This file is indexed.

/usr/share/maxima/5.32.1/src/specfn.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1980 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module specfn)

;;*********************************************************************
;;****************                                   ******************
;;**************** Macsyma Special Function Routines ******************
;;****************                                   ******************
;;*********************************************************************

(load-macsyma-macros rzmac)
(load-macsyma-macros mhayat)

(defmacro mnumericalp (arg)
  `(or (floatp ,arg) (and (or $numer $float) (integerp ,arg))))

;; subtitle polylogarithm routines

(declare-top (special $zerobern tlist %e-val))

(defun lisimp (expr vestigial z)
  (declare (ignore vestigial))
  (let ((s (simpcheck (car (subfunsubs expr)) z))
        ($zerobern t)
        (a))
    (subargcheck expr 1 1 '$li)
    (setq a (simpcheck (car (subfunargs expr)) z))
    (or (cond ((zerop1 a) a)
              ((not (integerp s)) ())
              ((= s 1)
               (if (onep1 a)
                   (simp-domain-error
                     (intl:gettext "li: li[~:M](~:M) is undefined.") s a)
                   (neg (take '(%log) (sub 1 a)))))
              ((= s 0) (div a (sub 1 a)))
              ((< s 0) (lisimp-negative-integer s a))
              ((and (integerp a) (> s 1)
                    (cond ((= a 1) (take '(%zeta) s))
                          ((= a -1)
                           (mul (add -1 (inv (expt 2 (- s 1))))
                                (take '(%zeta) s))))))
              ((= s 2) (li2simp a))
              ((= s 3) (li3simp a)))
        (eqtest (subfunmakes '$li (ncons s) (ncons a))
                expr))))

;; Expand the Polylogarithm li[s](z) for a negative integer parameter s.
(defun lisimp-negative-integer (s z)
  (let ((n (- s)))
    (mul (inv (power (sub 1 z) (+ n 1)))
         (let ((index1 (gensumindex))
               ($simpsum t))
           (dosum
             (mul (power z index1)
                  (let ((index2 (gensumindex)))
                    (dosum
                      (mul (power -1 (add index2 1))
                           (take '(%binomial) (+ n 1) (sub index2 1))
                           (power (add 1 (sub index1 index2)) n))
                      index2 1 index1 t)))
             index1 1 n t)))))

(defun li2simp (arg)
  (cond ((mnumericalp arg) (li2numer (float arg)))
        ((alike1 arg '((rat) 1 2))
         (add (div (take '(%zeta) 2) 2)
              (mul '((rat simp) -1 2)
                   (power (take '(%log) 2) 2))))))

(defun li3simp (arg)
  (cond ((mnumericalp arg) (li3numer (float arg)))
        ((alike1 arg '((rat) 1 2))
         (add (mul '((rat simp) 7 8) (take '(%zeta) 3))
              (mul (div (take '(%zeta) 2) -2) (take '(%log) 2))
              (mul '((rat simp) 1 6) (power (take '(%log) 2) 3))))))

;; exponent in first term of taylor expansion of $li is one
(defun li-ord (subl)
  (ncons (rcone)))

;; taylor expansion of $li is its definition:
;; x + x^2/2^s + x^3/3^s + ...
(defun exp$li-fun (pw subl l)	; l is a irrelevant here
  (setq subl (car subl))	; subl is subscript of li
  (prog ((e 0) 			; e is exponent of current term
	 npw)			; npw is exponent of last term needed
	(declare (fixnum e))
	(setq npw (/ (float (car pw)) (float (cdr pw))))
	(setq
	 l (cons '((0 . 1) 0 . 1)
		 nil))
	a (setq e (1+ e))
	(if (> e npw) (return l)
	  (rplacd (last l)
		  `(((,e . 1)
		     . ,(prep1 (m^ e (m- subl)))))))
	(go a)))


;; computes first pw terms of asymptotic expansion of $li[s](z)
;;
;; pw should be < (1/2)*s or gamma term is undefined
;;
;; Wood, D.C. (June 1992). The Computation of Polylogarithms. Technical Report 15-92
;; University of Kent Computing Laboratory.
;; http://www.cs.kent.ac.uk/pubs/1992/110
;; equation 11.1
(defun li-asymptotic-expansion (pw s z)
  (m+l (loop for k from 0 to pw collect
	     (m* (m^ -1 k)
		 (m- 1 (m^ 2 (m- 1 (m* 2 k))))
		 (m^ (m* 2 '$%pi) (m* 2 k))
		 (m// ($bern (m* 2 k))
		      `((mfactorial) ,(m* 2 k)))
		 (m// (m^ `((%log) ,(m- z)) (m- 2 (m* 2 k))) 
		      ($gamma (m+ s 1 (m* -2 k))))))))

