/usr/share/maxima/5.32.1/src/specfn.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module specfn)
;;*********************************************************************
;;**************** ******************
;;**************** Macsyma Special Function Routines ******************
;;**************** ******************
;;*********************************************************************
(load-macsyma-macros rzmac)
(load-macsyma-macros mhayat)
(defmacro mnumericalp (arg)
`(or (floatp ,arg) (and (or $numer $float) (integerp ,arg))))
;; subtitle polylogarithm routines
(declare-top (special $zerobern tlist %e-val))
(defun lisimp (expr vestigial z)
(declare (ignore vestigial))
(let ((s (simpcheck (car (subfunsubs expr)) z))
($zerobern t)
(a))
(subargcheck expr 1 1 '$li)
(setq a (simpcheck (car (subfunargs expr)) z))
(or (cond ((zerop1 a) a)
((not (integerp s)) ())
((= s 1)
(if (onep1 a)
(simp-domain-error
(intl:gettext "li: li[~:M](~:M) is undefined.") s a)
(neg (take '(%log) (sub 1 a)))))
((= s 0) (div a (sub 1 a)))
((< s 0) (lisimp-negative-integer s a))
((and (integerp a) (> s 1)
(cond ((= a 1) (take '(%zeta) s))
((= a -1)
(mul (add -1 (inv (expt 2 (- s 1))))
(take '(%zeta) s))))))
((= s 2) (li2simp a))
((= s 3) (li3simp a)))
(eqtest (subfunmakes '$li (ncons s) (ncons a))
expr))))
;; Expand the Polylogarithm li[s](z) for a negative integer parameter s.
(defun lisimp-negative-integer (s z)
(let ((n (- s)))
(mul (inv (power (sub 1 z) (+ n 1)))
(let ((index1 (gensumindex))
($simpsum t))
(dosum
(mul (power z index1)
(let ((index2 (gensumindex)))
(dosum
(mul (power -1 (add index2 1))
(take '(%binomial) (+ n 1) (sub index2 1))
(power (add 1 (sub index1 index2)) n))
index2 1 index1 t)))
index1 1 n t)))))
(defun li2simp (arg)
(cond ((mnumericalp arg) (li2numer (float arg)))
((alike1 arg '((rat) 1 2))
(add (div (take '(%zeta) 2) 2)
(mul '((rat simp) -1 2)
(power (take '(%log) 2) 2))))))
(defun li3simp (arg)
(cond ((mnumericalp arg) (li3numer (float arg)))
((alike1 arg '((rat) 1 2))
(add (mul '((rat simp) 7 8) (take '(%zeta) 3))
(mul (div (take '(%zeta) 2) -2) (take '(%log) 2))
(mul '((rat simp) 1 6) (power (take '(%log) 2) 3))))))
;; exponent in first term of taylor expansion of $li is one
(defun li-ord (subl)
(ncons (rcone)))
;; taylor expansion of $li is its definition:
;; x + x^2/2^s + x^3/3^s + ...
(defun exp$li-fun (pw subl l) ; l is a irrelevant here
(setq subl (car subl)) ; subl is subscript of li
(prog ((e 0) ; e is exponent of current term
npw) ; npw is exponent of last term needed
(declare (fixnum e))
(setq npw (/ (float (car pw)) (float (cdr pw))))
(setq
l (cons '((0 . 1) 0 . 1)
nil))
a (setq e (1+ e))
(if (> e npw) (return l)
(rplacd (last l)
`(((,e . 1)
. ,(prep1 (m^ e (m- subl)))))))
(go a)))
;; computes first pw terms of asymptotic expansion of $li[s](z)
;;
;; pw should be < (1/2)*s or gamma term is undefined
;;
;; Wood, D.C. (June 1992). The Computation of Polylogarithms. Technical Report 15-92
;; University of Kent Computing Laboratory.
