This file is indexed.

/usr/share/maxima/5.32.1/src/compar.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1982 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module compar)

(load-macsyma-macros mrgmac)

(declare-top (special success $props))

(defvar *debug-compar* nil
  "Enables debugging code for this file.")

(defvar %initiallearnflag)

(defvar $context '$initial
  "Whenever a user assumes a new fact, it is placed in the context
named as the current value of the variable CONTEXT.  Similarly, FORGET
references the current value of CONTEXT.  To add or DELETE a fact from a
different context, one must bind CONTEXT to the intended context and then
perform the desired additions or deletions.  The context specified by the
value of CONTEXT is automatically activated.  All of MACSYMA's built-in
relational knowledge is contained in the default context GLOBAL.")

(defvar $contexts '((mlist) $initial $global)
  "A list of the currently active contexts.")

(defvar $activecontexts '((mlist))
  "A list of the currently activated contexts")

(defmvar sign-imag-errp t
  "If T errors out in case COMPAR meets up with an imaginary quantity.
	  If NIL THROWs in that case."
  no-reset)

(defmvar complexsign nil
  "If T, COMPAR attempts to work in a complex mode.
	  This scheme is only very partially developed at this time."
  no-reset)

(defvar *complexsign* nil
  "If T, COMPAR works in a complex mode.")

(defmvar $prederror nil)
(defmvar $signbfloat t)
(defmvar $askexp)
(defmvar limitp)
(defmvar $assume_pos nil)
(defmvar $assume_pos_pred nil)

(defmvar factored nil)

;; The *LOCAL-SIGNS* variable contains a list of facts that are local to the
;; current evaluation. These are stored in the assume database (in the global
;; context) by asksign1 when the user answers questions. A "top-level"
;; evaluation is run by MEVAL* and that function calls CLEARSIGN when it
;; finishes to discard them.
(defmvar *local-signs* nil)

(defmvar sign nil)
(defmvar minus nil)
(defmvar odds nil)
(defmvar evens nil)

(defvar $useminmax t)

;; This variable is also initialized in DB for its own purposes.
;; COMPAR is loaded after DB.
(setq context '$global)

;; Load-time environment for COMPAR.  $CONTEXT and $CONTEXTS will be
;; reset at the end of the file via a call to ($newcontext '$initial).
(setq $context '$global
      $contexts '((mlist) $global))

(defmacro pow (&rest x)
  `(power ,@x))

(defun lmul (l)
  (simplify (cons '(mtimes) l)))

(defun conssize (x)
  (if (atom x)
      0
      (do ((x (cdr x) (cdr x))
	   (sz 1))
	  ((null x) sz)
	(incf sz (1+ (conssize (car x)))))))

;;;  Functions for creating, activating, manipulating, and killing contexts

;;; This "turns on" a context, making its facts visible.

(defmfun $activate (&rest args)
  (dolist (c args)
    (cond ((not (symbolp c)) (nc-err '$activate c))
	  ((member c (cdr $activecontexts) :test #'eq))
	  ((member c (cdr $contexts) :test #'eq)
	   (setq $activecontexts (mcons c $activecontexts))
	   (activate c))
	  (t (merror (intl:gettext "activate: no such context ~:M") c))))
  '$done)

;;; This "turns off" a context, keeping the facts, but making them invisible

(defmfun $deactivate (&rest args)
  (dolist (c args)
    (cond ((not (symbolp c)) (nc-err '$deactivate c))
	  ((member c (cdr $contexts) :test #'eq)
	   (setq $activecontexts ($delete c $activecontexts))
	   (deactivate c))
	  (t (merror (intl:gettext "deactivate: no such context ~:M") c))))
  '$done)

;;; This function prints out a list of the facts in the specified context.
;;; No argument implies the current context.

(defmfun $facts (&optional (ctxt $context))
  (if (member ctxt (cdr $contexts))
      (facts1 ctxt)
      (facts2 ctxt)))

(defun facts1 (con)
  (contextmark)
  (do ((l (zl-get con 'data) (cdr l))
       (nl)
       (u))
      ((null l) (cons '(mlist) nl))
    (when (visiblep (car l))
      (setq u (intext (caaar l) (cdaar l)))
      (unless (memalike u nl)
	(push u nl)))))

;; Look up facts from the database which contain expr. expr can be a symbol or 
;; a more general expression.
(defun facts2 (expr)
  (labels ((among (x l)
             (cond ((null l) nil)
                   ((atom l) (eq x l))
                   ((alike1 x l) t)
                   (t
                    (do ((ll (cdr l) (cdr ll)))
                        ((null ll) nil)
                      (if (among x (car ll)) (return t)))))))
  (do ((facts (cdr ($facts $context)) (cdr facts))
       (ans))
      ((null facts) (return (cons '(mlist) (reverse ans))))
    (when (or (among expr (cadar facts))
              (among expr (caddar facts)))
      (push (car facts) ans)))))

(defun intext (rel body)
  (setq body (mapcar #'doutern body))
  (cond ((eq 'kind rel) (cons '($kind) body))
	((eq 'par rel) (cons '($par) body))
	((eq 'mgrp rel) (cons '(mgreaterp) body))
	((eq 'mgqp rel) (cons '(mgeqp) body))
	((eq 'meqp rel) (cons '($equal) body))
	((eq 'mnqp rel) (list '(mnot) (cons '($equal) body)))))

(defprop $context asscontext assign)

;;; This function switches contexts, creating one if necessary.

(defun asscontext (xx y)
  (declare (ignore xx))
  (cond ((not (symbolp y)) (nc-err "context assignment" y))
	((member y $contexts :test #'eq) (setq context y $context y))
	(t ($newcontext y))))

;;; This function actually creates a context whose subcontext is $GLOBAL.
;;; It also switches contexts to the newly created one.

(defmfun $newcontext (x)
  (cond ((not (symbolp x)) (nc-err '$newcontext x))
	((member x $contexts :test #'eq)
	 (mtell (intl:gettext "newcontext: context ~M already exists.") x) nil)
	(t (setq $contexts (mcons x $contexts))
	   (putprop x '($global) 'subc)
	   (setq context x $context x))))

;;; This function creates a supercontext.  If given one argument, it
;;; makes the current context be the subcontext of the argument.  If
;;; given more than one argument, the first is assumed the name of the
;;; supercontext and the rest are the subcontexts.

(defmspec $supcontext (x)
  (setq x (cdr x))
  (cond ((null x) (merror (intl:gettext "supcontext: expected one or two arguments; found none.")))
	((caddr x) (merror (intl:gettext "supcontext: expected one or two arguments; found more than two.")))
	((not (symbolp (car x))) (nc-err '$supcontext (car x)))
	((member (car x) $contexts :test #'eq)
	 (merror (intl:gettext "supcontext: context ~M already exists.") (car x)))
	((and (cadr x) (not (member (cadr x) $contexts :test #'eq)))
	 (merror (intl:gettext "supcontext: no such context ~M") (cadr x)))
	(t (setq $contexts (mcons (car x) $contexts))
	   (putprop (car x) (ncons (or (cadr x) $context)) 'subc)
	   (setq context (car x) $context (car x)))))

;;; This function kills a context or a list of contexts

(defmfun $killcontext (&rest args)
  (dolist (c args)
    (if (symbolp c)
	(killcontext c)
	(nc-err '$killcontext c)))
  (if (and (= (length args) 1) (eq (car args) '$global))
      '$not_done
      '$done))

(defun killallcontexts ()
  (mapcar #'killcontext (cdr $contexts))
  (setq $context '$initial context '$initial current '$initial
	$contexts '((mlist) $initial $global) dobjects ())
  ;;The DB variables
  ;;conmark, conunmrk, conindex, connumber, and contexts
  ;;concern garbage-collectible contexts, and so we're
  ;;better off not resetting them.
  (defprop $global 1 cmark) (defprop $initial 1 cmark)
  (defprop $initial ($global) subc))

(defun killcontext (x)
  (cond ((not (member x $contexts :test #'eq))
	 (mtell (intl:gettext "killcontext: no such context ~M.") x))
	((eq x '$global) '$global)
	((eq x '$initial)
	 (mapc #'remov (zl-get '$initial 'data))
	 (remprop '$initial 'data)
	 '$initial)
	((and (not (eq $context x)) (contextmark) (< 0 (zl-get x 'cmark)))
	 (mtell (intl:gettext "killcontext: context ~M is currently active.") x))
        (t (if (member x $activecontexts)
               ;; Context is on the list of active contexts. The test above 
               ;; checks for active contexts, but it seems not to work in all
               ;; cases. So deactivate the context at this place to remove it 
               ;; from the list of active contexts before it is deleted.
               ($deactivate x))
	   (setq $contexts ($delete x $contexts))
	   (cond ((and (eq x $context)
		       (equal ;;replace eq ?? wfs
			(zl-get x 'subc) '($global)))
		  (setq $context '$initial)
		  (setq context '$initial))
		 ((eq x $context)
		  (setq $context (car (zl-get x 'subc)))
		  (setq context (car (zl-get x 'subc)))))
	   (killc x)
	   x)))

(defun nc-err (fn x)
  (merror (intl:gettext "~M: context name must be a symbol; found ~M") fn x))

;; Simplification and evaluation of boolean expressions
;;
;; Simplification of boolean expressions:
;;
;; and and or are declared nary. The sole effect of this is to allow Maxima to
;; flatten nested expressions, e.g., a and (b and c) => a and b and c
;; (The nary declaration does not make and and or commutative, and and and or
;; are not otherwise declared commutative.)
;;
;; and: if any argument simplifies to false, return false
;;  otherwise omit arguments which simplify to true and simplify others
;;  if only one argument remains, return it
;;  if none remain, return true
;;
;; or: if any argument simplifies to true, return true
;;  otherwise omit arguments which simplify to false and simplify others
;;  if only one argument remains, return it
;;  if none remain, return false
;;
;; not: if argument simplifies to true / false, return false / true
;;  otherwise reverse sense of comparisons (if argument is a comparison)
;;  otherwise return not <simplified argument>
;;
;; Evaluation (MEVAL) of boolean expressions:
;; same as simplification except evaluating (MEVALP) arguments instead of simplifying
;; When prederror = true, complain if expression evaluates to something other than T / NIL
;; (otherwise return unevaluated boolean expression)
;;
;; Evaluation (MEVALP) of boolean expressions:
;; same as simplification except evaluating (MEVALP) arguments instead of simplifying
;; When prederror = true, complain if expression evaluates to something other than T / NIL
;; (otherwise return unevaluated boolean expression)
;;
;; Simplification of "is" expressions:
;; if argument simplifies to true/false, return true/false
;; otherwise return is (<simplified argument>)
;;
;; Evaluation of "is" expressions:
;; if argument evaluates to true/false, return true/false
;; otherwise return unknown if prederror = false, else trigger an error
;;
;; Simplification of "maybe" expressions:
;; if argument simplifies to true/false, return true/false
;; otherwise return maybe (<simplified expression>)
;;
;; Evaluation of "maybe" expressions:
;; if argument evaluates to true/false, return true/false
;; otherwise return unknown

(defprop $is simp-$is operators)
(defprop %is simp-$is operators)
(defprop $maybe simp-$is operators)
(defprop %maybe simp-$is operators)

					; I'VE ASSUMED (NULL Z) => SIMPLIFIY ARGUMENTS
					; SAME WITH SIMPCHECK (SRC/SIMP.LISP)
					; SAME WITH TELLSIMP-GENERATED SIMPLIFICATION FUNCTIONS
					; SAME WITH SIMPLIFICATION OF %SIN
					; PRETTY SURE I'VE SEEN OTHER EXAMPLES AS WELL
					; Z SEEMS TO SIGNIFY "ARE THE ARGUMENTS SIMPLIFIED YET"

(defun maybe-simplifya (x z)
  (if z x (simplifya x z)))

(defun maybe-simplifya-protected (x z)
  (let ((errcatch t) ($errormsg nil))
    (declare (special errcatch $errormsg))
    (ignore-errors (maybe-simplifya x z) x)))

(defun simp-$is (x yy z)
  (declare (ignore yy))
  (let ((a (maybe-simplifya (cadr x) z)))
    (if (or (eq a t) (eq a nil))
	a
	`((,(caar x) simp) ,a))))

(defmspec $is (form)
  (let* ((pat (cadr form))
	 (x (mevalp1 pat))
	 (ans (car x))
	 (patevalled (cadr x)))
    (cond ((member ans '(t nil) :test #'eq) ans)
	  ;; I'D RATHER HAVE ($PREDERROR ($THROW `(($PREDERROR) ,PATEVALLED))) HERE
	  ($prederror (pre-err patevalled))
	  (t '$unknown))))

(defmspec $maybe (form)
  (let* ((pat (cadr form))
	 (x (let (($prederror nil)) (mevalp1 pat)))
	 (ans (car x)))
    (if (member ans '(t nil) :test #'eq)
	ans
	'$unknown)))

(defmfun is (pred)
  (let (($prederror t))
    (mevalp pred)))

					; The presence of OPERS tells SIMPLIFYA to call OPER-APPLY,
					; which calls NARY1 to flatten nested "and" and "or" expressions
					; (due to $NARY property of MAND and MOR, declared elsewhere).