;; Numerical evaluation for Chebyschev expansions of the first kind

(defun cheby (x chebarr)
  (let ((bn+2 0.0) (bn+1 0.0))
    (do ((i (floor (aref chebarr 0)) (1- i)))
	((< i 1) (- bn+1 (* bn+2 x)))
     (setq bn+2
	    (prog1 bn+1 (setq bn+1 (+ (aref chebarr i)
				      (- (* 2.0 x bn+1) bn+2))))))))

(defun cheby-prime (x chebarr)
  (- (cheby x chebarr)
      (* (aref chebarr 1) 0.5)))

;; These should really be calculated with minimax rational approximations.
;; Someone has done LI[2] already, and this should be updated; I haven't
;; seen any results for LI[3] yet.

(defun li2numer (y)
  ;; Spence's function can be used to compute li[2] for 0 <= x <= 1.
  ;; To compute the rest, we need the following identities:
  ;;
  ;; li[2](x) = -li[2](1/x)-log(-x)^2/2-%pi^2/6
  ;; li[2](x) = li[2](1/(1-x)) + log(1-x)*log((1-x)/x^2)/2 - %pi^2/6
  ;;
  ;; The first tells us how to compute li[2] for x > 1.  The result is complex.
  ;; For x < 0, the second can be used, and the result is real.
  ;;
  ;; (See http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog2/17/01/01/)
  (labels ((li2 (x)
	     (cond ((< x 0)
		    (+ (li2 (/ (- 1 x)))
		       (* 0.5 (log (- 1 x)) (log (/ (- 1 x) (* x x))))
		       (- (/ (cl:expt (float pi) 2) 6))))
		   ((< x 1)
		    (slatec:dspenc x))
		   ((= x 1)
		    (/ (cl:expt (float pi) 2) 6))
		   (t
		    ;; li[2](x) = -li[2](1/x)-log(-x)^2/2-%pi^2/6
		    (- (+ (li2 (/ x))
			  (/ (cl:expt (cl:log (- x)) 2) 2)
			  (/ (cl:expt (float pi) 2) 6)))))))
    (complexify (li2 y))))


(defun li3numer (x)
  (cond ((= x 0.0) 0.0)
	((= x 1.0) 1.20205690)
	((< x -1.0)
	 (- (chebyli3 (/ x)) (* 1.64493407 (log (- x)))
	     (/ (expt (log (- x)) 3) 6.0)))
	((not (> x 0.5)) (chebyli3 x))
	((not (> x 2.0))
	 (let ((fac (* (expt (log x) 2) 0.5)))
	   (m+t (+ 1.20205690
		    (- (* (log x)
			    (- 1.64493407 (chebyli2 (- 1.0 x))))
			(chebys12 (- 1.0 x))
			(* fac
			    (log (cond ((< x 1.0) (- 1.0 x))
				       ((1- x)))))))
		(cond ((< x 1.0) 0)
		      ((m*t (* fac -3.14159265) '$%i))))))
	(t (m+t (+ (chebyli3 (/ x)) (* 3.28986813 (log x))
		    (/ (expt (log x) 3) -6.0))
		(m*t (* -1.57079633 (expt (log x) 2)) '$%i)))))

(defvar *li2* (make-array 15. :initial-contents '(14.0 1.93506430 .166073033 2.48793229e-2
						  4.68636196e-3 1.0016275e-3 2.32002196e-4
						  5.68178227e-5 1.44963006e-5 3.81632946e-6
						  1.02990426e-6 2.83575385e-7 7.9387055e-8
						  2.2536705e-8 6.474338e-9)
			  :element-type 'flonum))


(defvar *li3* (make-array 15. :initial-contents '(14.0 1.95841721 8.51881315e-2 8.55985222e-3
						  1.21177214e-3 2.07227685e-4 3.99695869e-5
						  8.38064066e-6 1.86848945e-6 4.36660867e-7
						  1.05917334e-7 2.6478920e-8 6.787e-9
						  1.776536e-9 4.73417e-10)
			  :element-type 'flonum))

(defvar *s12* (make-array 18. :initial-contents '(17.0 1.90361778 .431311318 .100022507
						  2.44241560e-2 6.22512464e-3 1.64078831e-3
						  4.44079203e-4 1.22774942e-4 3.45398128e-5
						  9.85869565e-6 2.84856995e-6 8.31708473e-7
						  2.45039499e-7 7.2764962e-8 2.1758023e-8 6.546158e-9
						  1.980328e-9)
			  :element-type 'flonum))

(defun chebyli2 (x)
  (* x (cheby-prime (/ (1+ (* x 4)) 3) *li2*)))

(defun chebyli3 (x)
  (* x (cheby-prime (/ (1+ (* 4 x)) 3) *li3*)))