;; http://www.cs.kent.ac.uk/pubs/1992/110
;; equation 11.1
(defun li-asymptotic-expansion (pw s z)
(m+l (loop for k from 0 to pw collect
(m* (m^ -1 k)
(m- 1 (m^ 2 (m- 1 (m* 2 k))))
(m^ (m* 2 '$%pi) (m* 2 k))
(m// ($bern (m* 2 k))
`((mfactorial) ,(m* 2 k)))
(m// (m^ `((%log) ,(m- z)) (m- 2 (m* 2 k)))
($gamma (m+ s 1 (m* -2 k))))))))
;; Numerical evaluation for Chebyschev expansions of the first kind
(defun cheby (x chebarr)
(let ((bn+2 0.0) (bn+1 0.0))
(do ((i (floor (aref chebarr 0)) (1- i)))
((< i 1) (- bn+1 (* bn+2 x)))
(setq bn+2
(prog1 bn+1 (setq bn+1 (+ (aref chebarr i)
(- (* 2.0 x bn+1) bn+2))))))))
(defun cheby-prime (x chebarr)
(- (cheby x chebarr)
(* (aref chebarr 1) 0.5)))
;; These should really be calculated with minimax rational approximations.
;; Someone has done LI[2] already, and this should be updated; I haven't
;; seen any results for LI[3] yet.
(defun li2numer (y)
;; Spence's function can be used to compute li[2] for 0 <= x <= 1.
;; To compute the rest, we need the following identities:
;;
;; li[2](x) = -li[2](1/x)-log(-x)^2/2-%pi^2/6
;; li[2](x) = li[2](1/(1-x)) + log(1-x)*log((1-x)/x^2)/2 - %pi^2/6
;;
;; The first tells us how to compute li[2] for x > 1. The result is complex.
;; For x < 0, the second can be used, and the result is real.
;;
;; (See http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog2/17/01/01/)
(labels ((li2 (x)
(cond ((< x 0)
(+ (li2 (/ (- 1 x)))
(* 0.5 (log (- 1 x)) (log (/ (- 1 x) (* x x))))
(- (/ (cl:expt (float pi) 2) 6))))
((< x 1)
(slatec:dspenc x))
((= x 1)
(/ (cl:expt (float pi) 2) 6))
(t
;; li[2](x) = -li[2](1/x)-log(-x)^2/2-%pi^2/6
(- (+ (li2 (/ x))
(/ (cl:expt (cl:log (- x)) 2) 2)
(/ (cl:expt (float pi) 2) 6)))))))
(complexify (li2 y))))
(defun li3numer (x)
(cond ((= x 0.0) 0.0)
((= x 1.0) 1.20205690)
((< x -1.0)
(- (chebyli3 (/ x)) (* 1.64493407 (log (- x)))
(/ (expt (log (- x)) 3) 6.0)))
((not (> x 0.5)) (chebyli3 x))
((not (> x 2.0))
(let ((fac (* (expt (log x) 2) 0.5)))
(m+t (+ 1.20205690
(- (* (log x)
(- 1.64493407 (chebyli2 (- 1.0 x))))
(chebys12 (- 1.0 x))
(* fac
(log (cond ((< x 1.0) (- 1.0 x))
((1- x)))))))
(cond ((< x 1.0) 0)
((m*t (* fac -3.14159265) '$%i))))))
(t (m+t (+ (chebyli3 (/ x)) (* 3.28986813 (log x))
(/ (expt (log x) 3) -6.0))
(m*t (* -1.57079633 (expt (log x) 2)) '$%i)))))
(defvar *li2* (make-array 15. :initial-contents '(14.0 1.93506430 .166073033 2.48793229e-2
4.68636196e-3 1.0016275e-3 2.32002196e-4
5.68178227e-5 1.44963006e-5 3.81632946e-6
1.02990426e-6 2.83575385e-7 7.9387055e-8
2.2536705e-8 6.474338e-9)
:element-type 'flonum))
(defvar *li3* (make-array 15. :initial-contents '(14.0 1.95841721 8.51881315e-2 8.55985222e-3
1.21177214e-3 2.07227685e-4 3.99695869e-5
8.38064066e-6 1.86848945e-6 4.36660867e-7
1.05917334e-7 2.6478920e-8 6.787e-9
1.776536e-9 4.73417e-10)
:element-type 'flonum))
(defvar *s12* (make-array 18. :initial-contents '(17.0 1.90361778 .431311318 .100022507