(putprop 'mand t 'opers)
(putprop 'mor t 'opers)

(putprop 'mnot 'simp-mnot 'operators)
(putprop 'mand 'simp-mand 'operators)
(putprop 'mor 'simp-mor 'operators)

(defun simp-mand (x yy z)
  (declare (ignore yy))
  (do ((l (cdr x) (cdr l))
       (a)
       (simplified))
      ((null l)
       (cond ((= (length simplified) 0) t)
	     ((= (length simplified) 1) (car simplified))
	     (t (cons '(mand simp) (reverse simplified)))))
    (setq a (maybe-simplifya (car l) z))
    (cond ((null a) (return nil))
	  ((eq a '$unknown) (unless (member '$unknown simplified :test #'eq) (push a simplified)))
	  ((not (member a '(t nil) :test #'eq)) (push a simplified)))))

(defun simp-mor (x yy z)
  (declare (ignore yy))
  (do ((l (cdr x) (cdr l))
       (a)
       (simplified))
      ((null l)
       (cond ((= (length simplified) 0) nil)
	     ((= (length simplified) 1) (car simplified))
	     (t (cons '(mor simp) (reverse simplified)))))
    (setq a (maybe-simplifya (car l) z))
    (cond ((eq a t) (return t))
	  ((eq a '$unknown) (unless (member '$unknown simplified :test #'eq) (push a simplified)))
	  ((not (member a '(t nil) :test #'eq)) (push a simplified)))))

					; ALSO CUT STUFF ABOUT NOT EQUAL => NOTEQUAL AT TOP OF ASSUME

(defun simp-mnot (x yy z)
  (declare (ignore yy))
  (let ((arg (maybe-simplifya (cadr x) z)))
    (if (atom arg)
	(cond ((or (eq arg t) (eq arg '$true))
	       nil)
	      ((or (eq arg nil) (eq arg '$false))
	       t)
	      ((eq arg '$unknown)
	       '$unknown)
	      (t `((mnot simp) ,arg)))
	(let ((arg-op (caar arg)) (arg-arg (cdr arg)))
	  ;;(setq arg-arg (mapcar #'(lambda (a) (maybe-simplifya a z)) arg-arg))
          (cond ((eq arg-op 'mlessp)
                 (simplify `((mgeqp) ,@arg-arg)))
                ((eq arg-op 'mleqp)
                 (simplify `((mgreaterp) ,@arg-arg)))
                ((eq arg-op 'mequal)
                 (simplify `((mnotequal) ,@arg-arg)))
                ((eq arg-op '$equal)
                 (simplify `(($notequal) ,@arg-arg)))
                ((eq arg-op 'mnotequal)
                 (simplify `((mequal) ,@arg-arg)))
                ((eq arg-op '$notequal)
                 (simplify `(($equal) ,@arg-arg)))
                ((eq arg-op 'mgeqp)
                 (simplify `((mlessp) ,@arg-arg)))
                ((eq arg-op 'mgreaterp)
                 (simplify `((mleqp) ,@arg-arg)))
		((eq arg-op 'mnot)
		 (car arg-arg))
		;; Distribute negation over conjunction and disjunction;
		;; analogous to '(- (a + b)) --> - a - b.
		((eq arg-op 'mand)
		 (let ((L (mapcar #'(lambda (e) `((mnot) ,e)) arg-arg)))
		   (simplifya `((mor) ,@L) nil)))
		((eq arg-op 'mor)
		 (let ((L (mapcar #'(lambda (e) `((mnot) ,e)) arg-arg)))
		   (simplifya `((mand) ,@L) nil)))
		(t `((mnot simp) ,arg)))))))

;; =>* N.B. *<=
;; The function IS-BOOLE-CHECK, used by the translator, depends
;; on some stuff in here.  Check it out in the transl module
;; ACALL before proceeding.

(defmfun mevalp (pat)
  (let* ((x (mevalp1 pat))
	 (ans (car x))
	 (patevalled (cadr x)))
    (cond ((member ans '(#.(not ()) ()) :test #'eq) ans)
	  ;; I'D RATHER HAVE ($PREDERROR ($THROW `(($PREDERROR) ,PATEVALLED))) HERE
	  ($prederror (pre-err patevalled))
	  (t (or patevalled ans)))))

(defun mevalp1 (pat)
  (let (patevalled ans)
    (setq ans
          (cond ((and (not (atom pat))
                      (member (caar pat) '(mnot mand mor) :test #'eq))
                 (cond ((eq 'mnot (caar pat)) (is-mnot (cadr pat)))
                       ((eq 'mand (caar pat)) (is-mand (cdr pat)))
                       (t (is-mor (cdr pat)))))
                ((atom (setq patevalled (specrepcheck (meval pat))))
                 patevalled)
                ((member (caar patevalled) '(mnot mand mor) :test #'eq)
                 (mevalp1 patevalled))
                (t
                 (mevalp2 patevalled
                          (caar patevalled)
                          (cadr patevalled)
                          (caddr patevalled)))))
    (list ans patevalled)))

(defmfun mevalp2 (patevalled pred arg1 arg2)
  (cond ((eq 'mequal pred) (like arg1 arg2))
	((eq '$equal pred) (meqp arg1 arg2))
	((eq 'mnotequal pred) (not (like arg1 arg2)))
	((eq '$notequal pred) (mnqp arg1 arg2))
	((eq 'mgreaterp pred) (mgrp arg1 arg2))
	((eq 'mlessp pred) (mgrp arg2 arg1))
	((eq 'mgeqp pred) (mgqp arg1 arg2))
	((eq 'mleqp pred) (mgqp arg2 arg1))
	(t (isp (munformat patevalled)))))

(defmfun pre-err (pat)
  (merror (intl:gettext "Unable to evaluate predicate ~M") pat))

(defun is-mnot (pred)
  (setq pred (mevalp pred))
  (cond ((eq t pred) nil)
	((not pred))
	(t (pred-reverse pred))))

(defmfun pred-reverse (pred)
  (take '(mnot) pred))
 
(defun is-mand (pl)
  (do ((dummy)
       (npl))
      ((null pl) (cond ((null npl))
		       ((null (cdr npl)) (car npl))
		       (t (cons '(mand) (nreverse npl)))))
    (setq dummy (mevalp (car pl)) pl (cdr pl))
    (cond ((eq t dummy))
	  ((null dummy) (return nil))
	  (t (push dummy npl)))))

(defun is-mor (pl)
  (do ((dummy)
       (npl))
      ((null pl) (cond ((null npl) nil)
		       ((null (cdr npl)) (car npl))
		       (t (cons '(mor) (nreverse npl)))))
    (setq dummy (mevalp (car pl)) pl (cdr pl))
    (cond ((eq t dummy) (return t))
	  ((null dummy))
	  (t (push dummy npl)))))

(defmspec $assume (x)
  (setq x (cdr x))
  (do ((nl)) ((null x) (cons '(mlist) (nreverse nl)))
    (cond ((atom (car x)) (push (assume (meval (car x))) nl))
	  ((eq 'mand (caaar x))
	   (mapc #'(lambda (l) (push (assume (meval l)) nl))
		 (cdar x)))
	  ((eq 'mnot (caaar x))
	   (push (assume (meval (pred-reverse (cadar x)))) nl))
	  ((eq 'mor (caaar x))
	   (merror (intl:gettext "assume: argument cannot be an 'or' expression; found ~M") (car x)))
	  ((eq (caaar x) 'mequal)
	   (merror (intl:gettext "assume: argument cannot be an '=' expression; found ~M~%assume: maybe you want 'equal'.") (car x)))
	  ((eq (caaar x) 'mnotequal)
	   (merror (intl:gettext "assume: argument cannot be a '#' expression; found ~M~%assume: maybe you want 'not equal'.") (car x)))
	  (t (push (assume (meval (car x))) nl)))
    (setq x (cdr x))))

(defmfun assume (pat)
  (if (and (not (atom pat))
	   (eq (caar pat) 'mnot)
	   (eq (caaadr pat) '$equal))
      (setq pat `(($notequal) ,@(cdadr pat))))
  (let ((dummy (let ($assume_pos) (car (mevalp1 pat)))))
    (cond ((eq dummy t) '$redundant)
	  ((null dummy) '$inconsistent)
	  ((atom dummy) '$meaningless)
	  (t (learn pat t)))))

(defmfun learn (pat flag)
  (cond ((atom pat))
        ;; Check for abs function in pattern.
        ((and (not limitp)
              (learn-abs pat flag)))
        ;; Check for constant expression in pattern.
        ((and (not limitp)
              (learn-numer pat flag)))
	((zl-get (caar pat) (if flag 'learn 'unlearn))
	 (funcall (zl-get (caar pat) (if flag 'learn 'unlearn)) pat))
	((eq (caar pat) 'mgreaterp) (daddgr flag (sub (cadr pat) (caddr pat))))
	((eq (caar pat) 'mgeqp) (daddgq flag (sub (cadr pat) (caddr pat))))
	((member (caar pat) '(mequal $equal) :test #'eq)
	 (daddeq flag (sub (cadr pat) (caddr pat))))
	((member (caar pat) '(mnotequal $notequal) :test #'eq)
	 (daddnq flag (sub (cadr pat) (caddr pat))))
	((eq (caar pat) 'mleqp) (daddgq flag (sub (caddr pat) (cadr pat))))
	((eq (caar pat) 'mlessp) (daddgr flag (sub (caddr pat) (cadr pat))))
	(flag (true* (munformat pat)))
	(t (untrue (munformat pat)))))

;;; When abs(x)<a is in the pattern, where a is a positive expression,
;;; then learn x<a and -x<a too. The additional facts are put into the context
;;; '$learndata, if the current context is user context 'initial

(defun learn-abs (pat flag)
  (let (tmp)
    (when (and (setq tmp (isinop pat 'mabs))
               (or (and (member (caar pat) '(mlessp mleqp))
                        (isinop (cadr pat) 'mabs)
                        (member ($sign (caddr pat)) '($pos $pz)))
                   (and (member (caar pat) '(mgreaterp mgeqp))
                        (member ($sign (cadr pat)) '($pos $pz))
                        (isinop (caddr pat) 'mabs))))
      (let ((oldcontext context))
        (if (eq oldcontext '$initial)
            (asscontext nil '$learndata)) ; switch to context '$learndata
        ; learn additional facts
        (learn ($substitute (cadr tmp) tmp pat) flag)
        (learn ($substitute (mul -1 (cadr tmp)) tmp pat) flag)
        (when (eq oldcontext '$initial)
          (asscontext nil oldcontext)     ; switch back to context on entry
          ($activate '$learndata))))      ; context '$learndata is active
    nil))

;;; The value of a constant expression which can be numerically evaluated is
;;; put into the context '$learndata.

(defun learn-numer (pat flag)
  (let (dum expr patnew)
    (do ((x (cdr pat) (cdr x)))
        ((null x) (setq patnew (reverse patnew)))
      (setq dum (constp (car x))
            expr (car x))
      (cond ((or (numberp (car x))
                 (ratnump (car x))))
            ((eq dum 'bigfloat)
             (if (prog2
                    (setq dum ($bfloat (car x)))
                    ($bfloatp dum))
                 (setq expr dum)))
            ((eq dum 'float)
             (if (and (setq dum (numer (car x)))
                      (numberp dum))
                 (setq expr dum)))
            ((and (member dum '(numer symbol) :test #'eq)
                  (prog2 
                     (setq dum (numer (car x)))
                     (or (null dum)
                         (and (numberp dum)
                              (prog2 
                                  (setq expr dum)
                                  (< (abs dum) 1.0e-6))))))
             (cond ($signbfloat
                    (and (setq dum ($bfloat (car x)))
                         ($bfloatp dum)
                         (setq expr dum))))))
      (setq patnew (cons expr patnew)))
    (setq patnew (cons (car pat) patnew))
    (when (and (not (alike (cdr pat) (cdr patnew)))
               (or (not (mnump (cadr patnew)))    ; not both sides of the
                   (not (mnump (caddr patnew))))) ; relation can be number
      (let ((oldcontext $context))
        (if (eq oldcontext '$initial)
          (asscontext nil '$learndata)) ; switch to context '$learndata
        (learn patnew flag)             ; learn additional fact
        (when (eq oldcontext '$initial) 
          (asscontext nil oldcontext)   ; switch back to context on entry
          ($activate '$learndata))))    ; context '$learndata is active
    nil))

(defmspec $forget (x)
  (setq x (cdr x))
  (do ((nl))
      ((null x) (cons '(mlist) (nreverse nl)))
    (cond ((atom (car x)) (push (forget (meval (car x))) nl))
	  ((eq 'mand (caaar x))
	   (mapc #'(lambda (l) (push (forget (meval l)) nl)) (cdar x)))
	  ((eq 'mnot (caaar x))
	   (push (forget (meval (pred-reverse (cadar x)))) nl))
	  ((eq 'mor (caaar x))
	   (merror (intl:gettext "forget: argument cannot be an 'or' expression; found ~M") (car x)))
	  (t (push (forget (meval (car x))) nl)))
    (setq x (cdr x))))