(defun chebys12 (x)
  (* (/ (expt x 2) 4)
      (cheby-prime (/ (1+ (* 4 x)) 3) *s12*)))

;; subtitle polygamma routines

;; gross efficiency hack, exp is a function of *k*, *k* should be mbind'ed

(defun msum (exp lo hi)
  (if (< hi lo)
      0
      (let ((sum 0))
	(do ((*k* lo (1+ *k*)))
	    ((> *k* hi) sum)
	  (declare (special *k*))
	  (setq sum (add2 sum (meval exp)))))))


(defun pole-err (exp)
  (declare (special errorsw))
  (cond (errorsw (throw 'errorsw t))
	(t (merror (intl:gettext "Pole encountered in: ~M") exp))))


(declare-top (special $maxpsiposint $maxpsinegint $maxpsifracnum $maxpsifracdenom))

(defprop $psi psisimp specsimp)

;; Integral of psi function psi[n](x)
(putprop '$psi
  `((n x)
   nil
   ,(lambda (n x)
     (cond 
      ((and ($integerp n) (>= n 0))
       (cond 
	((= n 0) '((%log_gamma) x))
	(t '((mqapply) (($psi array) ((mplus) -1 n)) x))))
      (t nil))))
     'integral)

(mapcar #'(lambda (var val)
	    (and (not (boundp var)) (setf (symbol-value var) val)))
	'($maxpsiposint $maxpsinegint $maxpsifracnum $maxpsifracdenom)
	'(20. -10. 6 6))

(defun psisimp (expr a z)
  (let ((s (simpcheck (car (subfunsubs expr)) z)))
    (subargcheck expr 1 1 '$psi)
    (setq a (simpcheck (car (subfunargs expr)) z))
    (and (setq z (integer-representation-p a))
         (< z 1)
         (pole-err expr))
    (eqtest (psisimp1 s a) expr)))

;; This gets pretty hairy now.

(defun psisimp1 (s a)
  (let ((*k*))
    (declare (special *k*))
    (or
     (and (integerp s) (>= s 0) (mnumericalp a)
	  (let (($float2bf t)) ($float (mfuncall '$bfpsi s a 18))))
     (and (integerp s) (>= s 0) ($bfloatp a)
	  (mfuncall '$bfpsi s a $fpprec))
     (and (not $numer) (not $float) (integerp s) (> s -1)
	  (cond
	    ((integerp a)
	     (and (not (> a $maxpsiposint)) ; integer values
		  (m*t (expt -1 s) (factorial s)
		       (m- (msum (inv (m^t '*k* (1+ s))) 1 (1- a))
			   (cond ((zerop s) '$%gamma)
				 (($zeta (1+ s))))))))
	    ((or (not (ratnump a)) (ratgreaterp a $maxpsiposint)) ())
	    ((ratgreaterp a 0)
	     (cond
	       ((ratgreaterp a 1)
		(let* ((int ($entier a)) ; reduction to fractional values
		       (frac (m-t a int)))
		  (m+t
		   (psisimp1 s frac)
		   (if (> int $maxpsiposint)
		       (subfunmakes '$psi (ncons s) (ncons int))
		       (m*t (expt -1 s) (factorial s)
			    (msum (m^t (m+t (m-t a int) '*k*)
				       (1- (- s)))
				  0 (1- int)))))))
	       ((= s 0)
		(let ((p (cadr a)) (q (caddr a)))
		  (cond
		    ((or (> p $maxpsifracnum)
			 (> q $maxpsifracdenom) (bignump p) (bignump q)) ())
		    ((and (= p 1)
			  (cond ((= q 2)
				 (m+ (m* -2 '((%log) 2)) (m- '$%gamma)))
				((= q 3)
				 (m+ (m* '((rat simp) -1 2)
					 (m^t 3 '((rat simp) -1 2)) '$%pi)
				     (m* '((rat simp) -3 2) '((%log) 3))
				     (m- '$%gamma)))
				((= q 4)
				 (m+ (m* '((rat simp) -1 2) '$%pi)
				     (m* -3 '((%log) 2)) (m- '$%gamma)))
				((= q 6)
				 (m- (m+ (m* '((rat simp) 3 2) '((%log) 3))
					 (m* 2 '((%log) 2))
					 (m* '((rat simp) 1 2) '$%pi
					     (m^t 3 '((rat simp) 1 2)))
					 '$%gamma))))))
		    ((and (= p 2) (= q 3))
		     (m+ (m* '((rat simp) 1 2)
			     (m^t 3 '((rat simp) -1 2)) '$%pi)
			 (m* '((rat simp) -3 2) '((%log) 3))
			 (m- '$%gamma)))
		    ((and (= p 3) (= q 4))
		     (m+ (m* '((rat simp) 1 2) '$%pi)
			 (m* -3 '((%log) 2)) (m- '$%gamma)))
		    ((and (= p 5) (= q 6))
		     (m- (m* '((rat simp) 1 2) '$%pi
			     (m^t 3 '((rat simp) 1 2)))
			 (m+ (m* '((rat simp) 3 2) '((%log) 3))
			     (m* 2 '((%log) 2))
			     '$%gamma)))
		    ;; Gauss's Formula
		    ((let ((f (m* `((%cos) ,(m* 2 a '$%pi '*k*))
				  `((%log) ,(m-t 2 (m* 2 `((%cos)
							   ,(m//t (m* 2 '$%pi '*k*)
								  q))))))))
		       (m+t (msum f 1 (1- (truncate q 2)))
			    (let ((*k* (truncate q 2)))
			      (declare (special *k*))
			      (m*t (meval f)
				   (cond ((oddp q) 1)
					 ('((rat simp) 1 2)))))
			    (m-t (m+ (m* '$%pi '((rat simp) 1 2)
					 `((%cot) ((mtimes simp) ,a $%pi)))
				     `((%log) ,q)
				     '$%gamma))))))))
	       ((alike1 a '((rat) 1 2))
		(m*t (expt -1 (1+ s)) (factorial s)
		     (1- (expt 2 (1+ s))) (simplify ($zeta (1+ s)))))
	       ((and (ratgreaterp a '((rat) 1 2))
		     (ratgreaterp 1 a))
		(m*t
		 (expt -1 s)
		 (m+t (psisimp1 s (m- 1 a))
		      (let ((dif (m* '$%pi
				     ($diff `((%cot) ,(m* '$%pi '$z)) '$z s)))
			    ($z (m-t a)))
			(declare (special $z))
			(meval dif)))))))
	    ((ratgreaterp a $maxpsinegint)  ;;; Reflection Formula
	     (m*t
	      (expt -1 s)
	      (m+t (m+t (psisimp1 s (m- a))
			(let ((dif (m* '$%pi
				       ($diff `((%cot) ,(m* '$%pi '$z)) '$z s)))
			      ($z (m-t a)))
			  (declare (special $z))
			  (meval dif)))
		   (m*t (factorial s) (m^t (m-t a) (1- (- s)))))))))
     (subfunmakes '$psi (ncons s) (ncons a)))))