2.44241560e-2 6.22512464e-3 1.64078831e-3
4.44079203e-4 1.22774942e-4 3.45398128e-5
9.85869565e-6 2.84856995e-6 8.31708473e-7
2.45039499e-7 7.2764962e-8 2.1758023e-8 6.546158e-9
1.980328e-9)
:element-type 'flonum))
(defun chebyli2 (x)
(* x (cheby-prime (/ (1+ (* x 4)) 3) *li2*)))
(defun chebyli3 (x)
(* x (cheby-prime (/ (1+ (* 4 x)) 3) *li3*)))
(defun chebys12 (x)
(* (/ (expt x 2) 4)
(cheby-prime (/ (1+ (* 4 x)) 3) *s12*)))
;; subtitle polygamma routines
;; gross efficiency hack, exp is a function of *k*, *k* should be mbind'ed
(defun msum (exp lo hi)
(if (< hi lo)
0
(let ((sum 0))
(do ((*k* lo (1+ *k*)))
((> *k* hi) sum)
(declare (special *k*))
(setq sum (add2 sum (meval exp)))))))
(defun pole-err (exp)
(declare (special errorsw))
(cond (errorsw (throw 'errorsw t))
(t (merror (intl:gettext "Pole encountered in: ~M") exp))))
(declare-top (special $maxpsiposint $maxpsinegint $maxpsifracnum $maxpsifracdenom))
(defprop $psi psisimp specsimp)
;; Integral of psi function psi[n](x)
(putprop '$psi
`((n x)
nil
,(lambda (n x)
(cond
((and ($integerp n) (>= n 0))
(cond
((= n 0) '((%log_gamma) x))
(t '((mqapply) (($psi array) ((mplus) -1 n)) x))))
(t nil))))
'integral)
(mapcar #'(lambda (var val)
(and (not (boundp var)) (setf (symbol-value var) val)))
'($maxpsiposint $maxpsinegint $maxpsifracnum $maxpsifracdenom)
'(20. -10. 6 6))
(defun psisimp (expr a z)
(let ((s (simpcheck (car (subfunsubs expr)) z)))
(subargcheck expr 1 1 '$psi)
(setq a (simpcheck (car (subfunargs expr)) z))
(and (setq z (integer-representation-p a))
(< z 1)
(pole-err expr))
(eqtest (psisimp1 s a) expr)))
;; This gets pretty hairy now.
(defun psisimp1 (s a)
(let ((*k*))
(declare (special *k*))
(or
(and (integerp s) (>= s 0) (mnumericalp a)
(let (($float2bf t)) ($float (mfuncall '$bfpsi s a 18))))
(and (integerp s) (>= s 0) ($bfloatp a)
(mfuncall '$bfpsi s a $fpprec))
(and (not $numer) (not $float) (integerp s) (> s -1)
(cond
((integerp a)
(and (not (> a $maxpsiposint)) ; integer values
(m*t (expt -1 s) (factorial s)
(m- (msum (inv (m^t '*k* (1+ s))) 1 (1- a))
(cond ((zerop s) '$%gamma)
(($zeta (1+ s))))))))
((or (not (ratnump a)) (ratgreaterp a $maxpsiposint)) ())
((ratgreaterp a 0)
(cond
((ratgreaterp a 1)
(let* ((int ($entier a)) ; reduction to fractional values
(frac (m-t a int)))
(m+t
(psisimp1 s frac)
(if (> int $maxpsiposint)
(subfunmakes '$psi (ncons s) (ncons int))
(m*t (expt -1 s) (factorial s)
(msum (m^t (m+t (m-t a int) '*k*)
(1- (- s)))
0 (1- int)))))))
((= s 0)
(let ((p (cadr a)) (q (caddr a)))
(cond
((or (> p $maxpsifracnum)
(> q $maxpsifracdenom) (bignump p) (bignump q)) ())
((and (= p 1)
(cond ((= q 2)
(m+ (m* -2 '((%log) 2)) (m- '$%gamma)))
((= q 3)
(m+ (m* '((rat simp) -1 2)
(m^t 3 '((rat simp) -1 2)) '$%pi)
(m* '((rat simp) -3 2) '((%log) 3))
(m- '$%gamma)))
((= q 4)
(m+ (m* '((rat simp) -1 2) '$%pi)
