This file is indexed.

/usr/share/doc/maxima-doc/html/maxima_20.html is in maxima-doc 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on January, 10 2014 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
            Karl Berry  <karl@freefriends.org>
            Olaf Bachmann <obachman@mathematik.uni-kl.de>
            and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>

-->
<head>
<title>Maxima 5.32.1 Manual: 20. Equations</title>

<meta name="description" content="Maxima 5.32.1 Manual: 20. Equations">
<meta name="keywords" content="Maxima 5.32.1 Manual: 20. Equations">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
    color: black;
    background: white; 
    margin-left: 8%;
    margin-right: 13%;
}

h1
{
    margin-left: +8%;
    font-size: 150%;
    font-family: sans-serif
}

h2
{
    font-size: 125%;
    font-family: sans-serif
}

h3
{
    font-size: 100%;
    font-family: sans-serif
}

h2,h3,h4,h5,h6 { margin-left: +4%; }

div.textbox
{
    border: solid;
    border-width: thin;
    /* width: 100%; */
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em
}

div.titlebox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
    background: rgb(200,255,255);
    font-family: sans-serif
}

div.synopsisbox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
     background: rgb(255,220,255);
    /*background: rgb(200,255,255); */
    /* font-family: fixed */
}

pre.example
{
    border: 1px solid gray;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 1em;
    padding-right: 1em;
    /* background: rgb(247,242,180); */ /* kind of sandy */
    /* background: rgb(200,255,255); */ /* sky blue */
    background-color: #F1F5F9; /* light blue-gray */
    /* font-family: "Lucida Console", monospace */
}

div.spacerbox
{
    border: none;
    padding-top: 2em;
    padding-bottom: 2em
}

div.image
{
    margin: 0;
    padding: 1em;
    text-align: center;
}

div.categorybox
{
    border: 1px solid gray;
    padding-top: 0px;
    padding-bottom: 0px;
    padding-left: 1em;
    padding-right: 1em;
    background: rgb(247,242,220);
}


-->
</style>

<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">

<a name="Equations"></a>
<a name="SEC102"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_19.html#SEC101" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC103" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima_19.html#SEC96" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_21.html#SEC104" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_82.html#SEC380" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 20. Equations </h1>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC103">20.1 Functions and Variables for Equations</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">   
</td></tr>
</table>

<p><a name="Item_003a-Functions-and-Variables-for-Equations"></a>
</p><hr size="6">
<a name="Functions-and-Variables-for-Equations"></a>
<a name="SEC103"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC102" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_21.html#SEC104" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC102" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC102" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_21.html#SEC104" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_82.html#SEC380" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 20.1 Functions and Variables for Equations </h2>


<p><a name="g_t_0025rnum_005flist"></a>
<a name="Item_003a-_0025rnum_005flist"></a>
</p><dl>
<dt><u>System variable:</u> <b>%rnum_list</b>
<a name="IDX881"></a>
</dt>
<dd><p>Default value: <code>[]</code>
</p>
<p><code>%rnum_list</code> is the list of variables introduced in solutions by
<code><a href="#solve">solve</a></code> and <code><a href="#algsys">algsys</a></code>.  <code>%r</code> variables are added to
<code>%rnum_list</code> in the order they are created.  This is convenient for doing
substitutions into the solution later on.
It's recommended to use this list rather than doing <code>concat ('%r, j)</code>.
</p>
<pre class="example">(%i1) solve ([x + y = 3], [x,y]);
(%o1)              [[x = 3 - %r1, y = %r1]]
(%i2) %rnum_list;
(%o2)                       [%r1]
(%i3) sol : solve ([x + 2*y + 3*z = 4], [x,y,z]);
(%o3)   [[x = - 2 %r3 - 3 %r2 + 4, y = %r3, z = %r2]]
(%i4) %rnum_list;
(%o4)                     [%r2, %r3]
(%i5) for i : 1 thru length (%rnum_list) do
        sol : subst (t[i], %rnum_list[i], sol)$
(%i6) sol;
(%o6)     [[x = - 2 t  - 3 t  + 4, y = t , z = t ]]
                     2      1           2       1
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="algepsilon"></a>
<a name="Item_003a-algepsilon"></a>
</p><dl>
<dt><u>Option variable:</u> <b>algepsilon</b>
<a name="IDX882"></a>
</dt>
<dd><p>Default value: 10^8
</p>
<p><code>algepsilon</code> is used by <code><a href="#algsys">algsys</a></code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="algexact"></a>
<a name="Item_003a-algexact"></a>
</p><dl>
<dt><u>Option variable:</u> <b>algexact</b>
<a name="IDX883"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p><code>algexact</code> affects the behavior of <code><a href="#algsys">algsys</a></code> as follows:
</p>
<p>If <code>algexact</code> is <code>true</code>, <code>algsys</code> always calls <code><a href="#solve">solve</a></code> and
then uses <code><a href="#realroots">realroots</a></code> on <code>solve</code>'s failures.
</p>
<p>If <code>algexact</code> is <code>false</code>, <code>solve</code> is called only if the
eliminant was not univariate, or if it was a quadratic or biquadratic.
</p>
<p>Thus <code>algexact: true</code> does not guarantee only exact solutions, just that
<code>algsys</code> will first try as hard as it can to give exact solutions, and
only yield approximations when all else fails.
</p>

<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="algsys"></a>
<a name="Item_003a-algsys"></a>
</p><dl>
<dt><u>Function:</u> <b>algsys</b><i> ([<var>expr_1</var>, &hellip;, <var>expr_m</var>], [<var>x_1</var>, &hellip;, <var>x_n</var>])</i>
<a name="IDX884"></a>
</dt>
<dt><u>Function:</u> <b>algsys</b><i> ([<var>eqn_1</var>, &hellip;, <var>eqn_m</var>], [<var>x_1</var>, &hellip;, <var>x_n</var>])</i>
<a name="IDX885"></a>
</dt>
<dd><p>Solves the simultaneous polynomials <var>expr_1</var>, &hellip;, <var>expr_m</var> or
polynomial equations <var>eqn_1</var>, &hellip;, <var>eqn_m</var> for the variables
<var>x_1</var>, &hellip;, <var>x_n</var>.  An expression <var>expr</var> is equivalent to an
equation <code><var>expr</var> = 0</code>.  There may be more equations than variables or
vice versa.
</p>
<p><code>algsys</code> returns a list of solutions, with each solution given as a list
of equations stating values of the variables <var>x_1</var>, &hellip;, <var>x_n</var>
which satisfy the system of equations.  If <code>algsys</code> cannot find a solution,
an empty list <code>[]</code> is returned.
</p>
<p>The symbols <code>%r1</code>, <code>%r2</code>, &hellip;, are introduced as needed to
represent arbitrary parameters in the solution; these variables are also
appended to the list <code><a href="#g_t_0025rnum_005flist">%rnum_list</a></code>.
</p>
<p>The method is as follows:
</p>
<ol>
<li>
First the equations are factored and split into subsystems.