;; subtitle polygamma tayloring routines

;; These routines are specially coded to be as fast as possible given the
;; current $TAYLOR; too bad they have to be so ugly.

(declare-top (special var subl *last* sign last-exp))

(defun expgam-fun (pw temp)
  (setq temp (get-datum (get-key-var (car var))))
  (let-pw temp pw
	  (pstimes
	   (let-pw temp (e1+ pw)
		   (psexpt-fn (getexp-fun '(($psi) -1) var (e1+ pw))))
	   (make-ps var (ncons pw) '(((-1 . 1) 1 . 1))))))

(defun expplygam-funs (pw subl l)	; l is a irrelevant here
  (setq subl (car subl))
  (if (or (not (integerp subl)) (< subl -1))
      (tay-err "Unable to expand at a subscript in")
      (prog ((e 0) (sign 0) npw)
	 (declare (fixnum e) (fixnum sign))
	 (setq npw (/ (float (car pw)) (float (cdr pw))))
	 (setq
	  l (cond ((= subl -1)
		   `(((1 . 1) . ,(prep1 '((mtimes) -1 $%gamma)))))
		  ((= subl 0)
		   (cons '((-1 . 1) -1 . 1)
			 (if (> 0.0 npw) ()
			     `(((0 . 1)
				. ,(prep1 '((mtimes) -1 $%gamma)))))))
		  (t (setq *last* (factorial subl))
		     `(((,(- (1+ subl)) . 1)
			,(* (expt -1 (1+ subl))
				(factorial subl)) . 1))))
	  e (if (< subl 1) (- subl) -1)
	  sign (if (< subl 1) -1 (expt -1 subl)))
	 a (setq e (1+ e) sign (- sign))
	 (if (> e npw) (return l)
	     (rplacd (last l)
		     `(((,e . 1)
			. ,(rctimes (rcplygam e)
				    (prep1 ($zeta (+ (1+ subl) e))))))))
	 (go a))))

(defun rcplygam (k)
  (declare (fixnum k) )
  (cond ((= subl -1) (cons sign k))
	((= subl 0) (cons sign 1))
	(t (prog1
	       (cons (* sign *last*) 1)
	     (setq *last*
		   (quot (* *last* (+ subl (1+ k)))
			 (1+ k)))))))