(m* -3 '((%log) 2)) (m- '$%gamma)))
((= q 6)
(m- (m+ (m* '((rat simp) 3 2) '((%log) 3))
(m* 2 '((%log) 2))
(m* '((rat simp) 1 2) '$%pi
(m^t 3 '((rat simp) 1 2)))
'$%gamma))))))
((and (= p 2) (= q 3))
(m+ (m* '((rat simp) 1 2)
(m^t 3 '((rat simp) -1 2)) '$%pi)
(m* '((rat simp) -3 2) '((%log) 3))
(m- '$%gamma)))
((and (= p 3) (= q 4))
(m+ (m* '((rat simp) 1 2) '$%pi)
(m* -3 '((%log) 2)) (m- '$%gamma)))
((and (= p 5) (= q 6))
(m- (m* '((rat simp) 1 2) '$%pi
(m^t 3 '((rat simp) 1 2)))
(m+ (m* '((rat simp) 3 2) '((%log) 3))
(m* 2 '((%log) 2))
'$%gamma)))
;; Gauss's Formula
((let ((f (m* `((%cos) ,(m* 2 a '$%pi '*k*))
`((%log) ,(m-t 2 (m* 2 `((%cos)
,(m//t (m* 2 '$%pi '*k*)
q))))))))
(m+t (msum f 1 (1- (truncate q 2)))
(let ((*k* (truncate q 2)))
(declare (special *k*))
(m*t (meval f)
(cond ((oddp q) 1)
('((rat simp) 1 2)))))
(m-t (m+ (m* '$%pi '((rat simp) 1 2)
`((%cot) ((mtimes simp) ,a $%pi)))
`((%log) ,q)
'$%gamma))))))))
((alike1 a '((rat) 1 2))
(m*t (expt -1 (1+ s)) (factorial s)
(1- (expt 2 (1+ s))) (simplify ($zeta (1+ s)))))
((and (ratgreaterp a '((rat) 1 2))
(ratgreaterp 1 a))
(m*t
(expt -1 s)
(m+t (psisimp1 s (m- 1 a))
(let ((dif (m* '$%pi
($diff `((%cot) ,(m* '$%pi '$z)) '$z s)))
($z (m-t a)))
(declare (special $z))
(meval dif)))))))
((ratgreaterp a $maxpsinegint) ;;; Reflection Formula
(m*t
(expt -1 s)
(m+t (m+t (psisimp1 s (m- a))
(let ((dif (m* '$%pi
($diff `((%cot) ,(m* '$%pi '$z)) '$z s)))
($z (m-t a)))
(declare (special $z))
(meval dif)))
(m*t (factorial s) (m^t (m-t a) (1- (- s)))))))))
(subfunmakes '$psi (ncons s) (ncons a)))))
;; subtitle polygamma tayloring routines
;; These routines are specially coded to be as fast as possible given the
;; current $TAYLOR; too bad they have to be so ugly.
(declare-top (special var subl *last* sign last-exp))
(defun expgam-fun (pw temp)
(setq temp (get-datum (get-key-var (car var))))
(let-pw temp pw
(pstimes
(let-pw temp (e1+ pw)
(psexpt-fn (getexp-fun '(($psi) -1) var (e1+ pw))))
(make-ps var (ncons pw) '(((-1 . 1) 1 . 1))))))
(defun expplygam-funs (pw subl l) ; l is a irrelevant here
(setq subl (car subl))
(if (or (not (integerp subl)) (< subl -1))
(tay-err "Unable to expand at a subscript in")
(prog ((e 0) (sign 0) npw)
(declare (fixnum e) (fixnum sign))
(setq npw (/ (float (car pw)) (float (cdr pw))))
(setq
l (cond ((= subl -1)
`(((1 . 1) . ,(prep1 '((mtimes) -1 $%gamma)))))
((= subl 0)
(cons '((-1 . 1) -1 . 1)
(if (> 0.0 npw) ()
`(((0 . 1)
. ,(prep1 '((mtimes) -1 $%gamma)))))))
(t (setq *last* (factorial subl))
`(((,(- (1+ subl)) . 1)
,(* (expt -1 (1+ subl))
(factorial subl)) . 1))))
e (if (< subl 1) (- subl) -1)
sign (if (< subl 1) -1 (expt -1 subl)))
a (setq e (1+ e) sign (- sign))
(if (> e npw) (return l)
(rplacd (last l)
`(((,e . 1)
. ,(rctimes (rcplygam e)
(prep1 ($zeta (+ (1+ subl) e))))))))
(go a))))
(defun rcplygam (k)
(declare (fixnum k) )