</li><li>
For each subsystem <var>S_i</var>, an equation <var>E</var> and a variable <var>x</var> are
selected.  The variable is chosen to have lowest nonzero degree.  Then the
resultant of <var>E</var> and <var>E_j</var> with respect to <var>x</var> is computed for each
of the remaining equations <var>E_j</var> in the subsystem <var>S_i</var>.  This yields a
new subsystem <var>S_i'</var> in one fewer variables, as <var>x</var> has been eliminated.
The process now returns to (1).

</li><li>
Eventually, a subsystem consisting of a single equation is obtained.  If the
equation is multivariate and no approximations in the form of floating point
numbers have been introduced, then <code><a href="#solve">solve</a></code> is called to find an exact
solution.

<p>In some cases, <code>solve</code> is not be able to find a solution, or if it does
the solution may be a very large expression.
</p>
<p>If the equation is univariate and is either linear, quadratic, or biquadratic,
then again <code>solve</code> is called if no approximations have been introduced.
If approximations have been introduced or the equation is not univariate and
neither linear, quadratic, or biquadratic, then if the switch
<code><a href="#realonly">realonly</a></code> is <code>true</code>, the function <code><a href="#realroots">realroots</a></code> is called to find
the real-valued solutions.  If <code>realonly</code> is <code>false</code>, then
<code><a href="#allroots">allroots</a></code> is called which looks for real and complex-valued solutions.
</p>
<p>If <code>algsys</code> produces a solution which has fewer significant digits than
required, the user can change the value of <code><a href="#algepsilon">algepsilon</a></code> to a higher value.
</p>
<p>If <code>algexact</code> is set to <code>true</code>, <code>solve</code> will always be called.
</p>
</li><li>
Finally, the solutions obtained in step (3) are substituted into
previous levels and the solution process returns to (1).
</li></ol>

<p>When <code>algsys</code> encounters a multivariate equation which contains floating
point approximations (usually due to its failing to find exact solutions at an
earlier stage), then it does not attempt to apply exact methods to such
equations and instead prints the message:
&quot;<code>algsys</code> cannot solve - system too complicated.&quot;
</p>
<p>Interactions with <code><a href="maxima_9.html#radcan">radcan</a></code> can produce large or complicated expressions.
In that case, it may be possible to isolate parts of the result with
<code><a href="maxima_6.html#pickapart">pickapart</a></code> or <code><a href="maxima_6.html#reveal">reveal</a></code>.
</p>
<p>Occasionally, <code>radcan</code> may introduce an imaginary unit <code>%i</code> into a
solution which is actually real-valued.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) e1: 2*x*(1 - a1) - 2*(x - 1)*a2;
(%o1)              2 (1 - a1) x - 2 a2 (x - 1)
(%i2) e2: a2 - a1; 
(%o2)                        a2 - a1
(%i3) e3: a1*(-y - x^2 + 1); 
                                   2
(%o3)                   a1 (- y - x  + 1)
(%i4) e4: a2*(y - (x - 1)^2);
                                       2
(%o4)                   a2 (y - (x - 1) )
(%i5) algsys ([e1, e2, e3, e4], [x, y, a1, a2]);
(%o5) [[x = 0, y = %r1, a1 = 0, a2 = 0], 

                                  [x = 1, y = 0, a1 = 1, a2 = 1]]
(%i6) e1: x^2 - y^2;
                              2    2
(%o6)                        x  - y
(%i7) e2: -1 - y + 2*y^2 - x + x^2;
                         2        2
(%o7)                 2 y  - y + x  - x - 1
(%i8) algsys ([e1, e2], [x, y]);
                 1            1
(%o8) [[x = - -------, y = -------], 
              sqrt(3)      sqrt(3)

        1              1             1        1
[x = -------, y = - -------], [x = - -, y = - -], [x = 1, y = 1]]
     sqrt(3)        sqrt(3)          3        3
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="allroots"></a>
<a name="Item_003a-allroots"></a>
</p><dl>
<dt><u>Function:</u> <b>allroots</b><i> (<var>expr</var>)</i>
<a name="IDX886"></a>
</dt>
<dt><u>Function:</u> <b>allroots</b><i> (<var>eqn</var>)</i>
<a name="IDX887"></a>
</dt>
<dd><p>Computes numerical approximations of the real and complex roots of the
polynomial <var>expr</var> or polynomial equation <var>eqn</var> of one variable.
</p>
<p>The flag <code><a href="#polyfactor">polyfactor</a></code> when <code>true</code> causes <code>allroots</code> to factor
the polynomial over the real numbers if the polynomial is real, or over the
complex numbers, if the polynomial is complex.
</p>
<p><code>allroots</code> may give inaccurate results in case of multiple roots.
If the polynomial is real, <code>allroots (%i*<var>p</var>)</code> may yield
more accurate approximations than <code>allroots (<var>p</var>)</code>, as <code>allroots</code>
invokes a different algorithm in that case.
</p>
<p><code>allroots</code> rejects non-polynomials.  It requires that the numerator
after <code>rat</code>'ing should be a polynomial, and it requires that the
denominator be at most a complex number.  As a result of this <code>allroots</code>
will always return an equivalent (but factored) expression, if
<code>polyfactor</code> is <code>true</code>.
</p>
<p>For complex polynomials an algorithm by Jenkins and Traub is used
(Algorithm 419, <i>Comm. ACM</i>, vol. 15, (1972), p. 97).  For real polynomials
the algorithm used is due to Jenkins (Algorithm 493, <i>ACM TOMS</i>, vol. 1,
(1975), p.178).
</p>
<p>Examples:
</p>
<pre class="example">(%i1) eqn: (1 + 2*x)^3 = 13.5*(1 + x^5);
                            3          5
(%o1)              (2 x + 1)  = 13.5 (x  + 1)
(%i2) soln: allroots (eqn);
(%o2) [x = .8296749902129361, x = - 1.015755543828121, 

x = .9659625152196369 %i - .4069597231924075, 

x = - .9659625152196369 %i - .4069597231924075, x = 1.0]
(%i3) for e in soln
        do (e2: subst (e, eqn), disp (expand (lhs(e2) - rhs(e2))));
                      - 3.5527136788005E-15

                     - 5.32907051820075E-15

         4.44089209850063E-15 %i - 4.88498130835069E-15

        - 4.44089209850063E-15 %i - 4.88498130835069E-15

                       3.5527136788005E-15

(%o3)                         done
(%i4) polyfactor: true$
(%i5) allroots (eqn);
(%o5) - 13.5 (x - 1.0) (x - .8296749902129361)

                           2
 (x + 1.015755543828121) (x  + .8139194463848151 x

 + 1.098699797110288)
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials} &middot;
@ref{Category: Numerical methods}
</div>
</p></dd></dl>

