</var> to the variable <var>x_i</var>.
This causes a term to be replaced by 0 if its weight exceeds the
value of the variable <code>ratwtlvl</code> (default yields no truncation).
The weight of a term is the sum of the products of the
weight of a variable in the term times its power.
For example, the weight of <code>3 x_1^2 x_2</code> is <code>2 w_1 + w_2</code>.
Truncation according to <code>ratwtlvl</code> is carried out only when multiplying
or exponentiating canonical rational expressions (CRE).
</p>
<p><code>ratweight ()</code> returns the cumulative list of weight assignments.
</p>
<p>Note: The <code>ratfac</code> and <code>ratweight</code> schemes are incompatible and may
not both be used at the same time.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) ratweight (a, 1, b, 1);
(%o1)                     [a, 1, b, 1]
(%i2) expr1: rat(a + b + 1)$
(%i3) expr1^2;
                  2                  2
(%o3)/R/         b  + (2 a + 2) b + a  + 2 a + 1
(%i4) ratwtlvl: 1$
(%i5) expr1^2;
(%o5)/R/                  2 b + 2 a + 1
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratweights"></a>
</p><dl>
<dt><u>System variable:</u> <b>ratweights</b>
<a name="IDX695"></a>
</dt>
<dd><p>Default value: <code>[]</code>
</p>
<p><code>ratweights</code> is the list of weights assigned by <code>ratweight</code>.
The list is cumulative:
each call to <code>ratweight</code> places additional items in the list.
</p>
<p><code>kill (ratweights)</code> and <code>save (ratweights)</code> both work as expected.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-ratwtlvl"></a>
</p><dl>
<dt><u>Option variable:</u> <b>ratwtlvl</b>
<a name="IDX696"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p><code>ratwtlvl</code> is used in combination with the <code>ratweight</code>
function to control the truncation of canonical rational expressions (CRE).
For the default value of <code>false</code>, no truncation occurs.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-remainder"></a>
</p><dl>
<dt><u>Function:</u> <b>remainder</b><i> (<var>p_1</var>, <var>p_2</var>)</i>
<a name="IDX697"></a>
</dt>
<dt><u>Function:</u> <b>remainder</b><i> (<var>p_1</var>, <var>p_2</var>, <var>x_1</var>, &hellip;, <var>x_n</var>)</i>
<a name="IDX698"></a>
</dt>
<dd><p>Returns the remainder of the polynomial <var>p_1</var> divided by the polynomial
<var>p_2</var>.  The arguments <var>x_1</var>, &hellip;, <var>x_n</var> are interpreted as in
<code>ratvars</code>.
</p>
<p><code>remainder</code> returns the second element
of the two-element list returned by <code>divide</code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="resultant"></a>
<a name="Item_003a-resultant"></a>
</p><dl>
<dt><u>Function:</u> <b>resultant</b><i> (<var>p_1</var>, <var>p_2</var>, <var>x</var>)</i>
<a name="IDX699"></a>
</dt>
<dd><p>The function <code>resultant</code> computes the resultant of the two polynomials
<var>p_1</var> and <var>p_2</var>, eliminating the variable <var>x</var>.  The resultant is a
determinant of the coefficients of <var>x</var> in <var>p_1</var> and <var>p_2</var>, which
equals zero if and only if <var>p_1</var> and <var>p_2</var> have a non-constant factor
in common.
</p>
<p>If <var>p_1</var> or <var>p_2</var> can be factored, it may be desirable to call
<code><a href="#factor">factor</a></code> before calling <code>resultant</code>.
</p>
<p>The option variable <code>resultant</code> controls which algorithm will be used to
compute the resultant.  See the option variable
<code><a href="#option_005fresultant">resultant</a></code>.
</p>
<p>The function <code><a href="#bezout">bezout</a></code> takes the same arguments as <code>resultant</code> and
returns a matrix.  The determinant of the return value is the desired resultant.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) resultant(2*x^2+3*x+1, 2*x^2+x+1, x);
(%o1)                           8
(%i2) resultant(x+1, x+1, x);
(%o2)                           0
(%i3) resultant((x+1)*x, (x+1), x);
(%o3)                           0
(%i4) resultant(a*x^2+b*x+1, c*x + 2, x);
                         2
(%o4)                   c  - 2 b c + 4 a

(%i5) bezout(a*x^2+b*x+1, c*x+2, x);
                        [ 2 a  2 b - c ]
(%o5)                   [              ]
                        [  c      2    ]
(%i6) determinant(%);
(%o6)                   4 a - (2 b - c) c
</pre><div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="option_005fresultant"></a>
</p>
<dl>
<dt><u>Option variable:</u> <b>resultant</b>
<a name="IDX700"></a>
</dt>
<dd><p>Default value: <code>subres</code>
</p>
<p>The option variable <code>resultant</code> controls which algorithm will be used to
compute the resultant with the function <code><a href="#resultant">resultant</a></code>.  The possible
values are:
</p>
<dl compact="compact">
<dt> <code>subres</code></dt>
<dd><p>for the subresultant polynomial remainder sequence (PRS) algorithm,
</p></dd>
<dt> <code>mod</code></dt>
<dd><p>for the modular resultant algorithm, and 
</p></dd>
<dt> <code>red</code></dt>
<dd><p>for the reduced polynomial remainder sequence (PRS) algorithm.
</p></dd>
</dl>