(cond ((= subl -1) (cons sign k))
((= subl 0) (cons sign 1))
(t (prog1
(cons (* sign *last*) 1)
(setq *last*
(quot (* *last* (+ subl (1+ k)))
(1+ k)))))))
(defun plygam-ord (subl)
(if (equal (car subl) -1) (ncons (rcone))
`((,(m- (m1+ (car subl))) . 1))))
(defun plygam-pole (a c func)
(if (rcmintegerp c)
(let ((ps (get-lexp (m- a (rcdisrep c)) () t)))
(rplacd (cddr ps) (cons `((0 . 1) . ,c) (cdddr ps)))
(if (atom func) (gam-const a ps func)
(plygam-const a ps func)))
(prep1 (simplifya
(if (atom func) `((%gamma) ,(rcdisrep c))
`((mqapply) ,func ,(rcdisrep c)))
() ))))
(defun gam-const (a arg func)
(let ((const (ps-lc* arg)) (arg-c))
(cond ((not (rcintegerp const))
(taylor2 (diff-expand `((%gamma) ,a) tlist)))
(t
(setq const (car const))
(if (pscoefp arg) (setq arg-c (get-lexp (m+t a (- const)) (rcone) (signp le const))))
(if (and arg-c (not (psp arg-c)))
(taylor2 (simplify `((%gamma) ,const)))
(let ((datum (get-datum (get-key-var (gvar (or arg-c arg)))))
(ord (if arg-c (le (terms arg-c)) (le (n-term (terms arg))))))
(setq func (current-trunc datum))
(if (> const 0)
(pstimes (let-pw datum (e- func ord) (expand (m+t a (- const)) '%gamma))
(let-pw datum (e+ func ord)
(tsprsum (m+t a (m-t '%%taylor-index%%))
`(%%taylor-index%% 1 ,const) '%product)))
(pstimes (expand (m+t a (- const)) '%gamma)
(let-pw datum (e+ func ord)
(psexpt (tsprsum (m+t a '%%taylor-index%%)
`(%%taylor-index%% 0 ,(- (1+ const))) '%product)
(rcmone)))))))))))
(defun plygam-const (a arg func)
(let ((const (ps-lc* arg)) (sub (cadr func)))
(cond
((or (not (integerp sub)) (< sub -1))
(tay-err "Unable to expand at a subscript in"))
((not (rcintegerp const))
(taylor2 (diff-expand `((mqapply) ,func ,a) tlist)))
(t (setq const (car const))
(psplus
(expand (m+t a (- const)) func)
(if (> const 0)
(pstimes
(cons (* (expt -1 sub) (factorial sub)) 1)
(tsprsum `((mexpt) ,(m+t a (m-t '%%taylor-index%%)) ,(- (1+ sub)))
`(%%taylor-index%% 1 ,const) '%sum))
(pstimes
(cons (* (expt -1 (1+ sub)) (factorial sub)) 1)
(tsprsum `((mexpt) ,(m+t a '%%taylor-index%%) ,(- (1+ sub)))
`(%%taylor-index%% 0 ,(- (1+ const))) '%sum))))))))
(declare-top (unspecial var subl *last* sign last-exp))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Lambert W function
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; References
;;
;; Corless, R. M., Gonnet, D. E. G., Jeffrey, D. J., Knuth, D. E. (1996).
;; "On the Lambert W function". Advances in Computational Mathematics 5:
;; pp 329-359
;;
;; http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf.
;; or http://www.apmaths.uwo.ca/~rcorless/frames/PAPERS/LambertW/
;;
;; D. J. Jeffrey, D. E. G. Hare, R. M. Corless
;; Unwinding the branches of the Lambert W function
;; The Mathematical Scientist, 21, pp 1-7, (1996)
;; http://www.apmaths.uwo.ca/~djeffrey/Offprints/wbranch.pdf
;;
;; Winitzki, S. Uniform Approximations for Transcendental Functions.