<p><a name="bfallroots"></a>
<a name="Item_003a-bfallroots"></a>
</p><dl>
<dt><u>Function:</u> <b>bfallroots</b><i> (<var>expr</var>)</i>
<a name="IDX888"></a>
</dt>
<dt><u>Function:</u> <b>bfallroots</b><i> (<var>eqn</var>)</i>
<a name="IDX889"></a>
</dt>
<dd><p>Computes numerical approximations of the real and complex roots of the
polynomial <var>expr</var> or polynomial equation <var>eqn</var> of one variable.
</p>
<p>In all respects, <code>bfallroots</code> is identical to <code>allroots</code> except
that <code>bfallroots</code> computes the roots using bigfloats.  See 
<code><a href="#allroots">allroots</a></code> for more information.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials} &middot;
@ref{Category: Numerical methods}
</div>
</p></dd></dl>

<p><a name="backsubst"></a>
<a name="Item_003a-backsubst"></a>
</p><dl>
<dt><u>Option variable:</u> <b>backsubst</b>
<a name="IDX890"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>backsubst</code> is <code>false</code>, prevents back substitution in
<code><a href="#linsolve">linsolve</a></code> after the equations have been triangularized.  This may
be helpful in very big problems where back substitution would cause
the generation of extremely large expressions.
</p>
<pre class="example">(%i1) eq1 : x + y + z = 6$
(%i2) eq2 : x - y + z = 2$
(%i3) eq3 : x + y - z = 0$
(%i4) backsubst : false$
(%i5) linsolve ([eq1, eq2, eq3], [x,y,z]);
(%o5)             [x = z - y, y = 2, z = 3]
(%i6) backsubst : true$
(%i7) linsolve ([eq1, eq2, eq3], [x,y,z]);
(%o7)               [x = 1, y = 2, z = 3]
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="breakup"></a>
<a name="Item_003a-breakup"></a>
</p><dl>
<dt><u>Option variable:</u> <b>breakup</b>
<a name="IDX891"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>breakup</code> is <code>true</code>, <code><a href="#solve">solve</a></code> expresses solutions of cubic
and quartic equations in terms of common subexpressions, which are assigned to
intermediate expression labels (<code>%t1</code>, <code>%t2</code>, etc.).
Otherwise, common subexpressions are not identified.
</p>
<p><code>breakup: true</code> has an effect only when <code><a href="#programmode">programmode</a></code> is <code>false</code>.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) programmode: false$
(%i2) breakup: true$
(%i3) solve (x^3 + x^2 - 1);

                        sqrt(23)    25 1/3
(%t3)                  (--------- + --)
                        6 sqrt(3)   54
Solution:

                                      sqrt(3) %i   1
                                      ---------- - -
                sqrt(3) %i   1            2        2   1
(%t4)    x = (- ---------- - -) %t3 + -------------- - -
                    2        2            9 %t3        3

                                      sqrt(3) %i   1
                                    - ---------- - -
              sqrt(3) %i   1              2        2   1
(%t5)    x = (---------- - -) %t3 + ---------------- - -
                  2        2             9 %t3         3

                                   1     1
(%t6)                  x = %t3 + ----- - -
                                 9 %t3   3
(%o6)                    [%t4, %t5, %t6]
(%i6) breakup: false$
(%i7) solve (x^3 + x^2 - 1);
Solution:

             sqrt(3) %i   1
             ---------- - -
                 2        2        sqrt(23)    25 1/3
(%t7) x = --------------------- + (--------- + --)
             sqrt(23)    25 1/3    6 sqrt(3)   54
          9 (--------- + --)
             6 sqrt(3)   54

                                              sqrt(3) %i   1    1
                                           (- ---------- - -) - -
                                                  2        2    3
           sqrt(23)    25 1/3  sqrt(3) %i   1
(%t8) x = (--------- + --)    (---------- - -)
           6 sqrt(3)   54          2        2

                                            sqrt(3) %i   1
                                          - ---------- - -
                                                2        2      1
                                      + --------------------- - -
                                           sqrt(23)    25 1/3   3
                                        9 (--------- + --)
                                           6 sqrt(3)   54
            sqrt(23)    25 1/3             1             1
(%t9)  x = (--------- + --)    + --------------------- - -
            6 sqrt(3)   54          sqrt(23)    25 1/3   3
                                 9 (--------- + --)
                                    6 sqrt(3)   54
(%o9)                    [%t7, %t8, %t9]
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="dimension"></a>
<a name="Item_003a-dimension"></a>
</p><dl>
<dt><u>Function:</u> <b>dimension</b><i> (<var>eqn</var>)</i>
<a name="IDX892"></a>
</dt>
<dt><u>Function:</u> <b>dimension</b><i> (<var>eqn_1</var>, &hellip;, <var>eqn_n</var>)</i>
<a name="IDX893"></a>
</dt>
<dd><p><code>dimen</code> is a package for dimensional analysis.
<code>load (&quot;dimen&quot;)</code> loads this package.
<code>demo (&quot;dimen&quot;)</code> displays a short demonstration.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Share packages}
</div>
</p></dd></dl>

<p><a name="dispflag"></a>
<a name="Item_003a-dispflag"></a>
</p><dl>
<dt><u>Option variable:</u> <b>dispflag</b>
<a name="IDX894"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>If set to <code>false</code> within a <code>block</code> will inhibit the display of output
generated by the solve functions called from within the <code>block</code>.
Termination of the <code>block</code> with a dollar sign, $, sets <code>dispflag</code> to
<code>false</code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations} &middot;
@ref{Category: Display flags and variables}
</div>
</p></dd></dl>


<p><a name="funcsolve"></a>
<a name="Item_003a-funcsolve"></a>
</p><dl>
<dt><u>Function:</u> <b>funcsolve</b><i> (<var>eqn</var>, <var>g</var>(<var>t</var>))</i>
<a name="IDX895"></a>
</dt>
<dd><p>Returns <code>[<var>g</var>(<var>t</var>) = ...]</code>  or <code>[]</code>, depending on whether
or not there exists a rational function <code><var>g</var>(<var>t</var>)</code> satisfying
<var>eqn</var>, which must be a first order, linear polynomial in (for this case)
<code><var>g</var>(<var>t</var>)</code> and <code><var>g</var>(<var>t</var>+1)</code>
</p>
<pre class="example">(%i1) eqn: (n + 1)*f(n) - (n + 3)*f(n + 1)/(n + 1) =
      (n - 1)/(n + 2);
                            (n + 3) f(n + 1)   n - 1
(%o1)        (n + 1) f(n) - ---------------- = -----
                                 n + 1         n + 2
(%i2) funcsolve (eqn, f(n));