<p>On most problems the default value <code>subres</code> should be best.  On some
large degree univariate or bivariate problems <code>mod</code> may be better.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="Item_003a-savefactors"></a>
</p><dl>
<dt><u>Option variable:</u> <b>savefactors</b>
<a name="IDX701"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>savefactors</code> is <code>true</code>, causes the factors of an
expression which is a product of factors to be saved by certain
functions in order to speed up later factorizations of expressions
containing some of the same factors.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="showratvars"></a>
<a name="Item_003a-showratvars"></a>
</p><dl>
<dt><u>Function:</u> <b>showratvars</b><i> (<var>expr</var>)</i>
<a name="IDX702"></a>
</dt>
<dd><p>Returns a list of the canonical rational expression (CRE) variables in
expression <code>expr</code>.
</p>
<p>See also <code>ratvars</code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions} &middot;
@ref{Category: Display functions}
</div>
</p></dd></dl>


<p><a name="sqfr"></a>
<a name="Item_003a-sqfr"></a>
</p><dl>
<dt><u>Function:</u> <b>sqfr</b><i> (<var>expr</var>)</i>
<a name="IDX703"></a>
</dt>
<dd><p>is similar to <code>factor</code> except that the polynomial factors are
&quot;square-free.&quot;  That is, they have factors only of degree one.
This algorithm, which is also used by the first stage of <code>factor</code>, utilizes
the fact that a polynomial has in common with its n'th derivative all
its factors of degree greater than n.  Thus by taking greatest common divisors
with the polynomial of
the derivatives with respect to each variable in the polynomial, all
factors of degree greater than 1 can be found.
</p>
<p>Example:
</p>
<pre class="example">(%i1) sqfr (4*x^4 + 4*x^3 - 3*x^2 - 4*x - 1);
                                2   2
(%o1)                  (2 x + 1)  (x  - 1)
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>


<p><a name="Item_003a-tellrat"></a>
</p><dl>
<dt><u>Function:</u> <b>tellrat</b><i> (<var>p_1</var>, &hellip;, <var>p_n</var>)</i>
<a name="IDX704"></a>
</dt>
<dt><u>Function:</u> <b>tellrat</b><i> ()</i>
<a name="IDX705"></a>
</dt>
<dd><p>Adds to the ring of algebraic integers known to Maxima
the elements which are the solutions of the polynomials <var>p_1</var>, &hellip;,
<var>p_n</var>.  Each argument <var>p_i</var> is a polynomial with integer coefficients.
</p>
<p><code>tellrat (<var>x</var>)</code> effectively means substitute 0 for <var>x</var> in rational
functions.
</p>
<p><code>tellrat ()</code> returns a list of the current substitutions.
</p>
<p><code>algebraic</code> must be set to <code>true</code> in order for the simplification of
algebraic integers to take effect.
</p>
<p>Maxima initially knows about the imaginary unit <code>%i</code>
and all roots of integers.
</p>
<p>There is a command <code>untellrat</code> which takes kernels and
removes <code>tellrat</code> properties.
</p>
<p>When <code>tellrat</code>'ing a multivariate
polynomial, e.g., <code>tellrat (x^2 - y^2)</code>, there would be an ambiguity as to
whether to substitute <code><var>y</var>^2</code> for <code><var>x</var>^2</code>
or vice versa.  
Maxima picks a particular ordering, but if the user wants to specify which, e.g.
<code>tellrat (y^2 = x^2)</code> provides a syntax which says replace
<code><var>y</var>^2</code> by <code><var>x</var>^2</code>.
</p>

<p>Examples:
</p>
<pre class="example">(%i1) 10*(%i + 1)/(%i + 3^(1/3));
                           10 (%i + 1)
(%o1)                      -----------
                                  1/3
                            %i + 3
(%i2) ev (ratdisrep (rat(%)), algebraic);
             2/3      1/3              2/3      1/3
(%o2)    (4 3    - 2 3    - 4) %i + 2 3    + 4 3    - 2
(%i3) tellrat (1 + a + a^2);
                            2
(%o3)                     [a  + a + 1]
(%i4) 1/(a*sqrt(2) - 1) + a/(sqrt(3) + sqrt(2));
                      1                 a
(%o4)           ------------- + -----------------
                sqrt(2) a - 1   sqrt(3) + sqrt(2)
(%i5) ev (ratdisrep (rat(%)), algebraic);
         (7 sqrt(3) - 10 sqrt(2) + 2) a - 2 sqrt(2) - 1
(%o5)    ----------------------------------------------
                               7
(%i6) tellrat (y^2 = x^2);
                        2    2   2
(%o6)                 [y  - x , a  + a + 1]
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials} &middot;
@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-totaldisrep"></a>
</p><dl>
<dt><u>Function:</u> <b>totaldisrep</b><i> (<var>expr</var>)</i>
<a name="IDX706"></a>
</dt>
<dd><p>Converts every subexpression of <var>expr</var> from canonical rational expressions
(CRE) to general form and returns the result.
If <var>expr</var> is itself in CRE form then <code>totaldisrep</code> is identical to
<code>ratdisrep</code>.
</p>
<p><code>totaldisrep</code> may be useful for
ratdisrepping expressions such as equations, lists, matrices, etc., which
have some subexpressions in CRE form.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Rational expressions}
</div>
</p></dd></dl>

<p><a name="Item_003a-untellrat"></a>
</p><dl>
<dt><u>Function:</u> <b>untellrat</b><i> (<var>x_1</var>, &hellip;, <var>x_n</var>)</i>
<a name="IDX707"></a>
</dt>
<dd><p>Removes <code>tellrat</code> properties from <var>x_1</var>, &hellip;, <var>x_n</var>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials} &middot;
@ref{Category: Rational expressions}
</div>
</p></dd></dl>


<p><a name="Item_003a-Special-Functions"></a>
</p><hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC74" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_15.html#SEC77" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_82.html#SEC380" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
 <font size="-1">
  This document was generated by <em>root</em> on <em>January, 10 2014</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
 </font>
 <br>

</p>
</body>
</html>