;; In Part 1 of Computational Science and its Applications - ICCSA 2003,
;; Lecture Notes in Computer Science, Vol. 2667, Springer-Verlag,
;; Berlin, 2003, 780-789. DOI 10.1007/3-540-44839-X_82
;; http://homepages.physik.uni-muenchen.de/~Winitzki/papers/
;;
;; Darko Verebic,
;; Having Fun with Lambert W(x) Function
;; arXiv:1003.1628v1, March 2010, http://arxiv.org/abs/1003.1628
;;
;; See also http://en.wikipedia.org/wiki/Lambert's_W_function
(defun $lambert_w (z)
(simplify (list '(%lambert_w) (resimplify z))))
;;; Set properties to give full support to the parser and display
(defprop $lambert_w %lambert_w alias)
(defprop $lambert_w %lambert_w verb)
(defprop %lambert_w $lambert_w reversealias)
(defprop %lambert_w $lambert_w noun)
;;; lambert_w is a simplifying function
(defprop %lambert_w simp-lambertw operators)
;;; Derivative of lambert_w
(defprop %lambert_w
((x)
((mtimes)
((mexpt) $%e ((mtimes ) -1 ((%lambert_w) x)))
((mexpt) ((mplus) 1 ((%lambert_w) x)) -1)))
grad)
;;; Integral of lambert_w
;;; integrate(W(x),x) := x*(W(x)^2-W(x)+1)/W(x)
(defprop %lambert_w
((x)
((mtimes)
x
((mplus)
((mexpt) ((%lambert_w) x) 2)
((mtimes) -1 ((%lambert_w) x))
1)
((mexpt) ((%lambert_w) x) -1)))
integral)
(defun simp-lambertw (x y z)
(oneargcheck x)
(setq x (simpcheck (cadr x) z))
(cond ((equal x 0) 0)
((equal x 0.0) 0.0)
((zerop1 x) ($bfloat 0)) ;bfloat case
((alike1 x '$%e)
;; W(%e) = 1
1)
((alike1 x '((mtimes simp) ((rat simp) -1 2) ((%log simp) 2)))
;; W(-log(2)/2) = -log(2)
'((mtimes simp) -1 ((%log simp) 2)))
((alike1 x '((mtimes simp) -1 ((mexpt simp) $%e -1)))
;; W(-1/e) = -1
-1)
((alike1 x '((mtimes) ((rat) -1 2) $%pi))
;; W(-%pi/2) = %i*%pi/2
'((mtimes simp) ((rat simp) 1 2) $%i $%pi))
;; numerical evaluation
((complex-float-numerical-eval-p x)
;; x may be an integer. eg "lambert_w(1),numer;"
(if (integerp x)
(to (bigfloat::lambert-w-k 0 (bigfloat:to ($float x))))
(to (bigfloat::lambert-w-k 0 (bigfloat:to x)))))
((complex-bigfloat-numerical-eval-p x)
(to (bigfloat::lambert-w-k 0 (bigfloat:to x))))
(t (list '(%lambert_w simp) x))))
;; An approximation of the k-branch of generalized Lambert W function
;; k integer
;; z real or complex lisp float
;; Used as initial guess for Halley's iteration.
;; When W(z) is real, ensure that guess is real.
(defun init-lambert-w-k (k z)
(let ( ; parameters for k = +/- 1 near branch pont z=-1/%e
(branch-eps 0.2e0)
(branch-point (/ -1 %e-val))) ; branch pont z=-1/%e
(cond
; For principal branch k=0, use expression by Winitzki
((= k 0) (init-lambert-w-0 z))
; For k=1 branch, near branch point z=-1/%e with im(z) < 0
((and (= k 1)
(< (imagpart z) 0)
(< (abs (- branch-point z)) branch-eps))
(bigfloat::lambert-branch-approx z))
; For k=-1 branch, z real with -1/%e < z < 0
; W(z) is real in this range
((and (= k -1) (realp z) (> z branch-point) (< z 0))
(init-lambert-w-minus1 z))
; For k=-1 branch, near branch point z=-1/%e with im(z) >= 0
((and (= k -1)
(>= (imagpart z) 0)
(< (abs (- branch-point z)) branch-eps))
(bigfloat::lambert-branch-approx z))
; Default to asymptotic expansion Corless et al (4.20)
; W_k(z) = log(z) + 2.pi.i.k - log(log(z)+2.pi.i.k)
(t (let ((two-pi-i-k (complex 0.0e0 (* 2 pi k))))
(+ (log z)
two-pi-i-k
(* -1 (log (+ (log z) two-pi-i-k )))))))))
;; Complex value of the principal branch of Lambert's W function in
;; the entire complex plane with relative error less than 1%, given
;; standard branch cuts for sqrt(z) and log(z).
;; Winitzki (2003)
(defun init-lambert-w-0 (z)
(let ((a 2.344e0) (b 0.8842e0) (c 0.9294e0) (d 0.5106e0) (e -1.213e0)
(y (sqrt (+ (* 2 %e-val z ) 2)) ) ) ; y=sqrt(2*%e*z+2)
; w = (2*log(1+B*y)-log(1+C*log(1+D*y))+E)/(1+1/(2*log(1+B*y)+2*A)
(/
(+ (* 2 (log (+ 1 (* b y))))
(* -1 (log (+ 1 (* c (log (+ 1 (* d y)))))))
e)
(+ 1
(/ 1 (+ (* 2 (log (+ 1 (* b y)))) (* 2 a)))))))
;; Approximate k=-1 branch of Lambert's W function over -1/e < z < 0.