Dependent equations eliminated:  (4 3)
                                   n
(%o2)                f(n) = ---------------
                            (n + 1) (n + 2)
</pre>
<p>Warning: this is a very rudimentary implementation - many safety checks
and obvious generalizations are missing.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="globalsolve"></a>
<a name="Item_003a-globalsolve"></a>
</p><dl>
<dt><u>Option variable:</u> <b>globalsolve</b>
<a name="IDX896"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>globalsolve</code> is <code>true</code>, solved-for variables are assigned the
solution values found by <code>linsolve</code>, and by <code><a href="#solve">solve</a></code> when solving two
or more linear equations.
</p>
<p>When <code>globalsolve</code> is <code>false</code>, solutions found by <code><a href="#linsolve">linsolve</a></code> and
by <code>solve</code> when solving two or more linear equations are expressed as
equations, and the solved-for variables are not assigned.
</p>
<p>When solving anything other than two or more linear equations, <code>solve</code>
ignores <code>globalsolve</code>.  Other functions which solve equations (e.g.,
<code><a href="#algsys">algsys</a></code>) always ignore <code>globalsolve</code>.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) globalsolve: true$
(%i2) solve ([x + 3*y = 2, 2*x - y = 5], [x, y]);
Solution

                                 17
(%t2)                        x : --
                                 7

                                   1
(%t3)                        y : - -
                                   7
(%o3)                     [[%t2, %t3]]
(%i3) x;
                               17
(%o3)                          --
                               7
(%i4) y;
                                 1
(%o4)                          - -
                                 7
(%i5) globalsolve: false$
(%i6) kill (x, y)$
(%i7) solve ([x + 3*y = 2, 2*x - y = 5], [x, y]);
Solution

                                 17
(%t7)                        x = --
                                 7

                                   1
(%t8)                        y = - -
                                   7
(%o8)                     [[%t7, %t8]]
(%i8) x;
(%o8)                           x
(%i9) y;
(%o9)                           y
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Linear equations}
</div>
</p></dd></dl>



<p><a name="ieqn"></a>
<a name="Item_003a-ieqn"></a>
</p><dl>
<dt><u>Function:</u> <b>ieqn</b><i> (<var>ie</var>, <var>unk</var>, <var>tech</var>, <var>n</var>, <var>guess</var>)</i>
<a name="IDX897"></a>
</dt>
<dd><p><code>inteqn</code> is a package for solving integral equations.
<code>load (&quot;inteqn&quot;)</code> loads this package.
</p> 
<p><var>ie</var> is the integral equation; <var>unk</var> is the unknown function; <var>tech</var>
is the technique to be tried from those given above (<var>tech</var> = <code>first</code>
means: try the first technique which finds a solution; <var>tech</var> = <code>all</code>
means: try all applicable techniques); <var>n</var> is the maximum number of terms
to take for <code>taylor</code>, <code>neumann</code>, <code>firstkindseries</code>, or
<code>fredseries</code> (it is also the maximum depth of recursion for the
differentiation method); <var>guess</var> is the initial guess for <code>neumann</code> or
<code>firstkindseries</code>.
</p>
<p>Default values for the 2nd thru 5th parameters are:
</p>
<p><var>unk</var>: <code><var>p</var>(<var>x</var>)</code>, where <var>p</var> is the first function
encountered in an integrand which is unknown to Maxima and <var>x</var> is the
variable which occurs as an argument to the first occurrence of <var>p</var> found
outside of an integral in the case of <code>secondkind</code> equations, or is the
only other variable besides the variable of integration in <code>firstkind</code>
equations.  If the attempt to search for <var>x</var> fails, the user will be asked
to supply the independent variable.
</p>
<p>tech: <code>first</code>
</p>
<p>n: 1
</p>
<p>guess: <code>none</code> which will cause <code>neumann</code> and <code>firstkindseries</code>
to use <code><var>f</var>(<var>x</var>)</code> as an initial guess.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Integral equations}
</div>
</p></dd></dl>

<p><a name="ieqnprint"></a>
<a name="Item_003a-ieqnprint"></a>
</p><dl>
<dt><u>Option variable:</u> <b>ieqnprint</b>
<a name="IDX898"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p><code>ieqnprint</code> governs the behavior of the result returned by the
<code><a href="#ieqn">ieqn</a></code> command.  When <code>ieqnprint</code> is <code>false</code>, the lists returned
by the <code>ieqn</code> function are of the form
</p>
<p>   [<var>solution</var>, <var>technique used</var>, <var>nterms</var>, <var>flag</var>]
</p>
<p>where <var>flag</var> is absent if the solution is exact.
</p>
<p>Otherwise, it is the word <code>approximate</code> or <code>incomplete</code> corresponding
to an inexact or non-closed form solution, respectively.  If a series method was
used, <var>nterms</var> gives the number of terms taken (which could be less than
the n given to <code>ieqn</code> if an error prevented generation of further terms).
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Integral equations}
</div>
</p></dd></dl>

<p><a name="lhs"></a>
<a name="Item_003a-lhs"></a>
</p><dl>
<dt><u>Function:</u> <b>lhs</b><i> (<var>expr</var>)</i>
<a name="IDX899"></a>
</dt>
<dd><p>Returns the left-hand side (that is, the first argument) of the expression
<var>expr</var>, when the operator of <var>expr</var> is one of the relational operators
<code>&lt; &lt;= = # equal notequal &gt;= &gt;</code>,
one of the assignment operators <code>:= ::= : ::</code>, or a user-defined binary
infix operator, as declared by <code><a href="maxima_7.html#infix">infix</a></code>.
</p>
<p>When <var>expr</var> is an atom or its operator is something other than the ones
listed above, <code>lhs</code> returns <var>expr</var>.
</p>
<p>See also <code><a href="#rhs">rhs</a></code>.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) e: aa + bb = cc;
(%o1)                     bb + aa = cc
(%i2) lhs (e);
(%o2)                        bb + aa
(%i3) rhs (e);
(%o3)                          cc
(%i4) [lhs (aa &lt; bb), lhs (aa &lt;= bb), lhs (aa &gt;= bb),
       lhs (aa &gt; bb)];
(%o4)                   [aa, aa, aa, aa]
(%i5) [lhs (aa = bb), lhs (aa # bb), lhs (equal (aa, bb)),
       lhs (notequal (aa, bb))];
(%o5)                   [aa, aa, aa, aa]
(%i6) e1: '(foo(x) := 2*x);
(%o6)                     foo(x) := 2 x
(%i7) e2: '(bar(y) ::= 3*y);
(%o7)                    bar(y) ::= 3 y
(%i8) e3: '(x : y);
(%o8)                         x : y
(%i9) e4: '(x :: y);
(%o9)                        x :: y
(%i10) [lhs (e1), lhs (e2), lhs (e3), lhs (e4)];
(%o10)               [foo(x), bar(y), x, x]
(%i11) infix (&quot;][&quot;);
(%o11)                         ][
(%i12) lhs (aa ][ bb);
(%o12)                         aa
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Expressions}
</div>
</p></dd></dl>