(defun plygam-ord (subl)
  (if (equal (car subl) -1) (ncons (rcone))
      `((,(m- (m1+ (car subl))) . 1))))

(defun plygam-pole (a c func)
  (if (rcmintegerp c)
      (let ((ps (get-lexp (m- a (rcdisrep c)) () t)))
	(rplacd (cddr ps) (cons `((0 . 1) . ,c) (cdddr ps)))
	(if (atom func) (gam-const a ps func)
	    (plygam-const a ps func)))
      (prep1 (simplifya
	      (if (atom func) `((%gamma) ,(rcdisrep c))
		  `((mqapply) ,func ,(rcdisrep c)))
	      () ))))

(defun gam-const (a arg func)
  (let ((const (ps-lc* arg)) (arg-c))
    (cond ((not (rcintegerp const))
	   (taylor2 (diff-expand `((%gamma) ,a) tlist)))
	  (t
	   (setq const (car const))
	   (if (pscoefp arg) (setq arg-c (get-lexp (m+t a (- const)) (rcone) (signp le const))))
	   (if (and arg-c (not (psp arg-c)))
	       (taylor2 (simplify `((%gamma) ,const)))
	       (let ((datum (get-datum (get-key-var (gvar (or arg-c arg)))))
		     (ord (if arg-c (le (terms arg-c)) (le (n-term (terms arg))))))
		 (setq func (current-trunc datum))
		 (if (> const 0)
		     (pstimes (let-pw datum (e- func ord) (expand (m+t a (- const)) '%gamma))
			      (let-pw datum (e+ func ord)
				      (tsprsum (m+t a (m-t '%%taylor-index%%))
					       `(%%taylor-index%% 1 ,const) '%product)))
		     (pstimes (expand (m+t a (- const)) '%gamma)
			      (let-pw datum (e+ func ord)
				      (psexpt (tsprsum (m+t a '%%taylor-index%%)
						       `(%%taylor-index%% 0 ,(- (1+ const))) '%product)
					      (rcmone)))))))))))

(defun plygam-const (a arg func)
  (let ((const (ps-lc* arg)) (sub (cadr func)))
    (cond
      ((or (not (integerp sub)) (< sub -1))
       (tay-err "Unable to expand at a subscript in"))
      ((not (rcintegerp const))
       (taylor2 (diff-expand `((mqapply) ,func ,a) tlist)))
      (t (setq const (car const))
	 (psplus
	  (expand (m+t a (- const)) func)
	  (if (> const 0)
	      (pstimes
	       (cons (* (expt -1 sub) (factorial sub)) 1)
	       (tsprsum `((mexpt) ,(m+t a (m-t '%%taylor-index%%)) ,(- (1+ sub)))
			`(%%taylor-index%% 1 ,const) '%sum))
	      (pstimes
	       (cons (* (expt -1 (1+ sub)) (factorial sub)) 1)
	       (tsprsum `((mexpt) ,(m+t a '%%taylor-index%%) ,(- (1+ sub)))
			`(%%taylor-index%% 0 ,(- (1+ const))) '%sum))))))))

(declare-top (unspecial var subl *last* sign last-exp))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Lambert W function
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; References
;;
;; Corless, R. M., Gonnet, D. E. G., Jeffrey, D. J., Knuth, D. E. (1996). 
;; "On the Lambert W function". Advances in Computational Mathematics 5: 
;; pp 329-359
;; 
;;    http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf.
;; or http://www.apmaths.uwo.ca/~rcorless/frames/PAPERS/LambertW/
;;
;; D. J. Jeffrey, D. E. G. Hare, R. M. Corless
;; Unwinding the branches of the Lambert W function
;; The Mathematical Scientist, 21, pp 1-7, (1996)
;; http://www.apmaths.uwo.ca/~djeffrey/Offprints/wbranch.pdf
;;
;; Winitzki, S. Uniform Approximations for Transcendental Functions. 
;; In Part 1 of Computational Science and its Applications - ICCSA 2003, 
;; Lecture Notes in Computer Science, Vol. 2667, Springer-Verlag, 
;; Berlin, 2003, 780-789. DOI 10.1007/3-540-44839-X_82
;; http://homepages.physik.uni-muenchen.de/~Winitzki/papers/
;;
;; Darko Verebic, 
;; Having Fun with Lambert W(x) Function
;; arXiv:1003.1628v1, March 2010, http://arxiv.org/abs/1003.1628
;;
;; See also http://en.wikipedia.org/wiki/Lambert's_W_function

(defun $lambert_w (z)
  (simplify (list '(%lambert_w) (resimplify z))))

;;; Set properties to give full support to the parser and display
(defprop $lambert_w %lambert_w alias)
(defprop $lambert_w %lambert_w verb)
(defprop %lambert_w $lambert_w reversealias)
(defprop %lambert_w $lambert_w noun)