;; W(z) is real, so we ensure the starting guess for Halley iteration
;; is also real.
;; Verebic (2010)
(defun init-lambert-w-minus1 (z)
(cond
((not (realp z))
(merror "z not real in init-lambert-w-minus1"))
((or (< z (/ -1 %e-val)) (plusp z))
(merror "z outside range of approximation in init-lambert-w-minus1"))
;; In the region where W(z) is real
;; -1/e < z < C, use power series about branch point -1/e ~ -0.36787
;; C = -0.3 seems a reasonable crossover point
((< z -0.3)
(bigfloat::lambert-branch-approx z))
;; otherwise C <= z < 0, use iteration W(z) ~ ln(-z)-ln(-W(z))
;; nine iterations are sufficient over -0.3 <= z < 0
(t (let* ( (ln-z (log (- z))) (maxiter 9) (w ln-z) k)
(dotimes (k maxiter w)
(setq w (- ln-z (log (- w)))))))))
(in-package #-gcl #:bigfloat #+gcl "BIGFLOAT")
;; Approximate Lambert W(k,z) for k=1 and k=-1 near branch point z=-1/%e
;; using power series in y=-sqrt(2*%e*z+2)
;; for im(z) < 0, approximates k=1 branch
;; for im(z) >= 0, approximates k=-1 branch
;;
;; Corless et al (1996) (4.22)
;; Verebic (2010)
;;
;; z is a real or complex bigfloat:
(defun lambert-branch-approx (z)
(let ((y (- (sqrt (+ (* 2 (%e z) z ) 2)))) ; y=-sqrt(2*%e*z+2)
(b0 -1) (b1 1) (b2 -1/3) (b3 11/72))
(+ b0 (* y (+ b1 (* y (+ b2 (* b3 y))))))))
;; Algorithm based in part on Corless et al (1996).
;;
;; It is Halley's iteration applied to w*exp(w).
;;
;;
;; w[j] exp(w[j]) - z
;; w[j+1] = w[j] - -------------------------------------------------
;; (w[j]+2)(w[j] exp(w[j]) -z)
;; exp(w[j])(w[j]+1) - ---------------------------
;; 2 w[j] + 2
;;
;; The algorithm has cubic convergence. Once convergence begins, the
;; number of digits correct at step k is roughly 3 times the number
;; which were correct at step k-1.
;;
;; Convergence can stall using convergence test abs(w[j+1]-w[j]) < prec,
;; as happens for generalized_lambert_w(-1,z) near branch point z = -1/%e
;; Therefore also stop iterating if abs(w[j]*exp(w[j]) - z) << abs(z)
(defun lambert-w-k (k z &key (maxiter 50))
(let ((w (init-lambert-w-k k z)) we w1e delta (prec (* 4 (epsilon z))))
(dotimes (i maxiter (maxima::merror "lambert-w-k did not converge"))
(setq we (* w (exp w)))
(when (<= (abs (- z we)) (* 4 (epsilon z) (abs z))) (return))
(setq w1e (* (1+ w) (exp w)))
(setq delta (/ (- we z)
(- w1e (/ (* (+ w 2) (- we z)) (+ 2 (* 2 w))))))
(decf w delta)
(when (<= (abs (/ delta w)) prec) (return)))
;; Check iteration converged to correct branch
(check-lambert-w-k k w z)
w))
(defmethod init-lambert-w-k ((k integer) (z number))
(maxima::init-lambert-w-k k z))
(defmethod init-lambert-w-k ((k integer) (z bigfloat))
(bfloat-init-lambert-w-k k z))
(defmethod init-lambert-w-k ((k integer) (z complex-bigfloat))
(bfloat-init-lambert-w-k k z))
(defun bfloat-init-lambert-w-k (k z)
"Approximate generalized_lambert_w(k,z) for bigfloat: z as initial guess"
(let ((branch-point -0.36787944117144)) ; branch point -1/%e
(cond
;; if k=-1, z very close to -1/%e and imag(z)>=0, use power series
((and (= k -1)
(or (zerop (imagpart z))
(plusp (imagpart z)))
(< (abs (- z branch-point)) 1e-10))
(lambert-branch-approx z))
;; if k=1, z very close to -1/%e and imag(z)<0, use power series
((and (= k 1)
(minusp (imagpart z))
(< (abs (- z branch-point)) 1e-10))