(defmfun forget (pat)
  (cond (($listp pat)
	 (cons '(mlist simp) (mapcar #'forget1 (cdr pat))))
	(t (forget1 pat))))

(defun forget1 (pat)
  (cond ((and (not (atom pat))
	      (eq (caar pat) 'mnot)
	      (eq (caaadr pat) '$equal))
	 (setq pat `(($notequal) ,@(cdadr pat)))))
  (learn pat nil))

(defmfun restore-facts (factl)		; used by SAVE
  (dolist (fact factl)
    (cond ((eq (caar fact) '$kind)
	   (declarekind (cadr fact) (caddr fact))
	   (add2lnc (getop (cadr fact)) $props))
	  ((eq (caar fact) '$par))
	  (t (assume fact)))))

(defmacro compare (a b)
  `(sign1 (sub* ,a ,b)))

(defmfun maximum (l)
  (maximin l '$max))

(defmfun minimum (l)
  (maximin l '$min))

(defmspec mand (form)
  (setq form (cdr form))
  (do ((l form (cdr l))
       (x)
       (unevaluated))
      ((null l)
       (cond ((= (length unevaluated) 0) t)
	     ((= (length unevaluated) 1) (car unevaluated))
	     (t (cons '(mand) (reverse unevaluated)))))
    (setq x (mevalp (car l)))
    (cond ((null x) (return nil))
	  ((not (member x '(t nil) :test #'eq)) (push x unevaluated)))))

(defmspec mor (form)
  (setq form (cdr form))
  (do ((l form (cdr l))
       (x)
       (unevaluated))
      ((null l)
       (cond ((= (length unevaluated) 0) nil)
	     ((= (length unevaluated) 1) (car unevaluated))
	     (t (cons '(mor) (reverse unevaluated)))))
    (setq x (mevalp (car l)))
    (cond ((eq x t) (return t))
	  ((not (member x '(t nil) :test #'eq)) (push x unevaluated)))))

(defmspec mnot (form)
  (setq form (cdr form))
  (let ((x (mevalp (car form))))
    (if (member x '(t nil) :test #'eq)
	(not x)
	`((mnot) ,x))))

;;;Toplevel functions- $askequal, $asksign, and $sign.
;;;Switches- LIMITP If TRUE $ASKSIGN and $SIGN will look for special
;;;		     symbols such as EPSILON, $INF, $MINF and attempt
;;;		     to do the correct thing. In addition calls to
;;;		     $REALPART and $IMAGPART are made to assure that
;;;		     the expression is real.
;;;
;;;		  if NIL $ASKSIGN and $SIGN assume the expression
;;;		     given is real unless it contains an $%I, in which
;;;		     case they call $RECTFORM.

(setq limitp nil)

(defun $askequal (a b)
  (let ((answer (meqp (sratsimp a) (sratsimp b)))) ; presumably handles mbags and extended reals.
    (cond ((eq answer t) '$yes)
	  ((eq answer nil) '$no)
	  (t
	   (setq answer (retrieve `((mtext) ,(intl:gettext "Is ") ,a ,(intl:gettext " equal to ") ,b ,(intl:gettext "?")) nil))
	   (cond ((member answer '($no |$n| |$N|) :test #'eq)
		  (tdpn (sub b a))
		  '$no)
		 ((member answer '($yes |$y| |$Y|) :test #'eq)
		  (tdzero (sub a b))
		  '$yes)
		 (t  
		  (mtell (intl:gettext "Acceptable answers are yes, y, Y, no, n, N. ~%"))
		  ($askequal a b)))))))
	   
(defmfun $asksign (exp)
  (let (sign minus odds evens factored)
    (asksign01 (cond (limitp (restorelim exp))
		     ((among '$%i exp) ($rectform exp))
		     (t exp)))))

(defmfun asksign-p-or-n (e)
  (unwind-protect (prog2
		      (assume `(($notequal) ,e 0))
		      ($asksign e))
    (forget `(($notequal) ,e 0))))

(defun asksign01 (a)
  (let ((e (sign-prep a)))
    (cond ((eq e '$pnz) '$pnz)
	  ((member (setq e (asksign1 e)) '($pos $neg) :test #'eq) e)
	  (limitp (eps-sign a))
	  (t '$zero))))

;; csign returns t if x appears to be complex.
;; Else, it returns the sign.
(defmfun csign (x)
  (or (not (free x '$%i))
      (let (sign-imag-errp limitp) (catch 'sign-imag-err ($sign x)))))

;;; $csign works like $sign but switches the sign-functions into a complex
;;; mode. In complex mode complex and imaginary expressions give the results
;;; imagarinary or complex.

(defun $csign (z)
  (let ((*complexsign* t)
        (limitp nil))
    ($sign z)))

(defmfun $sign (x)
  (let ((x (specrepcheck x))
	sign minus odds evens factored)
    (sign01 (cond (limitp (restorelim x))
		  (*complexsign*
		   ;; No rectform in Complex mode. Rectform ask unnecessary
		   ;; questions about complex expressions and can not handle
		   ;; imaginary expressions completely. Thus $csign can not
		   ;; handle something like (1+%i)*(1-%i) which is real.
		   ;; After improving rectform, we can change this. (12/2008)
		   (when *debug-compar*
		     (format t "~&$SIGN with ~A~%" x))
		   x)
		  ((not (free x '$%i)) ($rectform x))
		  (t x)))))

(defun sign01 (a)
  (let ((e (sign-prep a)))
    (cond ((eq e '$pnz) '$pnz)
	  (t (setq e (sign1 e))
	     (if (and limitp (eq e '$zero)) (eps-sign a) e)))))

;;; Preparation for asking questions from DEFINT or LIMIT.
(defun sign-prep (x)
  (if limitp
      (destructuring-let (((rpart . ipart) (trisplit x)))
			 (cond ((and (equal (sratsimp ipart) 0)
				     (free rpart '$infinity))
				(setq x (nmr (sratsimp rpart)))
				(if (free x 'prin-inf)
				    x
				    ($limit x 'prin-inf '$inf '$minus)))
			       (t '$pnz)))	       ; Confess ignorance if COMPLEX.
      x))

;; don't ask about internal variables created by gruntz
(defun has-int-symbols (e)
  (cond ((and (symbolp e) (get e 'internal))
	 t)
	((atom e) nil)
	(t (or (has-int-symbols (car e))
	       (has-int-symbols (cdr e))))))

;;; Do substitutions for special symbols.
(defmfun nmr (a)
  (unless (free a '$zeroa) (setq a ($limit a '$zeroa 0 '$plus)))
  (unless (free a '$zerob) (setq a ($limit a '$zerob 0 '$minus)))
  (unless (free a 'z**) (setq a ($limit a 'z** 0 '$plus)))
  (unless (free a '*z*) (setq a ($limit a '*z* 0 '$plus)))
  (unless (free a 'epsilon) (setq a ($limit a 'epsilon 0 '$plus)))
  a)  ;;; Give A back.

;;; Get the sign of EPSILON-like terms.  Could be made MUCH hairier.
(defun eps-sign (b)
  (let (temp1 temp2 temp3 free1 free2 free3 limitp)
    ;; unset limitp to prevent infinite recursion
    (cond ((not (free b '$zeroa))
	   (setq temp1 (eps-coef-sign b '$zeroa)))
	  (t (setq free1 t)))
    (cond ((not (free b '$zerob))
	   (setq temp2 (eps-coef-sign b '$zerob)))
	  (t (setq free2 t)))
    (cond ((not (free b 'epsilon))
	   (setq temp3 (eps-coef-sign b 'epsilon)))
	  (t (setq free3 t)))
    (cond ((and free1 free2 free3) '$zero)
	  ((or (not (null temp1)) (not (null temp2)) (not (null temp3)))
	   (cond ((and (null temp1) (null temp2)) temp3)
		 ((and (null temp2) (null temp3)) temp1)
		 ((and (null temp1) (null temp3)) temp2)
		 (t (merror (intl:gettext "asksign: internal error."))))))))

(defun eps-coef-sign (exp epskind)
  (let ((eps-power ($lopow exp epskind)) eps-coef)
    (cond ((and (not (equal eps-power 0))
		(not (equal (setq eps-coef (ratcoeff exp epskind eps-power))
			    0))
		(eq (ask-integer eps-power '$integer) '$yes))
	   (cond ((eq (ask-integer eps-power '$even) '$yes)
		  ($sign eps-coef))
		 ((eq (ask-integer eps-power '$odd) '$yes)
		  (setq eps-coef ($sign eps-coef))
		  (cond ((or (and (eq eps-coef '$pos)
				  (or (eq epskind 'epsilon)
				      (eq epskind '$zeroa)))
			     (and (eq eps-coef '$neg)
				  (or (alike epskind (mul2* -1 'epsilon))
				      (eq epskind '$zerob))))
			 '$pos)
			(t '$neg)))
		 (t (merror (intl:gettext "sign or asksign: insufficient information.")))))
	  (t (let ((deriv (sdiff exp epskind)) deriv-sign)
	       (cond ((not (eq (setq deriv-sign ($sign deriv)) '$zero))
		      (total-sign epskind deriv-sign))
		     ((not
		       (eq (let ((deriv (sdiff deriv epskind)))
			     (setq deriv-sign ($sign deriv)))
			   '$zero))
		      deriv-sign)
		     (t (merror (intl:gettext "sign or asksign: insufficient data.")))))))))

;;; The above code does a partial Taylor series analysis of something
;;; that isn't a polynomial.

(defun total-sign (epskind factor-sign)
  (cond ((or (eq epskind '$zeroa) (eq epskind 'epsilon))
	 (cond ((eq factor-sign '$pos) '$pos)
	       ((eq factor-sign '$neg) '$neg)
	       ((eq factor-sign '$zero) '$zero)))
	((eq epskind '$zerob)
	 (cond ((eq factor-sign '$pos) '$neg)
	       ((eq factor-sign '$neg) '$pos)
	       ((eq factor-sign '$zero) '$zero)))))

(defun asksign (x)
  (setq x ($asksign x))
  (cond ((eq '$pos x) '$positive)
	((eq '$neg x) '$negative)
	((eq '$pnz x) '$pnz)	 ;COMPLEX expression encountered here.
	(t '$zero)))

(defun asksign1 ($askexp)
  (let ($radexpand)
    (declare (special $radexpand))
    (sign1 $askexp))
  (cond
    ((has-int-symbols $askexp) '$pnz)
    ((member sign '($pos $neg $zero $imaginary) :test #'eq) sign)
    (t
     (let ((domain sign) (squared nil))
       (cond
         ((null odds)
          (setq $askexp (lmul evens)
                domain '$znz
                squared t))
         (t
          (if minus (setq sign (flip sign)))
          (setq $askexp
                (lmul (nconc odds (mapcar #'(lambda (l) (pow l 2)) evens))))))
       (setq sign (cdr (assol $askexp *local-signs*)))
       (ensure-sign $askexp domain squared)))))

(defun match-sign (sgn domain expression squared)
  "If SGN makes sense for DOMAIN store the result (see ENSURE-SIGN) and return
it. Otherwise, return NIL. If SQUARED is true, we are actually looking for the
sign of the square, so any negative results are converted to positive."
  ;; The entries in BEHAVIOUR are of the form
  ;;   (MATCH DOMAINS REGISTRAR SIGN SIGN-SQ)
  ;;
  ;; The algorithm goes as follows:
  ;;
  ;; Look for SGN in MATCH. If found, use REGISTRAR to store SIGN for the
  ;; expression and then return SIGN if SQUARED is false or SIGN-SQ if it is
  ;; true.
  (let* ((behaviour
          '((($pos |$P| |$p| $positive) (nil $znz $pz $pn $pnz) tdpos $pos $pos)
            (($neg |$N| |$n| $negative) (nil $znz $nz $pn $pnz) tdneg $neg $pos)
            (($zero |$Z| |$z| 0 0.0) (nil $znz $pz $nz $pnz) tdzero $zero $zero)
            (($pn $nonzero $nz $nonz $non0) ($znz) tdpn $pn $pos)))
         (hit (find-if (lambda (bh)
                         (and (member sgn (first bh) :test #'equal)
                              (member domain (second bh) :test #'eq)))
                       behaviour)))
    (when hit
      (let ((registrar (third hit))
            (found-sign (if squared (fifth hit) (fourth hit))))
        (funcall registrar expression)
        (setq sign
              (if (and minus (not squared)) (flip found-sign) found-sign))))))

(defun ensure-sign (expr &optional domain squared)
  "Try to determine the sign of EXPR. If DOMAIN is not one of the special values
described below, we try to tell whether EXPR is positive, negative or zero. It
can be more specialised ($pz => positive or zero; $nz => negative or zero; $pn
=> positive or negative; $znz => zero or nonzero).

If SQUARED is true, then we're actually interested in the sign of EXPR^2. As
such, a nonzero sign should be regarded as positive.