;;; lambert_w is a simplifying function
(defprop %lambert_w simp-lambertw operators)

;;; Derivative of lambert_w
(defprop %lambert_w
  ((x) 
   ((mtimes)
    ((mexpt) $%e ((mtimes ) -1 ((%lambert_w) x)))
    ((mexpt) ((mplus) 1 ((%lambert_w) x)) -1)))
  grad)

;;; Integral of lambert_w
;;; integrate(W(x),x) := x*(W(x)^2-W(x)+1)/W(x)
(defprop %lambert_w
  ((x)
   ((mtimes)
    x
    ((mplus) 
     ((mexpt) ((%lambert_w) x) 2) 
     ((mtimes) -1 ((%lambert_w) x))
     1)
    ((mexpt) ((%lambert_w) x) -1)))
  integral)

(defun simp-lambertw (x y z)
  (oneargcheck x)
  (setq x (simpcheck (cadr x) z))
  (cond ((equal x 0) 0)
	((equal x 0.0) 0.0)
	((zerop1 x) ($bfloat 0))	;bfloat case
	((alike1 x '$%e)
	 ;; W(%e) = 1
	 1)
	((alike1 x '((mtimes simp) ((rat simp) -1 2) ((%log simp) 2)))
	 ;; W(-log(2)/2) = -log(2)
	 '((mtimes simp) -1 ((%log simp) 2)))
	((alike1 x '((mtimes simp) -1 ((mexpt simp) $%e -1)))
	 ;; W(-1/e) = -1
	 -1)
	((alike1 x '((mtimes) ((rat) -1 2) $%pi))
	 ;; W(-%pi/2) = %i*%pi/2
	 '((mtimes simp) ((rat simp) 1 2) $%i $%pi))
        ;; numerical evaluation
	((complex-float-numerical-eval-p x)
          ;; x may be an integer.  eg "lambert_w(1),numer;"
	  (if (integerp x)
	    (to (bigfloat::lambert-w-k 0 (bigfloat:to ($float x))))
	    (to (bigfloat::lambert-w-k 0 (bigfloat:to x)))))
	((complex-bigfloat-numerical-eval-p x)
	 (to (bigfloat::lambert-w-k 0 (bigfloat:to x))))
	(t (list '(%lambert_w simp) x))))

;; An approximation of the k-branch of generalized Lambert W function
;;   k integer
;;   z real or complex lisp float
;; Used as initial guess for Halley's iteration. 
;; When W(z) is real, ensure that guess is real.
(defun init-lambert-w-k (k z)
  (let ( ; parameters for k = +/- 1 near branch pont z=-1/%e
        (branch-eps 0.2e0)
	(branch-point (/ -1 %e-val))) ; branch pont z=-1/%e
    (cond 
      ; For principal branch k=0, use expression by Winitzki
      ((= k 0) (init-lambert-w-0 z))
      ; For k=1 branch, near branch point z=-1/%e with im(z) <  0
      ((and (= k 1)
	    (< (imagpart z) 0)
	    (< (abs (- branch-point z)) branch-eps))
        (bigfloat::lambert-branch-approx z))
      ; For k=-1 branch, z real with -1/%e < z < 0
      ; W(z) is real in this range
      ((and (= k -1) (realp z) (> z branch-point) (< z 0))
        (init-lambert-w-minus1 z))
      ; For k=-1 branch, near branch point z=-1/%e with im(z) >= 0
      ((and (= k -1)
	    (>= (imagpart z) 0)
	    (< (abs (- branch-point z)) branch-eps))
        (bigfloat::lambert-branch-approx z))
      ; Default to asymptotic expansion Corless et al (4.20)
      ; W_k(z) = log(z) + 2.pi.i.k - log(log(z)+2.pi.i.k)
      (t (let ((two-pi-i-k (complex 0.0e0 (* 2 pi k))))
		 (+ (log z) 
		    two-pi-i-k 
		    (* -1 (log (+ (log z) two-pi-i-k )))))))))

;; Complex value of the principal branch of Lambert's W function in 
;; the entire complex plane with relative error less than 1%, given 
;; standard branch cuts for sqrt(z) and log(z).
;; Winitzki (2003)
(defun init-lambert-w-0 (z)
  (let ((a 2.344e0) (b 0.8842e0) (c 0.9294e0) (d 0.5106e0) (e -1.213e0)
     (y (sqrt (+ (* 2 %e-val z ) 2)) ) )   ; y=sqrt(2*%e*z+2) 
    ; w = (2*log(1+B*y)-log(1+C*log(1+D*y))+E)/(1+1/(2*log(1+B*y)+2*A)
     (/ 
      (+ (* 2 (log (+ 1 (* b y))))
	 (* -1 (log (+ 1 (* c (log (+ 1 (* d y)))))))
	 e)
      (+ 1
	 (/ 1 (+ (* 2 (log (+ 1 (* b y)))) (* 2 a)))))))