(lambert-branch-approx z))
;; Initialize using float value if z is representable as a float
((< (abs z) 1.0e100)
(if (complexp z)
(bigfloat (lambert-w-k k (cl:complex (float (realpart z) 1.0)
(float (imagpart z) 1.0))))
(bigfloat (lambert-w-k k (float z 1.0)))))
;; For large z, use Corless et al (4.20)
;; W_k(z) ~ log(z) + 2.pi.i.k - log(log(z)+2.pi.i.k)
(t
(let ((log-z (log z)))
(if (= k 0)
(- log-z (log log-z))
(let* ((i (make-instance 'complex-bigfloat :imag (intofp 1)))
(two-pi-i-k (* 2 (%pi z) i k)))
(- (+ log-z two-pi-i-k)
(log (+ log-z two-pi-i-k))))))))))
;; Check Lambert W iteration converged to the correct branch
;; W_k(z) + ln W_k(z) = ln z, for k = -1 and z in [-1/e,0)
;; = ln z + 2 pi i k, otherwise
;; See Jeffrey, Hare, Corless (1996), eq (12)
;; k integer
;; z, w bigfloat: numbers
(defun check-lambert-w-k (k w z)
(let ((tolerance #-gcl 1.0e-6
#+gcl (cl:float 1/1000000)))
(if
(cond
;; k=-1 branch with z and w real.
((and (= k -1) (realp z) (minusp z) (>= z (/ -1 (%e z))))
(if (and (realp w)
(<= w -1)
(< (abs (+ w (log w) (- (log z)))) tolerance))
t
nil))
(t
; i k = (W_k(z) + ln W_k(z) - ln(z)) / 2 pi
(let (ik)
(setq ik (/ (+ w (log w) (- (log z))) (* 2 (%pi z))))
(if (and (< (realpart ik) tolerance)
(< (abs (- k (imagpart ik))) tolerance))
t
nil))))
t
(maxima::merror "Lambert W iteration converged to wrong branch"))))
(in-package :maxima)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Generalized Lambert W function
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun $generalized_lambert_w (k z)
(simplify (list '(%generalized_lambert_w) (resimplify k) (resimplify z))))
;;; Set properties to give full support to the parser and display
(defprop $generalized_lambert_w %generalized_lambert_w alias)
(defprop $generalized_lambert_w %generalized_lambert_w verb)
(defprop %generalized_lambert_w $generalized_lambert_w reversealias)
(defprop %generalized_lambert_w $generalized_lambert_w noun)
;;; lambert_w is a simplifying function
(defprop %generalized_lambert_w simp-generalized-lambertw operators)
;;; Derivative of lambert_w
(defprop %generalized_lambert_w
((k x)
nil
((mtimes)
((mexpt) $%e ((mtimes ) -1 ((%generalized_lambert_w) k x)))
((mexpt) ((mplus) 1 ((%generalized_lambert_w) k x)) -1)))
grad)
;;; Integral of lambert_w
;;; integrate(W(k,x),x) := x*(W(k,x)^2-W(k,x)+1)/W(k,x)
(defprop %generalized_lambert_w
((k x)
nil
((mtimes)
x
((mplus)
((mexpt) ((%generalized_lambert_w) k x) 2)
((mtimes) -1 ((%generalized_lambert_w) k x))
1)
((mexpt) ((%generalized_lambert_w) k x) -1)))
integral)
(defun simp-generalized-lambertw (expr ignored z)
(declare (ignore ignored))
(twoargcheck expr)
(let ((k (simpcheck (cadr expr) z))
(x (simpcheck (caddr expr) z)))
(cond
;; Numerical evaluation for real or complex x
((and (integerp k) (complex-float-numerical-eval-p x))
;; x may be an integer. eg "generalized_lambert_w(0,1),numer;"
(if (integerp x)
(to (bigfloat::lambert-w-k k (bigfloat:to ($float x))))
(to (bigfloat::lambert-w-k k (bigfloat:to x)))))
;; Numerical evaluation for real or complex bigfloat x
((and (integerp k) (complex-bigfloat-numerical-eval-p x))
(to (bigfloat::lambert-w-k k (bigfloat:to x))))
(t (list '(%generalized_lambert_w simp) k x)))))
|