When calling ENSURE-SIGN, set the special variable SIGN to the best current
guess for the sign of EXPR. The function returns the sign, calls one of (TDPOS
TDNEG TDZERO TDPN) to store it, and also sets SIGN."
  (loop
     (let ((new-sign (match-sign sign domain expr squared)))
       (when new-sign (return new-sign)))
     (setf sign (retrieve
                 (list '(mtext)
                       "Is " expr
                       (or (second
                            (assoc domain
                                   '(($znz " zero or nonzero?")
                                     ($pz  " positive or zero?")
                                     ($nz  " negative or zero?")
                                     ($pn  " positive or negative?"))))
                           " positive, negative or zero?"))
                 nil))))

;; During one evaluation phase asksign writes answers from the user into the
;; global context '$initial. These facts are removed by clearsign after
;; finishing the evaluation phase. clearsign is called from the top-level
;; evaluation function meval*. The facts which have to be removed are stored
;; in the global variable *local-signs*.

(defun clearsign ()
  (let ((context '$initial))
    (dolist (cons-pair *local-signs*)
      (destructuring-bind (x . sgn) cons-pair
        (cond
          ((eq '$pos sgn) (daddgr nil x))
          ((eq '$neg sgn) (daddgr nil (neg x)))
          ((eq '$zero sgn) (daddeq nil x))
          ((eq '$pn sgn) (daddnq nil x))
          ((eq '$pz sgn) (daddgq nil x))
          ((eq '$nz sgn) (daddgq nil (neg x))))))
    (setf *local-signs* nil)))

(defmfun like (x y)
  (alike1 (specrepcheck x) (specrepcheck y)))

(setf (get '$und 'sysconst) t)
(setf (get '$ind 'sysconst) t)
(setf (get '$zeroa 'sysconst) t)
(setf (get '$zerob 'sysconst) t)

;; There have been some conversations about NaN on the list, but
;; the issue hasn't been settled.

(defvar indefinites `($und $ind))

;; Other than sums, products, and lambda forms, meqp knows nothing
;; about dummy variables. Because of the way niceindices chooses names
;; for the sum indicies, it's necessary to locally assign a new value to
;; niceindicespref.

(defun meqp-by-csign (z a b)
  (let ((sgn) (rsgn) (isgn) ($niceindicespref `((mlist) ,(gensym) ,(gensym) ,(gensym))))
    (setq z ($niceindices z))
    (setq z (if ($constantp z) ($rectform z) (sratsimp z)))
    (setq sgn ($csign z))
    (cond ((eq '$zero sgn) t)
	  ((memq sgn '($pos $neg $pn)) nil)

	  ((memq sgn '($complex $imaginary)) ;; previously checked also for (linearp z '$%i))
	   (setq rsgn ($csign ($realpart z)))
	   (setq isgn ($csign ($imagpart z)))
	   (cond ((and (eq '$zero rsgn) (eq '$zero isgn)) t)
		 ((or (memq rsgn '($neg $pos $pn)) (memq isgn '($neg $pos $pn))) nil)
		 (t `(($equal) ,a ,b))))

	  (t `(($equal) ,a ,b)))))

;; For each fact of the form equal(a,b) in the active context, do e : ratsubst(b,a,e).

(defun equal-facts-simp (e)
  (let ((f (margs ($facts))))
    (dolist (fi f e)
      (if (op-equalp fi '$equal)
	  (setq e ($ratsubst (nth 2 fi) (nth 1 fi) e))))))

(defun maxima-declared-arrayp (x)
  (and
   (symbolp x)
   (mget x 'array)
   (get (mget x 'array) 'array)))

(defun maxima-undeclared-arrayp (x)
  (and
   (symbolp x)
   (mget x 'hashar)
   (get (mget x 'hashar) 'array)))

(defun meqp (a b)
  ;; Check for some particular types before falling into the general case.
  (cond ((stringp a)
	 (and (stringp b) (equal a b)))
	((stringp b) nil)
	((arrayp a)
	 (and (arrayp b) (array-meqp a b)))
	((arrayp b) nil)
	((maxima-declared-arrayp a)
	 (and (maxima-declared-arrayp b) (maxima-declared-array-meqp a b)))
	((maxima-declared-arrayp b) nil)
	((maxima-undeclared-arrayp a)
	 (and (maxima-undeclared-arrayp b) (maxima-undeclared-array-meqp a b)))
	((maxima-undeclared-arrayp b) nil)
	(t
	 (let ((z) (sign))
	   (setq a (specrepcheck a))
	   (setq b (specrepcheck b))
	   (cond ((or (like a b)) (not (member a indefinites)))
		 ((or (member a indefinites) (member b indefinites)
		      (member a infinities) (member b infinities)) nil)
		 ((and (symbolp a) (or (eq t a) (eq nil a) (get a 'sysconst))
		       (symbolp b) (or (eq t b) (eq nil b) (get b 'sysconst))) nil)
		 ((or (mbagp a) (mrelationp a) (mbagp b) (mrelationp b))
		  (cond ((and (or (and (mbagp a) (mbagp b)) (and (mrelationp a) (mrelationp b)))
			      (eq (mop a) (mop b)) (= (length (margs a)) (length (margs b))))
			 (setq z (list-meqp (margs a) (margs b)))
			 (if (or (eq z t) (eq z nil)) z `(($equal) ,a ,b)))
			(t nil)))
		 ((and (op-equalp a 'lambda) (op-equalp b 'lambda)) (lambda-meqp a b))
		 (($setp a) (set-meqp a b))
		 ;; 0 isn't in the range of an exponential function.
		 ((or (and (mexptp a) (not (eq '$minf (third a))) (zerop1 b) (eq t (mnqp (second a) 0)))
		      (and (mexptp b) (not (eq '$minf (third b))) (zerop1 a) (eq t (mnqp (second b) 0))))
		  nil)

		 ;; lookup in assumption database
		 ((and (dcompare a b) (eq '$zero sign)))	; dcompare sets sign
		 ((memq sign '($pos $neg $pn)) nil)

		 ;; if database lookup failed, apply all equality facts
		 (t (meqp-by-csign (equal-facts-simp (sratsimp (sub a b))) a b)))))))

;; Two arrays are equal (according to MEQP)
;; if (1) they have the same dimensions,
;; and (2) their elements are MEQP.

(defun array-meqp (p q)
  (and
   (equal (array-dimensions p) (array-dimensions q))
   (progn
     (dotimes (i (array-total-size p))
       (let ((z (let ($ratprint)
		  (declare (special $ratprint))
		  (meqp (row-major-aref p i) (row-major-aref q i)))))
	 (cond ((eq z nil) (return-from array-meqp nil))
	       ((eq z t))
	       (t (return-from array-meqp `(($equal) ,p ,q))))))
     t)))

(defun maxima-declared-array-meqp (p q)
  (array-meqp (get (mget p 'array) 'array) (get (mget q 'array) 'array)))

(defun maxima-undeclared-array-meqp (p q)
  (and
   (alike1 (mfuncall '$arrayinfo p) (mfuncall '$arrayinfo q))
   (let ($ratprint)
     (declare (special $ratprint))
     (meqp ($listarray p) ($listarray q)))))

(defun list-meqp (p q)
  (let ((z))
    (cond ((or (null p) (null q)) (and (null p) (null q)))
	  (t
	   (setq z (meqp (car p) (car q)))
	   (cond ((eq z nil) nil)
		 ((or (eq z '$unknown) (op-equalp z '$equal)) z)
		 (t (list-meqp (cdr p) (cdr q))))))))

(defun lambda-meqp (a b)
  (let ((z))
    (cond ((= (length (second a)) (length (second b)))
	   (let ((x) (n ($length (second a))))
	     (dotimes (i n (push '(mlist) x)) (push (gensym) x))
	     (setq z (meqp (mfuncall '$apply a x) (mfuncall '$apply b x)))
	     (if (or (eq t z) (eq nil z)) z `(($equal) ,a ,b))))
	  (t nil))))

(defun set-meqp (a b)
  (let ((aa (equal-facts-simp a))
	(bb (equal-facts-simp b)))
    (cond ((or (not ($setp bb))
	       (and ($emptyp aa) (not ($emptyp bb)))
	       (and ($emptyp bb) (not ($emptyp aa))))
	   nil)
	  ((and (= (length aa) (length bb))
		(every #'(lambda (p q) (eq t (meqp p q))) (margs aa) (margs bb))) t)
	  ((set-not-eqp (margs aa) (margs bb)) nil)
	  (t `(($equal ,a ,b))))))

(defun set-not-eqp (a b)
  (catch 'done
    (dolist (ak a)
      (if (every #'(lambda (s) (eq nil (meqp ak s))) b) (throw 'done t)))
    (dolist (bk b)
      (if (every #'(lambda (s) (eq nil (meqp bk s))) a) (throw 'done t)))
    (throw 'done nil)))

(defun mgrp (a b)
  (let ((*complexsign* t))
    (setq a (sub a b))
    (let ((sgn (csign a)))
      (cond ((eq sgn '$pos) t)
	    ((eq sgn t) nil) ;; csign thinks a - b isn't real
	    ((member sgn '($neg $zero $nz) :test #'eq) nil)
	    (t `((mgreaterp) ,a 0))))))

(defun mlsp (x y)
  (mgrp y x))

(defun mgqp (a b)
  (let ((*complexsign* t))
    (setq a (sub a b))
    (let ((sgn (csign a)))
      (cond ((member sgn '($pos $zero $pz) :test #'eq) t)
	    ((eq sgn t) nil) ;; csign thinks a - b isn't real
	    ((eq sgn '$neg) nil)
	    (t `((mgeqp) ,a 0))))))

(defun mnqp (x y)
  (let ((b (meqp x y)))
    (cond ((eq b '$unknown) b)
	  ((or (eq b t) (eq b nil)) (not b))
	  (t `(($notequal) ,x ,y)))))

(defun c-$pn (o e)
  (list '(mnot) (c-$zero o e)))

(defun c-$zero (o e)
  (list '($equal) (lmul (nconc o e)) 0))

(defun c-$pos (o e)
  (cond ((null o) (list '(mnot) (list '($equal) (lmul e) 0)))
	((null e) (list '(mgreaterp) (lmul o) 0))
	(t (setq e (mapcar #'(lambda (l) (pow l 2)) e))
	   (list '(mgreaterp) (lmul (nconc o e)) 0))))

(defun c-$pz (o e)
  (cond ((null o) (list '(mnot) (list '($equal) (lmul e) 0)))
	((null e) (list '(mgeqp) (lmul o) 0))
	(t (setq e (mapcar #'(lambda (l) (pow l 2)) e))
	   (list '(mgeqp) (lmul (nconc o e)) 0))))

(defun sign* (x)
  (let (sign minus odds evens)
    (sign1 x)))

(defmfun infsimp* (e)
  (if (or (atom e) (and (free e '$inf) (free e '$minf)))
      e
      (infsimp e)))

;; Like WITH-COMPSPLT, but runs COMPSPLT-EQ instead
(defmacro with-compsplt-eq ((lhs rhs x) &body forms)
  `(multiple-value-bind (,lhs ,rhs) (compsplt-eq ,x)
     ,@forms))

;; Call FORMS with LHS and RHS bound to the splitting of EXPR by COMPSPLT.
(defmacro with-compsplt ((lhs rhs expr) &body forms)
  `(multiple-value-bind (,lhs ,rhs) (compsplt ,expr)
     ,@forms))

(defun sign1 (x)
  (setq x (specrepcheck x))
  (setq x (infsimp* x))
  (when (and *complexsign* (atom x) (eq x '$infinity))
    ;; In Complex Mode the sign of infinity is complex.
    (when *debug-compar* (format t "~& in sign1 detect $infinity.~%"))
    (return-from sign1 '$complex))
  (if (member x '($und $ind $infinity) :test #'eq)
      (if limitp '$pnz (merror (intl:gettext "sign: sign of ~:M is undefined.") x)))
  (prog (dum exp)
     (setq dum (constp x) exp x)
     (cond ((or (numberp x) (ratnump x)))
	   ((eq dum 'bigfloat)
	    (if (prog2 (setq dum ($bfloat x)) ($bfloatp dum))
		(setq exp dum)))
	   ((eq dum 'float)
	    (if (and (setq dum (numer x)) (numberp dum)) (setq exp dum)))
	   ((and (member dum '(numer symbol) :test #'eq)
		 (prog2 (setq dum (numer x))
		     (or (null dum)
			 (and (numberp dum)
			      (prog2 (setq exp dum)
				  (< (abs dum) 1.0e-6))))))
	    (cond ($signbfloat
		   (and (setq dum ($bfloat x)) ($bfloatp dum) (setq exp dum)))
		  (t (setq sign '$pnz evens nil odds (ncons x) minus nil)
		     (return sign)))))
     (or (and (not (atom x)) (not (mnump x)) (equal x exp)
	      (let (s o e m)
                (with-compsplt (lhs rhs x)
                  (dcompare lhs rhs)
                  (cond ((member sign '($pos $neg $zero) :test #'eq))
                        ((eq sign '$pnz) nil)
                        (t (setq s sign o odds e evens m minus)
                           (sign x)
                           (if (not (strongp sign s))
                               (if (and (eq sign '$pnz) (eq s '$pn))
                                   (setq sign s)
                                   (setq sign s odds o evens e minus m)))
                           t)))))
	 (sign exp))
     (return sign)))