<p><a name="linsolve"></a>
<a name="Item_003a-linsolve"></a>
</p><dl>
<dt><u>Function:</u> <b>linsolve</b><i> ([<var>expr_1</var>, &hellip;, <var>expr_m</var>], [<var>x_1</var>, &hellip;, <var>x_n</var>])</i>
<a name="IDX900"></a>
</dt>
<dd><p>Solves the list of simultaneous linear equations for the list of variables.
The expressions must each be polynomials in the variables and may be equations.
</p>
<p>When <code><a href="#globalsolve">globalsolve</a></code> is <code>true</code>, each solved-for variable is bound to
its value in the solution of the equations.
</p>
<p>When <code><a href="#backsubst">backsubst</a></code> is <code>false</code>, <code>linsolve</code> does not carry out back
substitution after the equations have been triangularized.  This may be
necessary in very big problems where back substitution would cause the
generation of extremely large expressions.
</p>
<p>When <code><a href="#linsolve_005fparams">linsolve_params</a></code> is <code>true</code>, <code>linsolve</code> also generates the
<code>%r</code> symbols used to represent arbitrary parameters described in the manual
under <code><a href="#algsys">algsys</a></code>.  Otherwise, <code>linsolve</code> solves an under-determined
system of equations with some variables expressed in terms of others.
</p>
<p>When <code><a href="#programmode">programmode</a></code> is <code>false</code>, <code>linsolve</code> displays the solution
with intermediate expression (<code>%t</code>) labels, and returns the list of labels.
</p>
<pre class="example">(%i1) e1: x + z = y;
(%o1)                       z + x = y
(%i2) e2: 2*a*x - y = 2*a^2;
                                       2
(%o2)                   2 a x - y = 2 a
(%i3) e3: y - 2*z = 2;
(%o3)                      y - 2 z = 2
(%i4) [globalsolve: false, programmode: true];
(%o4)                     [false, true]
(%i5) linsolve ([e1, e2, e3], [x, y, z]);
(%o5)            [x = a + 1, y = 2 a, z = a - 1]
(%i6) [globalsolve: false, programmode: false];
(%o6)                    [false, false]
(%i7) linsolve ([e1, e2, e3], [x, y, z]);
Solution

(%t7)                       z = a - 1

(%t8)                        y = 2 a

(%t9)                       x = a + 1
(%o9)                    [%t7, %t8, %t9]
(%i9) ''%;
(%o9)            [z = a - 1, y = 2 a, x = a + 1]
(%i10) [globalsolve: true, programmode: false];
(%o10)                    [true, false]
(%i11) linsolve ([e1, e2, e3], [x, y, z]);
Solution

(%t11)                      z : a - 1

(%t12)                       y : 2 a

(%t13)                      x : a + 1
(%o13)                 [%t11, %t12, %t13]
(%i13) ''%;
(%o13)           [z : a - 1, y : 2 a, x : a + 1]
(%i14) [x, y, z];
(%o14)                 [a + 1, 2 a, a - 1]
(%i15) [globalsolve: true, programmode: true];
(%o15)                    [true, true]
(%i16) linsolve ([e1, e2, e3], '[x, y, z]);
(%o16)           [x : a + 1, y : 2 a, z : a - 1]
(%i17) [x, y, z];
(%o17)                 [a + 1, 2 a, a - 1]
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Linear equations}
</div>
</p></dd></dl>


<p><a name="linsolvewarn"></a>
<a name="Item_003a-linsolvewarn"></a>
</p><dl>
<dt><u>Option variable:</u> <b>linsolvewarn</b>
<a name="IDX901"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>linsolvewarn</code> is <code>true</code>, <code><a href="#linsolve">linsolve</a></code> prints a message
&quot;Dependent equations eliminated&quot;.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Linear equations}
</div>
</p></dd></dl>

<p><a name="linsolve_005fparams"></a>
<a name="Item_003a-linsolve_005fparams"></a>
</p><dl>
<dt><u>Option variable:</u> <b>linsolve_params</b>
<a name="IDX902"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>linsolve_params</code> is <code>true</code>, <code><a href="#linsolve">linsolve</a></code> also generates
the <code>%r</code> symbols used to represent arbitrary parameters described in
the manual under <code><a href="#algsys">algsys</a></code>.  Otherwise, <code>linsolve</code> solves an
under-determined system of equations with some variables expressed in terms of
others.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Linear equations}
</div>
</p></dd></dl>

<p><a name="multiplicities"></a>
<a name="Item_003a-multiplicities"></a>
</p><dl>
<dt><u>System variable:</u> <b>multiplicities</b>
<a name="IDX903"></a>
</dt>
<dd><p>Default value: <code>not_set_yet</code>
</p>
<p><code>multiplicities</code> is set to a list of the multiplicities of the individual
solutions returned by <code><a href="#solve">solve</a></code> or <code><a href="#realroots">realroots</a></code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations} &middot;
@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="nroots"></a>
<a name="Item_003a-nroots"></a>
</p><dl>
<dt><u>Function:</u> <b>nroots</b><i> (<var>p</var>, <var>low</var>, <var>high</var>)</i>
<a name="IDX904"></a>
</dt>
<dd><p>Returns the number of real roots of the real univariate polynomial <var>p</var> in
the half-open interval <code>(<var>low</var>, <var>high</var>]</code>.  The endpoints of the
interval may be <code>minf</code> or <code>inf</code>.
</p>
<p><code>nroots</code> uses the method of Sturm sequences.
</p>
<pre class="example">(%i1) p: x^10 - 2*x^4 + 1/2$
(%i2) nroots (p, -6, 9.1);
(%o2)                           4
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials} &middot;
@ref{Category: Numerical methods}
</div>
</p></dd></dl>


<p><a name="nthroot"></a>
<a name="Item_003a-nthroot"></a>
</p><dl>
<dt><u>Function:</u> <b>nthroot</b><i> (<var>p</var>, <var>n</var>)</i>
<a name="IDX905"></a>
</dt>
<dd><p>where <var>p</var> is a polynomial with integer coefficients and <var>n</var> is a
positive integer returns <code>q</code>, a polynomial over the integers, such that
<code>q^n = p</code> or prints an error message indicating that <var>p</var> is not a
perfect nth power.  This routine is much faster than <code><a href="maxima_14.html#factor">factor</a></code> or even
<code><a href="maxima_14.html#sqfr">sqfr</a></code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="polyfactor"></a>
<a name="Item_003a-polyfactor"></a>
</p><dl>
<dt><u>Option variable:</u> <b>polyfactor</b>
<a name="IDX906"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>The option variable <code>polyfactor</code> when <code>true</code> causes
<code><a href="#allroots">allroots</a></code> and <code><a href="#bfallroots">bfallroots</a></code> to factor the polynomial over the real
numbers if the polynomial is real, or over the complex numbers, if the
polynomial is complex.
</p>
<p>See <code>allroots</code> for an example.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials} &middot;
@ref{Category: Numerical methods}
</div>
</p></dd></dl>