;; Approximate k=-1 branch of Lambert's W function over -1/e < z < 0. 
;; W(z) is real, so we ensure the starting guess for Halley iteration 
;; is also real.
;; Verebic (2010)
(defun init-lambert-w-minus1 (z)
  (cond 
    ((not (realp z)) 
      (merror "z not real in init-lambert-w-minus1"))
    ((or (< z (/ -1 %e-val)) (plusp z))
      (merror "z outside range of approximation in init-lambert-w-minus1"))
    ;; In the region where W(z) is real
    ;; -1/e < z < C, use power series about branch point -1/e ~ -0.36787
    ;; C = -0.3 seems a reasonable crossover point
    ((< z -0.3)
      (bigfloat::lambert-branch-approx z))
    ;; otherwise C <= z < 0, use iteration W(z) ~ ln(-z)-ln(-W(z))
    ;; nine iterations are sufficient over -0.3 <= z < 0 
    (t (let* ( (ln-z (log (- z))) (maxiter 9) (w ln-z) k)
	 (dotimes (k maxiter w)
            (setq w (- ln-z (log (- w)))))))))

(in-package #-gcl #:bigfloat #+gcl "BIGFLOAT")

;; Approximate Lambert W(k,z) for k=1 and k=-1 near branch point z=-1/%e
;; using power series in y=-sqrt(2*%e*z+2)
;;   for im(z) < 0,  approximates k=1 branch
;;   for im(z) >= 0, approximates k=-1  branch
;;
;; Corless et al (1996) (4.22)
;; Verebic (2010)
;;
;; z is a real or complex bigfloat: 
(defun lambert-branch-approx (z)
  (let ((y (- (sqrt (+ (* 2 (%e z) z ) 2)))) ; y=-sqrt(2*%e*z+2)
    (b0 -1) (b1 1) (b2 -1/3) (b3 11/72))
    (+ b0 (* y (+ b1 (* y (+ b2 (* b3 y))))))))

;; Algorithm based in part on Corless et al (1996).
;;
;; It is Halley's iteration applied to w*exp(w).
;;
;;
;;                               w[j] exp(w[j]) - z 
;; w[j+1] = w[j] - -------------------------------------------------
;;                                       (w[j]+2)(w[j] exp(w[j]) -z)
;;                  exp(w[j])(w[j]+1) -  ---------------------------
;;                                               2 w[j] + 2
;;
;; The algorithm has cubic convergence.  Once convergence begins, the 
;; number of digits correct at step k is roughly 3 times the number 
;; which were correct at step k-1.
;;
;; Convergence can stall using convergence test abs(w[j+1]-w[j]) < prec,
;; as happens for generalized_lambert_w(-1,z) near branch point z = -1/%e
;; Therefore also stop iterating if abs(w[j]*exp(w[j]) - z) << abs(z)
(defun lambert-w-k (k z &key (maxiter 50))
  (let ((w (init-lambert-w-k k z)) we w1e delta (prec (* 4 (epsilon z))))
    (dotimes (i maxiter (maxima::merror "lambert-w-k did not converge"))
      (setq we (* w (exp w)))
      (when (<= (abs (- z we)) (* 4 (epsilon z) (abs z))) (return))
      (setq w1e (* (1+ w) (exp w)))
      (setq delta (/ (- we z)
		     (- w1e (/ (* (+ w 2) (- we z)) (+ 2 (* 2 w))))))
      (decf w delta)
      (when (<= (abs (/ delta w)) prec) (return)))
    ;; Check iteration converged to correct branch
    (check-lambert-w-k k w z)
    w))

(defmethod init-lambert-w-k ((k integer) (z number))
  (maxima::init-lambert-w-k k z))

(defmethod init-lambert-w-k ((k integer) (z bigfloat))
  (bfloat-init-lambert-w-k k z))

(defmethod init-lambert-w-k ((k integer) (z complex-bigfloat))
  (bfloat-init-lambert-w-k k z))