(defun numer (x)
  (let (($numer t) ; currently, no effect on $float, but proposed to
        ($ratprint nil)
        result)
    ;; Catch a Lisp error, if a floating point overflow occurs.
    (setq result (let ((errset nil)) (errset ($float x))))
    (if result (car result) nil)))

(defun constp (x)
  (cond ((floatp x) 'float)
	((numberp x) 'numer)
	((symbolp x) (if (member x '($%pi $%e $%phi $%gamma) :test #'eq) 'symbol))
    ((atom x) nil)
	((eq (caar x) 'rat) 'numer)
	((eq (caar x) 'bigfloat) 'bigfloat)
	((specrepp x) (constp (specdisrep x)))
	(t (do ((l (cdr x) (cdr l)) (dum) (ans 'numer))
	       ((null l) ans)
	     (setq dum (constp (car l)))
	     (cond ((eq dum 'float) (return 'float))
		   ((eq dum 'numer))
		   ((eq dum 'bigfloat) (setq ans 'bigfloat))
		   ((eq dum 'symbol)
		    (if (eq ans 'numer) (setq ans 'symbol)))
		   (t (return nil)))))))

(mapcar #'(lambda (s) (putprop (first s) (second s) 'sign-function))
	(list
	 (list 'mtimes 'sign-mtimes)
	 (list 'mplus 'sign-mplus)
	 (list 'mexpt 'sign-mexpt)
	 (list '%log 'sign-log)
	 (list 'mabs 'sign-mabs)
	 (list '$min #'(lambda (x) (sign-minmax (caar x) (cdr x))))
	 (list '$max #'(lambda (x) (sign-minmax (caar x) (cdr x))))
	 (list '%csc #'(lambda (x) (sign (inv* (cons (ncons (zl-get (caar x) 'recip)) (cdr x))))))
	 (list '%csch #'(lambda (x) (sign (inv* (cons (ncons (zl-get (caar x) 'recip)) (cdr x))))))

	 (list '%signum #'(lambda (x) (sign (cadr x))))
	 (list '%erf #'(lambda (x) (sign (cadr x))))
	 (list '$li #'(lambda (x) 
			(let ((z (first (margs x))) (n (cadadr x)))
			  (if (and (mnump n) (eq t (mgrp z 0)) (eq t (mgrp 1 z))) (sign z) (sign-any x)))))))
(defmfun sign (x)
  (cond ((mnump x) (setq sign (rgrp x 0) minus nil odds nil evens nil))
	((and *complexsign* (symbolp x) (eq x '$%i))
	 ;; In Complex Mode the sign of %i is $imaginary.
	 (setq sign '$imaginary))
	((symbolp x) (if (eq x '$%i) (imag-err x)) (sign-any x))
	((and (consp x) (symbolp (caar x)) (not (specrepp x)) (get (caar x) 'sign-function))
	 (funcall (get (caar x) 'sign-function) x))
	((and (consp x) (not (specrepp x)) ($subvarp (mop x)) (get (mop (mop x)) 'sign-function))
	 (funcall (get (mop (mop x)) 'sign-function) x))
	((specrepp x) (sign (specdisrep x)))
	((kindp (caar x) '$posfun) (sign-posfun x))
	((and (kindp (caar x) '$oddfun) (kindp (caar x) '$increasing)) (sign-oddinc x))
	(t (sign-any x))))

(defun sign-any (x)
  (cond ((and *complexsign*
              (symbolp x)
              (decl-complexp x))
         ;; In Complex Mode look for symbols declared to be complex.
         (if ($featurep x '$imaginary)
             (setq sign '$imaginary)
             (setq sign '$complex)))
        ((and *complexsign*
              (not (atom x))
              (decl-complexp (caar x)))
         ;; A function f(x), where f is declared to be imaginary or complex.
         (if ($featurep (caar x) '$imaginary)
             (setq sign '$imaginary)
             (setq sign '$complex)))
	(t
	 (dcompare x 0)
	 (if (and $assume_pos
		  (member sign '($pnz $pz $pn) :test #'eq)
		  (if $assume_pos_pred
		      (let ((*x* x))
			(declare (special *x*))
			(is '(($assume_pos_pred) *x*)))
		      (mapatom x)))
	     (setq sign '$pos))
	 (setq minus nil evens nil
	       odds (if (not (member sign '($pos $neg $zero) :test #'eq))
			(ncons x))))))

(defun sign-mtimes (x)
  (setq x (cdr x))
  (do ((s '$pos) (m) (o) (e)) ((null x) (setq sign s minus m odds o evens e))
    (sign1 (car x))
    (cond ((eq sign '$zero) (return t))
	  ((and *complexsign* (eq sign '$complex))
	   ;; Found a complex factor. Return immediatly. The sign is $complex.
	   (return t))
	  ((and *complexsign* (eq sign '$imaginary))
	   ;; Found an imaginary factor. Look if we have already one.
	   (cond ((eq s '$imaginary)
		  ;; imaginary*imaginary is real. But remember the sign in m.
		  (setq s (if m '$pos '$neg) m (not m)))
		 (t (setq s sign))))
	  ((and *complexsign* (eq s '$imaginary))) ; continue the loop
	  ((eq sign '$pos))
	  ((eq sign '$neg) (setq s (flip s) m (not m)))
	  ((prog2 (setq m (not (eq m minus)) o (nconc odds o) e (nconc evens e))
	       nil))
	  ((eq s sign))
	  ((eq s '$pos) (setq s sign))
	  ((eq s '$neg) (setq s (flip sign)))
	  ((or (and (eq s '$pz) (eq sign '$nz))
	       (and (eq s '$nz) (eq sign '$pz)))
	   (setq s '$nz))
	  (t (setq s '$pnz)))
    (setq x (cdr x))))

(defun sign-mplus (x &aux s o e m)
  (cond ((signdiff x))
	((prog2 (setq s sign e evens o odds m minus) nil))
	((signsum x))
	((prog2 (cond ((strongp s sign))
		      (t (setq s sign e evens o odds m minus)))
	     nil))
	((and (not factored) (signfactor x)))
	((strongp sign s))
	(t (setq sign s evens e odds o minus m))))

(defun signdiff (x)
  (setq sign '$pnz)
  (with-compsplt (lhs rhs x)
    (if (and (mplusp lhs) (equal rhs 0)
             (null (cdddr lhs))
             (negp (cadr lhs)) (not (negp (caddr lhs))))
        (setq rhs (neg (cadr lhs)) lhs (caddr lhs)))
    (let (dum)
      (cond ((or (equal rhs 0) (mplusp lhs)) nil)
            ((and (member (constp rhs) '(numer symbol) :test #'eq)
                  (numberp (setq dum (numer rhs)))
                  (prog2 (setq rhs dum) nil)))
            ((mplusp rhs) nil)
            ((and (dcompare lhs rhs) (member sign '($pos $neg $zero) :test #'eq)))
            ((and (not (atom lhs)) (not (atom rhs))
                  (eq (caar lhs) (caar rhs))
                  (kindp (caar lhs) '$increasing))
             (sign (sub (cadr lhs) (cadr rhs)))
             t)
            ((and (not (atom lhs)) (eq (caar lhs) 'mabs)
                  (alike1 (cadr lhs) rhs))
             (setq sign '$pz minus nil odds nil evens nil) t)
            ((signdiff-special lhs rhs))))))

(defun signdiff-special (xlhs xrhs)
  ;; xlhs may be a constant
  (let ((sgn nil))
    (when (or (and (realp xrhs) (minusp xrhs)
		   (not (atom xlhs)) (eq (sign* xlhs) '$pos))
					; e.g. sign(a^3+%pi-1) where a>0
	      (and (mexptp xlhs)
		   ;; e.g. sign(%e^x-1) where x>0
		   (eq (sign* (caddr xlhs)) '$pos)
		   (or (and
			;; Q^Rpos - S, S<=1, Q>1
			(member (sign* (sub 1 xrhs)) '($pos $zero $pz) :test #'eq)
			(eq (sign* (sub (cadr xlhs) 1)) '$pos))
		       (and
			;; Qpos ^ Rpos - Spos => Qpos - Spos^(1/Rpos)
			(eq (sign* (cadr xlhs)) '$pos)
			(eq (sign* xrhs) '$pos)
			(eq (sign* (sub (cadr xlhs)
					(power xrhs (div 1 (caddr xlhs)))))
			    '$pos))))
	      (and (mexptp xlhs) (mexptp xrhs)
		   ;; Q^R - Q^T, Q>1, (R-T) > 0
		   ;; e.g. sign(2^x-2^y) where x>y
		   (alike1 (cadr xlhs) (cadr xrhs))
		   (eq (sign* (sub (cadr xlhs) 1)) '$pos)
		   (eq (sign* (sub (caddr xlhs) (caddr xrhs))) '$pos)))
      (setq sgn '$pos))

    ;; sign(sin(x)+c)
    (when (and (not (atom xlhs))
	       (member (caar xlhs) '(%sin %cos))
	       (zerop1 ($imagpart (cadr xlhs))))
      (cond ((eq (sign* (add xrhs 1)) '$neg)	;; c > 1
	     (setq sgn '$pos))
	    ((eq (sign* (add xrhs -1)) '$pos)	;; c < -1
	     (setq sgn '$neg))))
	   
    (when (and $useminmax (or (minmaxp xlhs) (minmaxp xrhs)))
      (setq sgn (signdiff-minmax xlhs xrhs)))
    (when sgn (setq sign sgn minus nil odds nil evens nil)
	  t)))

;;; Look for symbols with an assumption a > n or a < -n, where n is a number.
;;; For this case shift the symbol a -> a+n in a summation and multiplication.
;;; This handles cases like a>1 and b>1 gives sign(a+b-2) -> pos.

(defun sign-shift (expr)
  (do ((l (cdr expr) (cdr l))
       (fl nil)
       (acc nil))
      ((null l) (addn acc nil))
    (cond ((symbolp (car l))
           ;; Get the facts related to the symbol (car l)
           ;; Reverse the order to test the newest facts first.
           (setq fl (reverse (cdr (facts1 (car l)))))
           (push (car l) acc)
           (dolist (f fl)
             (cond ((and (eq (caar f) 'mgreaterp)
                         (mnump (caddr f))
                         (eq ($sign (caddr f)) '$pos))
                    ;; The case a > n, where a is a symbol and n a number.
                    ;; Add the number to the list of terms.
                    (return (push (caddr f) acc)))
                   ((and (eq (caar f) 'mgreaterp)
                         (mnump (cadr f))
                         (eq ($sign (cadr f)) '$neg))
                    ;; The case a < -n, where a is a symbol and n a number.
                    ;; Add the number to the list of terms.
                    (return (push (cadr f) acc))))))
          ((mtimesp (car l))
           (let ((acctimes) (flag))
             ;; Go through the factors of the multiplication.
             (dolist (ll (cdar l))
               (cond ((symbolp ll)
                      ;; Get the facts related to the symbol (car l)
                      ;; Reverse the order to test the newest facts first.
                      (setq fl (reverse (cdr (facts1 ll))))
                      (dolist (f fl)
                        (cond ((and (eq (caar f) 'mgreaterp)
                                    (mnump (caddr f))
                                    (eq ($sign (caddr f)) '$pos))
                               ;; The case a > n, where a is a symbol and n a
                               ;; number. Add the number to the list of terms.
                               (setq flag t)
                               (return (push (add ll (caddr f)) acctimes)))
                              ((and (eq (caar f) 'mgreaterp)
                                    (mnump (cadr f))
                                    (eq ($sign (cadr f)) '$neg))
                               ;; The case a < -n, where a is a symbol and n a
                               ;; number. Add the number to the list of terms.
                               (setq flag t)
                               (return (push (add ll (cadr f)) acctimes)))))
                        (when (not flag) (push ll acctimes)))
                     (t
                      (push ll acctimes))))
             (if flag
                 ;; If a shift has been done expand the factors.
                 (push ($multthru (muln acctimes nil)) acc)
                 (push (muln acctimes nil) acc))))
          (t
           (push (car l) acc)))))