<p><a name="programmode"></a>
<a name="Item_003a-programmode"></a>
</p><dl>
<dt><u>Option variable:</u> <b>programmode</b>
<a name="IDX907"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>programmode</code> is <code>true</code>, <code><a href="#solve">solve</a></code>,
<code><a href="#realroots">realroots</a></code>, <code><a href="#allroots">allroots</a></code>, and <code><a href="#linsolve">linsolve</a></code> return solutions
as elements in a list.
(Except when <code><a href="#backsubst">backsubst</a></code> is set to <code>false</code>, in which case
<code>programmode: false</code> is assumed.)
</p>
<p>When <code>programmode</code> is <code>false</code>, <code>solve</code>, etc. create intermediate
expression labels <code>%t1</code>, <code>t2</code>, etc., and assign the solutions to them.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations} &middot;
@ref{Category: Polynomials}
</div>
</p></dd></dl>

<p><a name="realonly"></a>
<a name="Item_003a-realonly"></a>
</p><dl>
<dt><u>Option variable:</u> <b>realonly</b>
<a name="IDX908"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>realonly</code> is <code>true</code>, <code><a href="#algsys">algsys</a></code> returns only those solutions
which are free of <code>%i</code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="realroots"></a>
<a name="Item_003a-realroots"></a>
</p><dl>
<dt><u>Function:</u> <b>realroots</b><i> (<var>expr</var>, <var>bound</var>)</i>
<a name="IDX909"></a>
</dt>
<dt><u>Function:</u> <b>realroots</b><i> (<var>eqn</var>, <var>bound</var>)</i>
<a name="IDX910"></a>
</dt>
<dt><u>Function:</u> <b>realroots</b><i> (<var>expr</var>)</i>
<a name="IDX911"></a>
</dt>
<dt><u>Function:</u> <b>realroots</b><i> (<var>eqn</var>)</i>
<a name="IDX912"></a>
</dt>
<dd><p>Computes rational approximations of the real roots of the polynomial <var>expr</var>
or polynomial equation <var>eqn</var> of one variable, to within a tolerance of
<var>bound</var>.  Coefficients of <var>expr</var> or <var>eqn</var> must be literal numbers;
symbol constants such as <code>%pi</code> are rejected.
</p>
<p><code>realroots</code> assigns the multiplicities of the roots it finds
to the global variable <code><a href="#multiplicities">multiplicities</a></code>.
</p>
<p><code>realroots</code> constructs a Sturm sequence to bracket each root, and then
applies bisection to refine the approximations.  All coefficients are converted
to rational equivalents before searching for roots, and computations are carried
out by exact rational arithmetic.  Even if some coefficients are floating-point
numbers, the results are rational (unless coerced to floats by the
<code><a href="maxima_5.html#float">float</a></code> or <code><a href="maxima_5.html#numer">numer</a></code> flags).
</p>
<p>When <var>bound</var> is less than 1, all integer roots are found exactly.
When <var>bound</var> is unspecified, it is assumed equal to the global variable
<code><a href="#rootsepsilon">rootsepsilon</a></code>.
</p>
<p>When the global variable <code><a href="#programmode">programmode</a></code> is <code>true</code>, <code>realroots</code>
returns a list of the form <code>[x = <var>x_1</var>, x = <var>x_2</var>, ...]</code>.
When <code>programmode</code> is <code>false</code>, <code>realroots</code> creates intermediate
expression labels <code>%t1</code>, <code>%t2</code>, &hellip;,
assigns the results to them, and returns the list of labels.
</p>
<p>Examples:
</p>

<pre class="example">(%i1) realroots (-1 - x + x^5, 5e-6);
                               612003
(%o1)                     [x = ------]
                               524288
(%i2) ev (%[1], float);
(%o2)                 x = 1.167303085327148
(%i3) ev (-1 - x + x^5, %);
(%o3)                - 7.396496210176905E-6
</pre>

<pre class="example">(%i1) realroots (expand ((1 - x)^5 * (2 - x)^3 * (3 - x)), 1e-20);
(%o1)                 [x = 1, x = 2, x = 3]
(%i2) multiplicities;
(%o2)                       [5, 3, 1]
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials} &middot;
@ref{Category: Numerical methods}
</div>
</p></dd></dl>

<p><a name="rhs"></a>
<a name="Item_003a-rhs"></a>
</p><dl>
<dt><u>Function:</u> <b>rhs</b><i> (<var>expr</var>)</i>
<a name="IDX913"></a>
</dt>
<dd><p>Returns the right-hand side (that is, the second argument) of the expression
<var>expr</var>, when the operator of <var>expr</var> is one of the relational operators
<code>&lt; &lt;= = # equal notequal &gt;= &gt;</code>,
one of the assignment operators <code>:= ::= : ::</code>, or a user-defined binary
infix operator, as declared by <code><a href="maxima_7.html#infix">infix</a></code>.
</p>
<p>When <var>expr</var> is an atom or its operator is something other than the ones
listed above, <code>rhs</code> returns 0.
</p>
<p>See also <code><a href="#lhs">lhs</a></code>.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) e: aa + bb = cc;
(%o1)                     bb + aa = cc
(%i2) lhs (e);
(%o2)                        bb + aa
(%i3) rhs (e);
(%o3)                          cc
(%i4) [rhs (aa &lt; bb), rhs (aa &lt;= bb), rhs (aa &gt;= bb),
       rhs (aa &gt; bb)];
(%o4)                   [bb, bb, bb, bb]
(%i5) [rhs (aa = bb), rhs (aa # bb), rhs (equal (aa, bb)),
       rhs (notequal (aa, bb))];
(%o5)                   [bb, bb, bb, bb]
(%i6) e1: '(foo(x) := 2*x);
(%o6)                     foo(x) := 2 x
(%i7) e2: '(bar(y) ::= 3*y);
(%o7)                    bar(y) ::= 3 y
(%i8) e3: '(x : y);
(%o8)                         x : y
(%i9) e4: '(x :: y);
(%o9)                        x :: y
(%i10) [rhs (e1), rhs (e2), rhs (e3), rhs (e4)];
(%o10)                  [2 x, 3 y, y, y]
(%i11) infix (&quot;][&quot;);
(%o11)                         ][
(%i12) rhs (aa ][ bb);
(%o12)                         bb
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Expressions}
</div>
</p></dd></dl>

<p><a name="rootsconmode"></a>
<a name="Item_003a-rootsconmode"></a>
</p><dl>
<dt><u>Option variable:</u> <b>rootsconmode</b>
<a name="IDX914"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p><code>rootsconmode</code> governs the behavior of the <code>rootscontract</code> command.
See <code><a href="#rootscontract">rootscontract</a></code> for details.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Expressions} &middot;
@ref{Category: Simplification flags and variables}
</div>
</p></dd></dl>