(defun bfloat-init-lambert-w-k (k z)
  "Approximate generalized_lambert_w(k,z) for bigfloat: z as initial guess"
  (let ((branch-point -0.36787944117144)) ; branch point -1/%e
    (cond
       ;; if k=-1, z very close to -1/%e and imag(z)>=0, use power series
       ((and (= k -1)
	     (or (zerop (imagpart z))
		 (plusp (imagpart z)))
	     (< (abs (- z branch-point)) 1e-10))
	 (lambert-branch-approx z))
       ;; if k=1, z very close to -1/%e and imag(z)<0, use power series
       ((and (= k 1)
	     (minusp (imagpart z))
	     (< (abs (- z branch-point)) 1e-10))
	 (lambert-branch-approx z))
       ;; Initialize using float value if z is representable as a float
       ((< (abs z) 1.0e100)
	 (if (complexp z)
	     (bigfloat (lambert-w-k k (cl:complex (float (realpart z) 1.0)
						  (float (imagpart z) 1.0))))
	     (bigfloat (lambert-w-k k (float z 1.0)))))
       ;; For large z, use Corless et al (4.20)
       ;;              W_k(z) ~ log(z) + 2.pi.i.k - log(log(z)+2.pi.i.k)
       (t
	(let ((log-z (log z)))
	  (if (= k 0)
	    (- log-z (log log-z))
	    (let* ((i (make-instance 'complex-bigfloat :imag (intofp 1)))
		  (two-pi-i-k (* 2 (%pi z) i k)))
	      (- (+ log-z two-pi-i-k) 
		 (log (+ log-z two-pi-i-k))))))))))

;; Check Lambert W iteration converged to the correct branch
;; W_k(z) + ln W_k(z) = ln z, for k = -1 and z in [-1/e,0)
;;                    = ln z + 2 pi i k, otherwise
;; See Jeffrey, Hare, Corless (1996), eq (12)
;; k integer
;; z, w bigfloat: numbers
(defun check-lambert-w-k (k w z)
  (let ((tolerance #-gcl 1.0e-6
                   #+gcl (cl:float 1/1000000)))
  (if
     (cond 
       ;; k=-1 branch with z and w real.
      ((and (= k -1) (realp z) (minusp z) (>= z (/ -1 (%e z))))
       (if (and (realp w) 
		(<= w -1)
		(< (abs (+ w (log w) (- (log z)))) tolerance))
	   t
	   nil))
       (t
         ; i k =  (W_k(z) + ln W_k(z) - ln(z)) / 2 pi
        (let (ik)
	  (setq ik (/ (+ w (log w) (- (log z))) (* 2 (%pi z))))
	  (if (and (< (realpart ik) tolerance)
		   (< (abs (- k (imagpart ik))) tolerance))
	    t
	    nil))))
      t
      (maxima::merror "Lambert W iteration converged to wrong branch"))))

(in-package :maxima)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Generalized Lambert W function
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun $generalized_lambert_w (k z)
  (simplify (list '(%generalized_lambert_w) (resimplify k) (resimplify z))))

;;; Set properties to give full support to the parser and display
(defprop $generalized_lambert_w %generalized_lambert_w alias)
(defprop $generalized_lambert_w %generalized_lambert_w verb)
(defprop %generalized_lambert_w $generalized_lambert_w reversealias)
(defprop %generalized_lambert_w $generalized_lambert_w noun)

;;; lambert_w is a simplifying function
(defprop %generalized_lambert_w simp-generalized-lambertw operators)

;;; Derivative of lambert_w
(defprop %generalized_lambert_w
  ((k x)
   nil
   ((mtimes)
    ((mexpt) $%e ((mtimes ) -1 ((%generalized_lambert_w) k x)))
    ((mexpt) ((mplus) 1 ((%generalized_lambert_w) k x)) -1)))
  grad)

;;; Integral of lambert_w
;;; integrate(W(k,x),x) := x*(W(k,x)^2-W(k,x)+1)/W(k,x)
(defprop %generalized_lambert_w
  ((k x)
   nil
   ((mtimes)
    x
    ((mplus) 
     ((mexpt) ((%generalized_lambert_w) k x) 2) 
     ((mtimes) -1 ((%generalized_lambert_w) k x))
     1)
    ((mexpt) ((%generalized_lambert_w) k x) -1)))
  integral)

(defun simp-generalized-lambertw (expr ignored z)
  (declare (ignore ignored))
  (twoargcheck expr)
  (let ((k (simpcheck (cadr expr) z))
        (x (simpcheck (caddr expr) z)))
    (cond
     ;; Numerical evaluation for real or complex x
     ((and (integerp k) (complex-float-numerical-eval-p x))
       ;; x may be an integer.  eg "generalized_lambert_w(0,1),numer;"
       (if (integerp x) 
	   (to (bigfloat::lambert-w-k k (bigfloat:to ($float x))))
	   (to (bigfloat::lambert-w-k k (bigfloat:to x)))))
     ;; Numerical evaluation for real or complex bigfloat x
     ((and (integerp k) (complex-bigfloat-numerical-eval-p x))
      (to (bigfloat::lambert-w-k k (bigfloat:to x))))
     (t (list '(%generalized_lambert_w simp) k x)))))