(defun signsum (x)
  (setq x (sign-shift x))
  ;; x might be simplified to an atom in sign-shift.
  (when (atom x) (setq x (cons '(mplus) (list x))))
  (do ((l (cdr x) (cdr l)) (s '$zero))
      ((null l) (setq sign s minus nil odds (list x) evens nil)
       (cond (*complexsign*
	      ;; Because we have continued the loop in Complex Mode
	      ;; we have to look for the sign '$pnz and return nil.
	      (if (eq s '$pnz) nil t))
	     (t t))) ; in Real Mode return T
    ;; Call sign1 and not sign, because sign1 handles constant expressions.
    (sign1 (car l))
    (cond ((and *complexsign*
		(or (eq sign '$complex) (eq sign '$imaginary)))
	   ;; Found a complex or imaginary expression. The sign is $complex.
	   (setq sign '$complex odds nil evens nil minus nil)
	   (return t))
	  ((or (and (eq sign '$zero)
		    (setq x (sub x (car l))))
	       (and (eq s sign) (not (eq s '$pn))) ; $PN + $PN = $PNZ
	       (and (eq s '$pos) (eq sign '$pz))
	       (and (eq s '$neg) (eq sign '$nz))))
	  ((or (and (member sign '($pz $pos) :test #'eq) (member s '($zero $pz) :test #'eq))
	       (and (member sign '($nz $neg) :test #'eq) (member s '($zero $nz) :test #'eq))
	       (and (eq sign '$pn) (eq s '$zero)))
	   (setq s sign))
	  (t
	   (cond (*complexsign*
		  ;; In Complex Mode we have to continue the loop to look further
		  ;; for a complex or imaginay expression.
		  (setq s '$pnz))
		 (t
		  ;; In Real mode the loop stops when the sign is 'pnz.
		  (setq sign '$pnz odds (list x) evens nil minus nil)
		  (return nil)))))))

(defun signfactor (x)
  (let (y (factored t))
    (setq y (factor-if-small x))
    (cond ((or (mplusp y) (> (conssize y) 50.))
	   (setq sign '$pnz)
	   nil)
	  (t (sign y)))))

(defun factor-if-small (x)
  (if (< (conssize x) 51.)
      (let ($ratprint)
	(declare (special $ratprint))
	(factor x)) x))

(defun sign-mexpt (x)
  (let* ((expt (caddr x)) (base1 (cadr x))
	 (sign-expt (sign1 expt)) (sign-base (sign1 base1))
	 (evod (evod expt)))
    (cond ((and *complexsign* (or (eq sign-expt '$complex)
				  (eq sign-expt '$imaginary)
				  (eq sign-base '$complex)))
	   ;; Base is complex or exponent is complex or imaginary.
	   ;; The sign is $complex.
	   (when *debug-compar*
	     (format t "~&in SIGN-MEXPT for ~A, sign is complex.~%" x))
	   (setq sign '$complex))

	  ((and *complexsign*
		(eq sign-base '$neg)
		(eq (evod ($expand (mul 2 expt))) '$odd))
	   ;; Base is negative and the double of the exponent is odd.
	   ;; Result is imaginary.
	   (when *debug-compar*
	     (format t "~&in SIGN-MEXPT for ~A, sign is $imaginary.~%" x))
	   (setq sign '$imaginary))

	  ((and *complexsign*
		(eq sign-base '$imaginary))
	   ;; An imaginary base. Look for even or odd exponent.
	   (when *debug-compar*
	     (format t "~&in SIGN-MEXPT for ~A, base is $imaginary.~%" x))
	   (cond
	     ((and (integerp expt) (eq evod '$even))
	      (setq sign (if (eq (mod expt 4) 0) '$pz '$nz)))
	     ((and (integerp expt) (eq evod '$odd))
	      (setq sign '$imaginary
		    minus (if (eq (mod (- expt 1) 4) 0) t nil)))
	     (t (setq sign '$complex))))

	  ((and (eq sign-base '$zero)
		(member sign-expt '($zero $neg) :test #'eq))
	   (dbzs-err x))
	  ((eq sign-expt '$zero) (setq sign '$pos))
	  ((eq sign-base '$pos))
	  ((eq sign-base '$zero))
	  ((eq evod '$even)
	   (cond ((eq sign-expt '$neg)
		  (setq sign '$pos minus nil evens (ncons base1) odds nil))
		 ((member sign-base '($pn $neg) :test #'eq)
		  (setq sign '$pos minus nil
			evens (nconc odds evens)
			odds nil))
		 (t (setq sign '$pz minus nil
			  evens (nconc odds evens)
			  odds nil))))
	  ((and (member sign-expt '($neg $nz) :test #'eq)
		(member sign-base '($nz $pz $pnz) :test #'eq))
	   (setq sign (cond ((eq sign-base '$pnz) '$pn)
			    ((eq sign-base '$pz) '$pos)
			    ((eq sign-expt '$neg) '$neg)
			    (t '$pn))))
	  ((member sign-expt '($pz $nz $pnz) :test #'eq)
	   (cond ((eq sign-base '$neg)
		  (setq odds (ncons x) sign '$pn))))
	  ((eq sign-expt '$pn))
	  ((ratnump expt)
	   (cond ((mevenp (cadr expt))
		  (cond ((member sign-base '($pn $neg) :test #'eq)
			 (setq sign-base '$pos))
			((member sign-base '($pnz $nz) :test #'eq)
			 (setq sign-base '$pz)))
		  (setq evens (nconc odds evens)
			odds nil minus nil))
		 ((mevenp (caddr expt))
		  (cond ((and *complexsign* (eq sign-base '$neg))
			 ;; In Complex Mode the sign is $complex.
			 (setq sign-base (setq sign-expt '$complex)))
			(complexsign
			 ;; The only place the variable complexsign
			 ;; is used. Unfortunately, one routine in
			 ;; to_poly.lisp in /share/to_poly_solve depends on
			 ;; this piece of code. Perhaps we can remove
			 ;; the dependency. (12/2008)
			 (setq sign-base (setq sign-expt '$pnz)))
			((eq sign-base '$neg) (imag-err x))
			((eq sign-base '$pn)
			 (setq sign-base '$pos))
			((eq sign-base '$nz)
			 (setq sign-base '$zero))
			(t (setq sign-base '$pz)))))
	   (cond ((eq sign-expt '$neg)
		  (cond ((eq sign-base '$zero) (dbzs-err x))
			((eq sign-base '$pz)
			 (setq sign-base '$pos))
			((eq sign-base '$nz)
			 (setq sign-base '$neg))
			((eq sign-base '$pnz)
			 (setq sign-base '$pn)))))
	   (setq sign sign-base))
	  ((eq sign-base '$pos)
	   (setq sign '$pos))
	  ((eq sign-base '$neg)
	   (if (eq evod '$odd)
	       (setq sign '$neg)
	     (setq sign (if *complexsign* '$complex '$pn)))))))

;;; Determine the sign of log(expr). This function changes the special variable sign.

(defun sign-log (x)
  (setq x (cadr x))
  (setq sign
	(cond ((eq t (mgrp x 0))
	       (cond ((eq t (mgrp 1 x)) '$neg)
		     ((eq t (meqp x 1)) '$zero);; log(1) = 0.
		     ((eq t (mgqp 1 x)) '$nz)
		     ((eq t (mgrp x 1)) '$pos)
		     ((eq t (mgqp x 1)) '$pz)
		     ((eq t (mnqp x 1)) '$pn)
		     (t '$pnz)))
	      ((and  *complexsign* (eql 1 (cabs x))) '$imaginary)
	      (*complexsign* '$complex)
	      (t '$pnz))))

(defun sign-mabs (x)
  (sign (cadr x))
  (cond ((member sign '($pos $zero) :test #'eq))
	((member sign '($neg $pn) :test #'eq) (setq sign '$pos))
	(t (setq sign '$pz minus nil evens (nconc odds evens) odds nil))))

;;; Compare min/max

;;; Macros used in simp min/max
;;; If op is min, use body; if not, negate sign constants in body
;;; Used to avoid writing min and max code separately: just write the min code
;;; in such a way that its dual works for max
(defmacro minmaxforms (op &rest body)
  `(if (eq ,op '$min)
       ,@body
       ,@(sublis '(($neg . $pos)
		   ($nz . $pz)
		   ($pz . $nz)
		   ($pos . $neg)
		   ;;($zero . $zero)
		   ;;($pn . $pn)
		   ;;($pnz . $pnz)
		   ;;
		   ($max . $min)
		   ($min . $max)
		   ;;
		   ($inf . $minf)
		   ($minf . $inf))
		 body)))

(defun sign-minmax (op args)
  (do ((sgn (minmaxforms op '$pos)	;identity element for min
	    (sminmax op sgn (sign* (car l))))
       (end (minmaxforms op '$neg))
       (l args (cdr l)))
      ((or (null l) (eq sgn end))
       (setq minus nil
	     odds (if (not (member sgn '($pos $neg $zero) :test #'eq))
		      (ncons (cons (list op) args)))
	     evens nil
	     sign sgn))))

;; sign(op(a,b)) = sminmax(sign(a),sign(b))
;; op is $min/$max; s1/s2 in neg, nz, zero, pz, pos, pn, pnz
(defun sminmax (op s1 s2)
  (minmaxforms
   op
   ;; Many of these cases don't come up in simplified expressions,
   ;; since e.g. sign(a)=neg and sign(b)=pos implies min(a,b)=a
   ;; the order of these clauses is important
   (cond ((eq s1 '$pos) s2)
	 ((eq s2 '$pos) s1)
	 ((eq s1 s2) s1)
	 ((or (eq s1 '$neg) (eq s2 '$neg)) '$neg)
	 ((or (eq s1 '$nz) (eq s2 '$nz)) '$nz)
	 ((eq s1 '$zero) (if (eq s2 '$pz) '$zero '$nz))
	 ((eq s2 '$zero) (if (eq s1 '$pz) '$zero '$nz))
	 (t '$pnz))))

(defun minmaxp (ex)
  (cond ((atom ex) nil)
	((member (caar ex) '($min $max) :test #'eq) (caar ex))
	(t nil)))

(defun signdiff-minmax (l r)
  ;; sign of l-r; nil if unknown (not PNZ)
  (let* ((lm (minmaxp l))
	 (rm (minmaxp r))
	 (ll (if lm (cdr l)))
	 (rr (if rm (cdr r)))) ;distinguish between < and <= argument lists of min/max
    (minmaxforms
     (or rm lm)
     (cond ((eq lm rm)			; min(a,...) - min(b,...)
	    (multiple-value-bind (both onlyl onlyr) (intersect-info ll rr)
	      (declare (ignore both))
	      (cond ((null onlyl) '$pz)	; min(a,b) - min(a,b,c)
		    ((null onlyr) '$nz)	; min(a,b,c) - min(a,b)
		    ;; TBD: add processing for full onlyl/onlyr case
		    (t nil))))
	   ;; TBD: memalike and set-disjointp are crude approx.
	   ((null lm) (if (memalike l rr) '$pz)) ; a - min(a,b)
	   ((null rm) (if (memalike r ll) '$nz)) ; min(a,b) - a
	   (t				; min/max or max/min
	    (if (not (set-disjointp ll rr)) '$pz)))))) ; max(a,q,r) - min(a,s,t)

(defun intersect-info (a b)
  (let ((both nil)
	(onlya nil)
	(onlyb nil))
    (do-merge-asym
	a b
	#'like
	#'$orderlessp
	#'(lambda (x) (push x both))
	#'(lambda (x) (push x onlya))
	#'(lambda (x) (push x onlyb)))
    (values
     (reverse both)
     (reverse onlya)
     (reverse onlyb))))

;;; end compare min/max

(defun sign-posfun (xx)
  (declare (ignore xx))
  (setq sign '$pos
	minus nil
	odds nil
	evens nil))

(defun sign-oddinc (x)
  (sign (cadr x)))

(defun imag-err (x)
  (if sign-imag-errp
      (merror (intl:gettext "sign: argument cannot be imaginary; found ~M") x)
      (throw 'sign-imag-err t)))

(defun dbzs-err (x)
  (merror (intl:gettext "sign: division by zero in ~M") x))

;; Return true iff e is an expression with operator op1, op2,...,or opn.

(defun op-equalp (e &rest op)
  (and (consp e) (consp (car e)) (some #'(lambda (s) (equal (caar e) s)) op)))

;; Return true iff the operator of e is a Maxima relation operator.

(defun mrelationp (a)
  (op-equalp a 'mlessp 'mleqp 'mequal 'mgeqp 'mgreaterp))

;; This version of featurep applies ratdisrep to the first argument.  This
;; change allows things like featurep(rat(n),integer) --> true when n has
;; been declared an integer.

(defmfun $featurep (e ind)
  (setq e ($ratdisrep e))
  (cond ((not (symbolp ind))
         (merror 
           (intl:gettext "featurep: second argument must be a symbol; found ~M")
          ind))
        ;; Properties not related to the assume database.
        ((and (member ind opers) (get e ind)))
        ((and (member ind '($evfun $evflag $bindtest $nonarray))
              (get e (stripdollar ind))))
        ((and (eq ind '$noun)
              (get e (stripdollar ind))
              t))
        ((and (member ind '($scalar $nonscalar $mainvar))
              (mget e ind)))
        ((and (eq ind '$feature)
              (member e $features)
              t))
        ((eq ind '$alphabetic)
         (dolist (l (coerce e 'list) t)
           (when (not (member l *alphabet*)) (return nil))))
        ;; Properties related to the assume database.
        ((eq ind '$integer) (maxima-integerp e))
        ((eq ind '$noninteger) (nonintegerp e))
        ((eq ind '$even) (mevenp e))
        ((eq ind '$odd) (moddp e))
        ((eq ind '$real)
         (if (atom e)
             (or (numberp e) (kindp e '$real) (numberp (numer e)))
             (free ($rectform e) '$%i)))
        ((symbolp e) (kindp e ind))))

;; Give a function the maps-integers-to-integers property when it is integer
;; valued on the integers; give it the integer-valued property when its
;; range is a subset of the integers. What have I missed?