<p><a name="rootscontract"></a>
<a name="Item_003a-rootscontract"></a>
</p><dl>
<dt><u>Function:</u> <b>rootscontract</b><i> (<var>expr</var>)</i>
<a name="IDX915"></a>
</dt>
<dd><p>Converts products of roots into roots of products.  For example,
<code>rootscontract (sqrt(x)*y^(3/2))</code> yields <code>sqrt(x*y^3)</code>.
</p>
<p>When <code><a href="maxima_9.html#radexpand">radexpand</a></code> is <code>true</code> and <code><a href="maxima_9.html#domain">domain</a></code> is <code>real</code>,
<code>rootscontract</code> converts <code><a href="maxima_10.html#abs">abs</a></code> into <code><a href="maxima_10.html#sqrt">sqrt</a></code>, e.g.,
<code>rootscontract (abs(x)*sqrt(y))</code> yields <code>sqrt(x^2*y)</code>.
</p>
<p>There is an option <code><a href="#rootsconmode">rootsconmode</a></code> affecting <code>rootscontract</code> as
follows:
</p>
<pre class="example">Problem            Value of        Result of applying
                  rootsconmode        rootscontract
      
x^(1/2)*y^(3/2)      false          (x*y^3)^(1/2)
x^(1/2)*y^(1/4)      false          x^(1/2)*y^(1/4)
x^(1/2)*y^(1/4)      true           (x*y^(1/2))^(1/2)
x^(1/2)*y^(1/3)      true           x^(1/2)*y^(1/3)
x^(1/2)*y^(1/4)      all            (x^2*y)^(1/4)
x^(1/2)*y^(1/3)      all            (x^3*y^2)^(1/6)
</pre>
<p>When <code>rootsconmode</code> is <code>false</code>, <code>rootscontract</code> contracts only
with respect to rational number exponents whose denominators are the same.  The
key to the <code>rootsconmode: true</code> examples is simply that 2 divides into 4
but not into 3.  <code>rootsconmode: all</code> involves taking the least common
multiple of the denominators of the exponents.
</p>
<p><code>rootscontract</code> uses <code><a href="maxima_14.html#ratsimp">ratsimp</a></code> in a manner similar to
<code><a href="maxima_10.html#logcontract">logcontract</a></code>.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) rootsconmode: false$
(%i2) rootscontract (x^(1/2)*y^(3/2));
                                   3
(%o2)                      sqrt(x y )
(%i3) rootscontract (x^(1/2)*y^(1/4));
                                   1/4
(%o3)                     sqrt(x) y
(%i4) rootsconmode: true$
(%i5) rootscontract (x^(1/2)*y^(1/4));
(%o5)                    sqrt(x sqrt(y))
(%i6) rootscontract (x^(1/2)*y^(1/3));
                                   1/3
(%o6)                     sqrt(x) y
(%i7) rootsconmode: all$
(%i8) rootscontract (x^(1/2)*y^(1/4));
                              2   1/4
(%o8)                       (x  y)
(%i9) rootscontract (x^(1/2)*y^(1/3));
                             3  2 1/6
(%o9)                      (x  y )
(%i10) rootsconmode: false$
(%i11) rootscontract (sqrt(sqrt(x) + sqrt(1 + x))
                    *sqrt(sqrt(1 + x) - sqrt(x)));
(%o11)                          1
(%i12) rootsconmode: true$
(%i13) rootscontract (sqrt(5+sqrt(5)) - 5^(1/4)*sqrt(1+sqrt(5)));
(%o13)                          0
</pre>
<div class=categorybox>
&middot;
<p>@ref{Category: Simplification functions}
</div>
</p></dd></dl>

<p><a name="rootsepsilon"></a>
<a name="Item_003a-rootsepsilon"></a>
</p><dl>
<dt><u>Option variable:</u> <b>rootsepsilon</b>
<a name="IDX916"></a>
</dt>
<dd><p>Default value: 1.0e-7
</p>
<p><code>rootsepsilon</code> is the tolerance which establishes the confidence interval
for the roots found by the <code><a href="#realroots">realroots</a></code> function.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Polynomials} &middot;
@ref{Category: Numerical methods}
</div>
</p></dd></dl>


<p><a name="solve"></a>
<a name="Item_003a-solve"></a>
</p><dl>
<dt><u>Function:</u> <b>solve</b><i> (<var>expr</var>, <var>x</var>)</i>
<a name="IDX917"></a>
</dt>
<dt><u>Function:</u> <b>solve</b><i> (<var>expr</var>)</i>
<a name="IDX918"></a>
</dt>
<dt><u>Function:</u> <b>solve</b><i> ([<var>eqn_1</var>, &hellip;, <var>eqn_n</var>], [<var>x_1</var>, &hellip;, <var>x_n</var>])</i>
<a name="IDX919"></a>
</dt>
<dd><p>Solves the algebraic equation <var>expr</var> for the variable <var>x</var> and returns a
list of solution equations in <var>x</var>.  If <var>expr</var> is not an equation, the
equation <code><var>expr</var> = 0</code> is assumed in its place.
<var>x</var> may be a function (e.g. <code>f(x)</code>), or other non-atomic expression
except a sum or product.  <var>x</var> may be omitted if <var>expr</var> contains only one
variable.  <var>expr</var> may be a rational expression, and may contain
trigonometric functions, exponentials, etc.
</p>
<p>The following method is used:
</p>
<p>Let <var>E</var> be the expression and <var>X</var> be the variable.  If <var>E</var> is linear
in <var>X</var> then it is trivially solved for <var>X</var>.  Otherwise if <var>E</var> is of
the form <code>A*X^N + B</code> then the result is <code>(-B/A)^1/N)</code> times the
<code>N</code>'th roots of unity.
</p>
<p>If <var>E</var> is not linear in <var>X</var> then the gcd of the exponents of <var>X</var> in
<var>E</var> (say <var>N</var>) is divided into the exponents and the multiplicity of the
roots is multiplied by <var>N</var>.  Then <code>solve</code> is called again on the
result.  If <var>E</var> factors then <code>solve</code> is called on each of the factors.
Finally <code>solve</code> will use the quadratic, cubic, or quartic formulas where
necessary.
</p>
<p>In the case where <var>E</var> is a polynomial in some function of the variable to be
solved for, say <code>F(X)</code>, then it is first solved for <code>F(X)</code> (call the
result <var>C</var>), then the equation <code>F(X)=C</code> can be solved for <var>X</var>
provided the inverse of the function <var>F</var> is known.
</p>
<p><code><a href="#breakup">breakup</a></code> if <code>false</code> will cause <code>solve</code> to express the solutions
of cubic or quartic equations as single expressions rather than as made
up of several common subexpressions which is the default.
</p>
<p><code><a href="#multiplicities">multiplicities</a></code> - will be set to a list of the multiplicities of the
individual solutions returned by <code>solve</code>, <code><a href="#realroots">realroots</a></code>, or
<code><a href="#allroots">allroots</a></code>.  Try <code>apropos (solve)</code> for the switches which affect
<code>solve</code>.  <code><a href="maxima_3.html#describe">describe</a></code> may then by used on the individual switch names
if their purpose is not clear.
</p>
<p><code>solve ([<var>eqn_1</var>, ..., <var>eqn_n</var>], [<var>x_1</var>, ..., <var>x_n</var>])</code>
solves a system of simultaneous (linear or non-linear) polynomial equations by
calling <code><a href="#linsolve">linsolve</a></code> or <code><a href="#algsys">algsys</a></code> and returns a list of the solution
lists in the variables.  In the case of <code>linsolve</code> this list would contain
a single list of solutions.  It takes two lists as arguments.  The first list
represents the equations to be solved; the second list is a
list of the unknowns to be determined.  If the total number of
variables in the equations is equal to the number of equations, the
second argument-list may be omitted.
</p>