(setf (get 'mplus 'maps-integers-to-integers) t)
(setf (get 'mtimes 'maps-integers-to-integers) t)
(setf (get 'mabs 'maps-integers-to-integers) t)
(setf (get '$max 'maps-integers-to-integers) t)
(setf (get '$min 'maps-integers-to-integers) t)

(setf (get '$floor 'integer-valued) t)
(setf (get '$ceiling 'integer-valued) t)
(setf (get '$charfun 'integer-valued) t)

(defun maxima-integerp (x)
  (cond ((integerp x))
	((mnump x) nil)
        ((and (symbolp x)
              (or (kindp x '$integer)
                  (kindp x '$even)
                  (kindp x '$odd)
                  (check-integer-facts x))))
	(t (let ((x-op (and (consp x) (consp (car x)) (caar x))) ($prederror nil))
	     (cond ((null x-op) nil)
		   ((not (symbolp x-op)) nil) ; fix for mqapply at some point?
		   ((eq x-op 'mrat) (and (integerp (cadr x)) (equal (cddr x) 1)))
		   ;; mtimes and mplus are generally handled by this clause
		   ((and (get x-op 'maps-integers-to-integers) (every #'maxima-integerp (margs x))))
		   ;; Special case for 1/2*...*even
		   ((eq x-op 'mtimes)
		    (and (mnump (cadr x))
			 (integerp (mul 2 (cadr x)))
			 (every 'maxima-integerp (cddr x))
			 (some #'(lambda (s) ($featurep s '$even)) (rest (margs x)))))
		   ((eq x-op 'mexpt)
		    (and (every #'maxima-integerp (margs x))
			 (null (mevalp (mlsp (caddr x) 0)))))
		   ;; ! in Maxima allows real arguments
		   ((eq x-op 'mfactorial)
		    (and (maxima-integerp (cadr x))
			 (not (mevalp (mlsp (cadr x) 0)))))
		   ((eq x-op '%gamma)
		    (and (maxima-integerp (cadr x))
			 (not (mevalp (mlsp (cadr x) 1)))))
		   ;; other x-ops
		   ((or ($featurep ($verbify x-op) '$integervalued)
			(get x-op 'integer-valued))))))))

;; When called with mode 'integer look into the database for symbols which are 
;; declared to be equal to an integer or an expression which is an integer.
;; In mode 'evod look for odd and even expressions.
(defun check-integer-facts (x &optional (mode 'integer))
  (do ((factsl (cdr (facts1 x)) (cdr factsl))
       fact)
      ((null factsl) nil)
    (setq fact (car factsl))
    (cond ((and (not (atom fact))
                (eq (caar fact) '$equal))
           (cond ((and (symbolp (cadr fact))
                       (eq (cadr fact) x))
                  ;; Case equal(x,expr): Test expr to be an integer.
                  (cond ((symbolp (caddr fact))
                         (cond ((and (eq mode 'integer)
                                     (or (kindp (caddr fact) '$integer)
                                         (kindp (caddr fact) '$odd)
                                         (kindp (caddr fact) '$even)))
                                (return t))
                               ((eq mode 'evod)
                                (cond ((kindp (caddr fact) '$odd)
                                       (return '$odd))
                                      ((kindp (caddr fact) '$even)
                                       (return '$even))
                                      (t (return nil))))
                               (t (return nil))))
                        (t
                         (cond ((eq mode 'integer)
                                (return (maxima-integerp (caddr fact))))
                               ((eq mode 'evod)
                                (return (evod (caddr fact))))
                               (t (return nil))))))
                 ((and (symbolp (caddr fact))
                       (eq (caddr fact) x))
                  ;; Case equal(expr,x): Test expr to be an integer.
                  (cond ((symbolp (caddr fact))
                         (cond ((and (eq mode 'integer)
                                     (or (kindp (cadr fact) '$integer)
                                         (kindp (cadr fact) '$odd)
                                         (kindp (cadr fact) '$even)))
                                (return t))
                               ((eq mode 'evod)
                                (cond ((kindp (cadr fact) '$odd)
                                       (return '$odd))
                                      ((kindp (cadr fact) '$even)
                                       (return '$even))
                                      (t (return nil))))
                               (t (return nil))))
                        (t
                         (cond ((eq mode 'integer)
                                (return (maxima-integerp (cadr fact))))
                               ((eq mode 'evod)
                                (return (evod (cadr fact))))
                               (t (return nil)))))))))))

(defun nonintegerp (e)
  (cond ((and (symbolp e) (or (kindp e '$noninteger) (check-noninteger-facts e) (kindp e '$irrational)))) ;declared noninteger
    ((mnump e)
     (if (integerp e) nil t)) ;all floats are noninteger and integers are not nonintegers
    (($ratp e)
     (nonintegerp ($ratdisrep e)))
    (t (eq t (mgrp e (take '($floor) e))))))


;; Look into the database for symbols which are declared to be equal 
;; to a noninteger or an expression which is a noninteger.
(defun check-noninteger-facts (x)
  (do ((factsl (cdr (facts1 x)) (cdr factsl)))
      ((null factsl) nil)
    (cond ((and (not (atom (car factsl)))
                (eq (caar (car factsl)) '$equal))
           (cond ((and (symbolp (cadr (car factsl)))
                       (eq (cadr (car factsl)) x))
                  ;; Case equal(x,expr): Test expr to be a noninteger.
                  (cond ((symbolp  (caddr (car factsl)))
                         (if (kindp (caddr (car factsl)) '$noninteger)
                             (return t)))
                        (t
                         (return (nonintegerp (caddr (car factsl)))))))
                 ((and (symbolp (caddr (car factsl)))
                       (eq (caddr (car factsl)) x))
                  ;; Case equal(expr,x): Test expr to be a noninteger.
                  (cond ((symbolp  (cadr (car factsl)))
                         (if (kindp (cadr (car factsl)) '$noninteger)
                             (return t)))
                        (t
                         (return (nonintegerp (cadr (car factsl))))))))))))

(defun intp (l)
  (every #'maxima-integerp (cdr l)))

(defmfun mevenp (e)
  (cond ((integerp e) (not (oddp e)))
	((mnump e) nil)
	(t (eq '$even (evod e)))))

(defmfun moddp (e)
  (cond ((integerp e) (oddp e))
	((mnump e) nil)
	(t (eq '$odd (evod e)))))

;; An extended evod that recognizes that abs(even) is even and
;; abs(odd) is odd.

(defmfun evod (e)
  (cond ((integerp e) (if (oddp e) '$odd '$even))
	((mnump e) nil)
        ((atom e)
         (cond ((kindp e '$odd) '$odd)
	       ((kindp e '$even) '$even)
	       ;; Check the database for facts.
	       ((symbolp e) (check-integer-facts e 'evod))))
	((eq 'mtimes (caar e)) (evod-mtimes e))
	((eq 'mplus (caar e)) (evod-mplus e))
	((eq 'mabs (caar e)) (evod (cadr e))) ;; extra code
	((eq 'mexpt (caar e)) (evod-mexpt e))))

(defun evod-mtimes (x)
  (do ((l (cdr x) (cdr l)) (flag '$odd))
      ((null l) flag)
    (setq x (evod (car l)))
    (cond ((eq '$odd x))
	  ((eq '$even x) (setq flag '$even))
	  ((maxima-integerp (car l)) (cond ((eq '$odd flag) (setq flag nil))))
	  (t (return nil)))))

(defun evod-mplus (x)
  (do ((l (cdr x) (cdr l)) (flag))
      ((null l) (cond (flag '$odd) (t '$even)))
    (setq x (evod (car l)))
    (cond ((eq '$odd x) (setq flag (not flag)))
	  ((eq '$even x))
	  (t (return nil)))))

(defun evod-mexpt (x)
  (when (and (integerp (caddr x)) (not (minusp (caddr x))))
    (evod (cadr x))))

(declare-top (special mgqp mlqp))

(defmode cl ()
  (atom (selector +labs) (selector -labs) (selector data)))

(defmacro c-dobj (&rest x)
  `(list ,@x))

(defun dcompare (x y)
  (setq odds (list (sub x y)) evens nil minus nil
	sign (cond ((eq x y) '$zero)
		   ((or (eq '$inf x) (eq '$minf y)) '$pos)
		   ((or (eq '$minf x) (eq '$inf y)) '$neg)
		   (t (dcomp x y)))))

(defun dcomp (x y)
  (let (mgqp mlqp)
    (setq x (dinternp x) y (dinternp y))
    (cond ((or (null x) (null y)) '$pnz)
	  ((progn (clear) (deq x y) (sel y +labs)))
	  (t '$pnz))))

(defun deq (x y)
  (cond ((dmark x '$zero) nil)
	((eq x y))
	(t (do ((l (sel x data) (cdr l))) ((null l))
	     (if (and (visiblep (car l)) (deqf x y (car l))) (return t))))))

(defun deqf (x y f)
  (cond ((eq 'meqp (caar f))
	 (if (eq x (cadar f)) (deq (caddar f) y) (deq (cadar f) y)))
	((eq 'mgrp (caar f))
	 (if (eq x (cadar f)) (dgr (caddar f) y) (dls (cadar f) y)))
	((eq 'mgqp (caar f))
	 (if (eq x (cadar f)) (dgq (caddar f) y) (dlq (cadar f) y)))
	((eq 'mnqp (caar f))
	 (if (eq x (cadar f)) (dnq (caddar f) y) (dnq (cadar f) y)))))

(defun dgr (x y)
  (cond ((dmark x '$pos) nil)
	((eq x y))
	(t (do ((l (sel x data) (cdr l)))
	       ((null l))
	     (when (or mlqp (and (visiblep (car l)) (dgrf x y (car l))))
	       (return t))))))

(defun dgrf (x y f)
  (cond ((eq 'mgrp (caar f)) (if (eq x (cadar f)) (dgr (caddar f) y)))
	((eq 'mgqp (caar f)) (if (eq x (cadar f)) (dgr (caddar f) y)))
	((eq 'meqp (caar f))
	 (if (eq x (cadar f))
	     (dgr (caddar f) y)
	     (dgr (cadar f) y)))))

(defun dls (x y)
  (cond ((dmark x '$neg) nil)
	((eq x y))
	(t (do ((l (sel x data) (cdr l)))
	       ((null l))
	     (when (or mgqp (and (visiblep (car l)) (dlsf x y (car l))))
	       (return t))))))

(defun dlsf (x y f)
  (cond ((eq 'mgrp (caar f)) (if (eq x (caddar f)) (dls (cadar f) y)))
	((eq 'mgqp (caar f)) (if (eq x (caddar f)) (dls (cadar f) y)))
	((eq 'meqp (caar f))
	 (if (eq x (cadar f)) (dls (caddar f) y) (dls (cadar f) y)))))

(defun dgq (x y)
  (cond ((member (sel x +labs) '($pos $zero) :test #'eq) nil)
	((eq '$nz (sel x +labs)) (deq x y))
	((eq '$pn (sel x +labs)) (dgr x y))
	((dmark x '$pz) nil)
	((eq x y) (setq mgqp t) nil)
	(t (do ((l (sel x data) (cdr l))) ((null l))
	     (if (and (visiblep (car l)) (dgqf x y (car l))) (return t))))))

(defun dgqf (x y f)
  (cond ((eq 'mgrp (caar f)) (if (eq x (cadar f)) (dgr (caddar f) y)))
	((eq 'mgqp (caar f)) (if (eq x (cadar f)) (dgq (caddar f) y)))
	((eq 'meqp (caar f))
	 (if (eq x (cadar f)) (dgq (caddar f) y) (dgq (cadar f) y)))))

(defun dlq (x y)
  (cond ((member (sel x +labs) '($neg $zero) :test #'eq) nil)
	((eq '$pz (sel x +labs)) (deq x y))
	((eq '$pn (sel x +labs)) (dls x y))
	((dmark x '$nz) nil)
	((eq x y) (setq mlqp t) nil)
	(t (do ((l (sel x data) (cdr l))) ((null l))
	     (if (and (visiblep (car l)) (dlqf x y (car l))) (return t))))))

(defun dlqf (x y f)
  (cond ((eq 'mgrp (caar f)) (if (eq x (caddar f)) (dls (cadar f) y)))
	((eq 'mgqp (caar f)) (if (eq x (caddar f)) (dlq (cadar f) y)))
	((eq 'meqp (caar f))
	 (if (eq x (cadar f)) (dlq (caddar f) y) (dlq (cadar f) y)))))

(defun dnq (x y)
  (cond ((member (sel x +labs) '($pos $neg) :test #'eq) nil)
	((eq '$pz (sel x +labs)) (dgr x y))
	((eq '$nz (sel x +labs)) (dls x y))
	((dmark x '$pn) nil)
	((eq x y) nil)
	(t (do ((l (sel x data) (cdr l))) ((null l))
	     (if (and (visiblep (car l)) (dnqf x y (car l))) (return t))))))