<p>When <code><a href="#programmode">programmode</a></code> is <code>false</code>, <code>solve</code> displays solutions with
intermediate expression (<code>%t</code>) labels, and returns the list of labels.
</p>
<p>When <code><a href="#globalsolve">globalsolve</a></code> is <code>true</code> and the problem is to solve two or more
linear equations, each solved-for variable is bound to its value in the solution
of the equations.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) solve (asin (cos (3*x))*(f(x) - 1), x);

solve: using arc-trig functions to get a solution.
Some solutions will be lost.
                            %pi
(%o1)                  [x = ---, f(x) = 1]
                             6
(%i2) ev (solve (5^f(x) = 125, f(x)), solveradcan);
                                log(125)
(%o2)                   [f(x) = --------]
                                 log(5)
(%i3) [4*x^2 - y^2 = 12, x*y - x = 2];
                      2    2
(%o3)             [4 x  - y  = 12, x y - x = 2]

(%i4) solve (%, [x, y]);
(%o4) [[x = 2, y = 2], [x = .5202594388652008 %i
 - .1331240357358706, y = .07678378523787788
 - 3.608003221870287 %i], [x = - .5202594388652008 %i
 - .1331240357358706, y = 3.608003221870287 %i
 + .07678378523787788], [x = - 1.733751846381093, 
y = - .1535675710019696]]

(%i5) solve (1 + a*x + x^3, x);

                                       3
              sqrt(3) %i   1   sqrt(4 a  + 27)   1 1/3
(%o5) [x = (- ---------- - -) (--------------- - -)
                  2        2      6 sqrt(3)      2

        sqrt(3) %i   1
       (---------- - -) a
            2        2
 - --------------------------, x = 
              3
      sqrt(4 a  + 27)   1 1/3
   3 (--------------- - -)
         6 sqrt(3)      2

                          3
 sqrt(3) %i   1   sqrt(4 a  + 27)   1 1/3
(---------- - -) (--------------- - -)
     2        2      6 sqrt(3)      2

         sqrt(3) %i   1
      (- ---------- - -) a
             2        2
 - --------------------------, x = 
              3
      sqrt(4 a  + 27)   1 1/3
   3 (--------------- - -)
         6 sqrt(3)      2

         3
 sqrt(4 a  + 27)   1 1/3               a
(--------------- - -)    - --------------------------]
    6 sqrt(3)      2                  3
                              sqrt(4 a  + 27)   1 1/3
                           3 (--------------- - -)
                                 6 sqrt(3)      2
(%i6) solve (x^3 - 1);
             sqrt(3) %i - 1        sqrt(3) %i + 1
(%o6)   [x = --------------, x = - --------------, x = 1]
                   2                     2
(%i7) solve (x^6 - 1);
           sqrt(3) %i + 1      sqrt(3) %i - 1
(%o7) [x = --------------, x = --------------, x = - 1, 
                 2                   2

                     sqrt(3) %i + 1        sqrt(3) %i - 1
               x = - --------------, x = - --------------, x = 1]
                           2                     2
(%i8) ev (x^6 - 1, %[1]);
                                      6
                      (sqrt(3) %i + 1)
(%o8)                 ----------------- - 1
                             64
(%i9) expand (%);
(%o9)                           0
(%i10) x^2 - 1;
                              2
(%o10)                       x  - 1
(%i11) solve (%, x);
(%o11)                  [x = - 1, x = 1]
(%i12) ev (%th(2), %[1]);
(%o12)                          0
</pre>
<p>The symbols <code>%r</code> are used to denote arbitrary constants in a solution.
</p>
<pre class="example">(%i1) solve([x+y=1,2*x+2*y=2],[x,y]);

solve: dependent equations eliminated: (2)
(%o1)                      [[x = 1 - %r1, y = %r1]]
</pre>
<p>See <code><a href="#algsys">algsys</a></code> and <code><a href="#g_t_0025rnum_005flist">%rnum_list</a></code> for more information.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="Item_003a-solvedecomposes"></a>
</p><dl>
<dt><u>Option variable:</u> <b>solvedecomposes</b>
<a name="IDX920"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>solvedecomposes</code> is <code>true</code>, <code>solve</code> calls
<code><a href="maxima_14.html#polydecomp">polydecomp</a></code> if asked to solve polynomials.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="solveexplicit"></a>
<a name="Item_003a-solveexplicit"></a>
</p><dl>
<dt><u>Option variable:</u> <b>solveexplicit</b>
<a name="IDX921"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>solveexplicit</code> is <code>true</code>, inhibits <code><a href="#solve">solve</a></code> from returning
implicit solutions, that is, solutions of the form <code>F(x) = 0</code> where
<code>F</code> is some function.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="solvefactors"></a>
<a name="Item_003a-solvefactors"></a>
</p><dl>
<dt><u>Option variable:</u> <b>solvefactors</b>
<a name="IDX922"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>solvefactors</code> is <code>false</code>, <code><a href="#solve">solve</a></code> does not try to factor
the expression.  The <code>false</code> setting may be desired in some cases where
factoring is not necessary.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="solvenullwarn"></a>
<a name="Item_003a-solvenullwarn"></a>
</p><dl>
<dt><u>Option variable:</u> <b>solvenullwarn</b>
<a name="IDX923"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>solvenullwarn</code> is <code>true</code>, <code><a href="#solve">solve</a></code> prints a warning message
if called with either a null equation list or a null variable list.  For
example, <code>solve ([], [])</code> would print two warning messages and return
<code>[]</code>.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="solveradcan"></a>
<a name="Item_003a-solveradcan"></a>
</p><dl>
<dt><u>Option variable:</u> <b>solveradcan</b>
<a name="IDX924"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>solveradcan</code> is <code>true</code>, <code><a href="#solve">solve</a></code> calls <code><a href="maxima_9.html#radcan">radcan</a></code>
which makes <code>solve</code> slower but will allow certain problems containing
exponentials and logarithms to be solved.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>

<p><a name="solvetrigwarn"></a>
<a name="Item_003a-solvetrigwarn"></a>
</p><dl>
<dt><u>Option variable:</u> <b>solvetrigwarn</b>
<a name="IDX925"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>solvetrigwarn</code> is <code>true</code>, <code><a href="#solve">solve</a></code> may print a message
saying that it is using inverse trigonometric functions to solve the equation,
and thereby losing solutions.
</p>
<div class=categorybox>
&middot;
<p>@ref{Category: Algebraic equations}
</div>
</p></dd></dl>


<p><a name="Item_003a-Differential-Equations"></a>
</p><hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC102" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_21.html#SEC104" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_82.html#SEC380" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
 <font size="-1">
  This document was generated by <em>root</em> on <em>January, 10 2014</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
 </font>
 <br>

</p>
</body>
</html>