(defun dnqf (x y f)
  (cond ((eq 'meqp (caar f))
	 (if (eq x (cadar f)) (dnq (caddar f) y) (dnq (cadar f) y)))))

;; mark sign of x to be m, relative to current comparison point for dcomp.
;; returns true if this fact is already known, nil otherwise.
(defun dmark (x m)
  (cond ((eq m (sel x +labs)))
	((and dbtrace (prog1
			  t
			(mtell (intl:gettext "DMARK: marking ~M ~M") (if (atom x) x (car x)) m))
	      nil))
	(t
	 (push x +labs)
	 (push+sto (sel x +labs) m)
	 nil)))

(defun daddgr (flag x)
  (with-compsplt (lhs rhs x)
    (mdata flag 'mgrp (dintern lhs) (dintern rhs))
    (if (or (mnump lhs) (constant lhs))
        (list '(mlessp) rhs lhs)
        (list '(mgreaterp) lhs rhs))))

(defun daddgq (flag x)
  (with-compsplt (lhs rhs x)
    (mdata flag 'mgqp (dintern lhs) (dintern rhs))
    (if (or (mnump lhs) (constant lhs))
        (list '(mleqp) rhs lhs)
        (list '(mgeqp) lhs rhs))))

(defun daddeq (flag x)
  (with-compsplt-eq (lhs rhs x)
    (mdata flag 'meqp (dintern lhs) (dintern rhs))
    (list '($equal) lhs rhs)))

(defun daddnq (flag x)
  (with-compsplt-eq (lhs rhs x)
    (cond ((and (mtimesp lhs) (equal rhs 0))
           (dolist (term (cdr lhs)) (daddnq flag term)))
          ((and (mexptp lhs) (mexptp rhs)
                (integerp (caddr lhs)) (integerp (caddr rhs))
                (equal (caddr lhs) (caddr rhs)))
           (mdata flag 'mnqp (dintern (cadr lhs)) (dintern (cadr rhs)))
           (cond ((not (oddp (caddr lhs)))
                  (mdata flag 'mnqp (dintern (cadr lhs))
                         (dintern (neg (cadr rhs)))))))
          (t (mdata flag 'mnqp (dintern lhs) (dintern rhs))))
    (list '(mnot) (list '($equal) lhs rhs))))

;; The following functions are used by asksign to write answers into the 
;; database. We make sure that these answers are written into the global 
;; context '$initial and not in a local context which might be generated during
;; the evaluation phase and which will be destroyed before the evaluation has 
;; finshed.
;; The additional facts are removed from the global context '$initial after 
;; finishing the evaluation phase of meval with a call to clearsign.

(defun tdpos (x)
  (let ((context '$initial))
    (daddgr t x)
    (push (cons x '$pos) *local-signs*)))

(defun tdneg (x)
  (let ((context '$initial))
    (daddgr t (neg x))
    (push (cons x '$neg) *local-signs*)))

(defun tdzero (x)
  (let ((context '$initial))
    (daddeq t x)
    (push (cons x '$zero) *local-signs*)))

(defun tdpn (x)
  (let ((context '$initial))
    (daddnq t x)
    (push (cons x '$pn) *local-signs*)))

(defun tdpz (x)
  (let ((context '$initial))
    (daddgq t x)
    (push (cons x '$pz) *local-signs*)))

(defun compsplt-eq (x)
  (with-compsplt (lhs rhs x)
    (when (equal lhs 0)
      (setq lhs rhs rhs 0))
    (if (and (equal rhs 0)
             (or (mexptp lhs)
                 (and (not (atom lhs))
                      (kindp (caar lhs) '$oddfun)
                      (kindp (caar lhs) '$increasing))))
        (setq lhs (cadr lhs)))
    (values lhs rhs)))

(defun mdata (flag r x y)
  (if flag
      (mfact r x y)
      (mkill r x y)))

(defun mfact (r x y)
  (let ((f (datum (list r x y))))
    (cntxt f context)
    (addf f x)
    (addf f y)))

(defun mkill (r x y)
  (let ((f (car (datum (list r x y)))))
    (kcntxt f context)
    (maxima-remf f x)
    (maxima-remf f y)))

(defun mkind (x y)
  (kind (dintern x) (dintern y)))

(defmfun rgrp (x y)
  (cond ((or ($bfloatp x) ($bfloatp y))
	 (setq x (let (($float2bf t))
		   (declare (special $float2bf))
		   (cadr ($bfloat (sub x y)))) y 0))
	((numberp x)
	 (cond ((numberp y))
	       (t (setq x (* x (caddr y))
			y (cadr y)))))
	((numberp y)
	 (setq y (* (caddr x) y) x (cadr x)))
	(t (let ((dummy x))
	     (setq x (* (cadr x) (caddr y)))
	     (setq y (* (caddr dummy) (cadr y))))))
  (cond ((> x y) '$pos)
	((> y x) '$neg)
	(t '$zero)))

(defun mcons (x l)
  (cons (car l) (cons x (cdr l))))

(defun flip (s)
  (cond ((eq '$pos s) '$neg)
	((eq '$neg s) '$pos)
	((eq '$pz s) '$nz)
	((eq '$nz s) '$pz)
	(t s)))

(defun strongp (x y)
  (cond ((eq '$pnz y))
	((eq '$pnz x) nil)
	((member y '($pz $nz $pn) :test #'eq))))

(defun munformat (form)
  (if (atom form)
      form
      (cons (caar form) (mapcar #'munformat (cdr form)))))

(defmfun declarekind (var prop)	; This function is for $DECLARE to use.
  (let (prop2)
    (cond ((truep (list 'kind var prop)) t)
	  ((or (falsep (list 'kind var prop))
	       (and (setq prop2 (assoc prop '(($integer . $noninteger)
					      ($noninteger . $integer)
					      ($increasing . $decreasing)
					      ($decreasing . $increasing)
					      ($symmetric . $antisymmetric)
					      ($antisymmetric . $symmetric)
					      ($oddfun . $evenfun)
					      ($evenfun . $oddfun)) :test #'eq))
		    (truep (list 'kind var (cdr prop2)))))
	   (merror (intl:gettext "declare: inconsistent declaration ~:M") `(($declare) ,var ,prop)))
	  (t (mkind var prop) t))))

;;;  These functions reformat expressions to be stored in the data base.

;; Return a list of all the atoms in X that aren't either numbers or constants
;; whose numerical value we know.
(defun unknown-atoms (x)
  (let (($listconstvars t))
    (declare (special $listconstvars))
    (remove-if (lambda (sym) (mget sym '$numer))
               (cdr ($listofvars x)))))

;; COMPSPLT
;;
;; Split X into (values LHS RHS) so that X>0 <=> LHS > RHS. This is supposed to
;; be a canonical form for X that can be stored in the database and then looked
;; up in future.
;;
;; This uses two worker routines: COMPSPLT-SINGLE and COMPSPLT-GENERAL. The
;; former assumes that X only contains one symbol value is not known (eg not %e,
;; %pi etc.). The latter tries to deal with arbitrary collections of variables.
(defun compsplt (x)
  (cond
    ((or (atom x) (atom (car x))) (values x 0))
    ((null (cdr (unknown-atoms x))) (compsplt-single x))
    (t (compsplt-general x))))

(defun compsplt-single (x)
  (do ((exp (list x 0)) (success nil))
      ((or success (symbols (cadr exp))) (values (car exp) (cadr exp)))
    (cond ((atom (car exp)) (setq success t))
	  ((eq (caaar exp) 'mplus)  (setq exp (splitsum exp)))
	  ((eq (caaar exp) 'mtimes) (setq exp (splitprod exp)))
	  (t (setq success t)))))

(defun compsplt-general (x)
  (cond
    ;; If x is an atom or a single level list then we won't change it any.
    ((or (atom x) (atom (car x)))
     (values x 0))
    ;; If x is a negative expression but not a sum, then get rid of the
    ;; negative sign.
    ((negp x) (values 0 (neg x)))
    ;; If x is not a sum, or is a sum with more than 2 terms, or has some
    ;; symbols common to both summands, then do nothing.
    ((or (cdddr x)
         (not (eq (caar x) 'mplus))
         (intersect* (symbols (cadr x)) (symbols (caddr x))))
     (values x 0))
    ;; -x + y gives (y, x)
    ((and (or (negp (cadr x)) (mnump (cadr x)))
          (not (negp (caddr x))))
     (values (caddr x) (neg (cadr x))))
    ;; x - y gives (x, y)
    ((and (not (negp (cadr x)))
          (or (negp (caddr x)) (mnump (caddr x))))
     (values (cadr x) (neg (caddr x))))
    ;; - x - y gives (0, x+y)
    ((and (negp (cadr x)) (negp (caddr x)))
     (values 0 (neg x)))
    ;; Give up! (x, 0)
    (t
     (values x 0))))

(defun negp (x)
  (and (mtimesp x) (mnegp (cadr x))))

(defun splitsum (exp)
  (do ((llist (cdar exp) (cdr llist))
       (lhs1 (car exp))
       (rhs1 (cadr exp)))
      ((null llist)
       (if (mplusp lhs1) (setq success t))
       (list lhs1 rhs1))
    (cond ((member '$inf llist :test #'eq)
	   (setq rhs1 (add2 '$inf (sub* rhs1 (addn llist t)))
		 lhs1 (add2 '$inf (sub* lhs1 (addn llist t)))
		 llist nil))
	  ((member '$minf llist :test #'eq)
	   (setq rhs1 (add2 '$minf (sub* rhs1 (addn llist t)))
		 lhs1 (add2 '$minf (sub* lhs1 (addn llist t)))
		 llist nil))
	  ((null (symbols (car llist)))
	   (setq lhs1 (sub lhs1 (car llist))
		 rhs1 (sub rhs1 (car llist)))))))

(defun splitprod (exp)
  (do ((flipsign)
       (lhs1 (car exp))
       (rhs1 (cadr exp))
       (llist (cdar exp) (cdr llist))
       (sign)
       (minus)
       (evens)
       (odds))
      ((null llist)
       (if (mtimesp lhs1) (setq success t))
       (cond (flipsign
              (setq success t)
              (list rhs1 lhs1))
	     (t (list lhs1 rhs1))))
    (when (null (symbols (car llist)))
      (sign (car llist))
      (if (eq sign '$neg) (setq flipsign (not flipsign)))
      (if (member sign '($pos $neg) :test #'eq)
	  (setq lhs1 (div lhs1 (car llist)) 
	        rhs1 (div rhs1 (car llist)))))))

(defun symbols (x)
  (let (($listconstvars %initiallearnflag))
    (declare (special $listconstvars))
    (cdr ($listofvars x))))

;; %initiallearnflag is only necessary so that %PI, %E, etc. can be LEARNed.

(defun initialize-numeric-constant (c)
  (setq %initiallearnflag t)
  (let ((context '$global))
    (learn `((mequal) ,c ,(mget c '$numer)) t))
  (setq %initiallearnflag nil))

(eval-when (:load-toplevel :execute)
  (mapc #'true*
	'(;; even and odd are integer
	  (par ($even $odd) $integer)

; Cutting out inferences for integer, rational, real, complex (DK 10/2009).
;	  (kind $integer $rational)
;	  (par ($rational $irrational) $real)
;	  (par ($real $imaginary) $complex)
	  
	  ;; imaginary is complex
	  (kind $imaginary $complex)
	  
          ;; Declarations for constants
          (kind $%i     $noninteger)
          (kind $%i     $imaginary)
          (kind $%e     $noninteger)
          (kind $%e     $real)
          (kind $%pi    $noninteger)
          (kind $%pi    $real)
          (kind $%gamma $noninteger)
          (kind $%gamma $real)
          (kind $%phi   $noninteger)
          (kind $%phi   $real)
          (kind $%pi $irrational)
	  (kind $%e $irrational)
	  (kind $%phi $irrational)
	  
          ;; Declarations for functions
	  (kind %log $increasing)
	  (kind %atan $increasing) (kind %atan $oddfun)
	  (kind $delta $evenfun)
	  (kind %sinh $increasing) (kind %sinh $oddfun)
	  (kind %cosh $posfun)
	  (kind %tanh $increasing) (kind %tanh $oddfun)
	  (kind %coth $oddfun)
	  (kind %csch $oddfun)
	  (kind %sech $posfun)
	  (kind %asinh $increasing) (kind %asinh $oddfun)
	  ;; It would be nice to say %acosh is $posfun, but then
	  ;; assume(xn<0); abs(acosh(xn)) -> acosh(xn), which is wrong
	  ;; since acosh(xn) is complex.
	  (kind %acosh $increasing)
	  (kind %atanh $increasing) (kind %atanh $oddfun)
	  (kind $li $complex)
	  (kind $lambert_w $complex)
	  (kind %cabs $complex)))

  ;; Create an initial context for the user which is a subcontext of $global.
  ($newcontext '$initial))