This file is indexed.

/usr/share/pyshared/cclib/parser/jaguarparser.py is in python-cclib 1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# This file is part of cclib (http://cclib.sf.net), a library for parsing
# and interpreting the results of computational chemistry packages.
#
# Copyright (C) 2006, the cclib development team
#
# The library is free software, distributed under the terms of
# the GNU Lesser General Public version 2.1 or later. You should have
# received a copy of the license along with cclib. You can also access
# the full license online at http://www.gnu.org/copyleft/lgpl.html.

__revision__ = "$Revision: 1032 $"

import re

import numpy

import logfileparser
import utils


class Jaguar(logfileparser.Logfile):
    """A Jaguar output file"""

    def __init__(self, *args, **kwargs):

        # Call the __init__ method of the superclass
        super(Jaguar, self).__init__(logname="Jaguar", *args, **kwargs)
        
    def __str__(self):
        """Return a string representation of the object."""
        return "Jaguar output file %s" % (self.filename)

    def __repr__(self):
        """Return a representation of the object."""
        return 'Jaguar("%s")' % (self.filename)

    def normalisesym(self, label):
        """Normalise the symmetries used by Jaguar.

        To normalise, three rules need to be applied:
        (1) To handle orbitals of E symmetry, retain everything before the /
        (2) Replace two p's by "
        (2) Replace any remaining single p's by '

        >>> t = Jaguar("dummyfile").normalisesym
        >>> labels = ['A', 'A1', 'Ag', 'Ap', 'App', "A1p", "A1pp", "E1pp/Ap"]
        >>> answers = map(t, labels)
        >>> print answers
        ['A', 'A1', 'Ag', "A'", 'A"', "A1'", 'A1"', 'E1"']
        """
        ans = label.split("/")[0].replace("pp", '"').replace("p", "'")
        return ans

    def before_parsing(self):

        self.geoopt = False # Is this a GeoOpt? Needed for SCF targets/values.

    def extract(self, inputfile, line):
        """Extract information from the file object inputfile."""
            
        if line[0:4] == "etot":
        # Get SCF convergence information
            if not hasattr(self, "scfvalues"):
                self.scfvalues = []
                self.scftargets = [[5E-5, 5E-6]]
            values = []
            while line[0:4] == "etot":
        # Jaguar 4.2
        # etot   1  N  N  0  N  -382.08751886450           2.3E-03  1.4E-01
        # etot   2  Y  Y  0  N  -382.27486023153  1.9E-01  1.4E-03  5.7E-02
        # Jaguar 6.5
        # etot   1  N  N  0  N    -382.08751881733           2.3E-03  1.4E-01
        # etot   2  Y  Y  0  N    -382.27486018708  1.9E-01  1.4E-03  5.7E-02
                temp = line.split()[7:]
                if len(temp)==3:
                    denergy = float(temp[0])
                else:
                    denergy = 0 # Should really be greater than target value
                                # or should we just ignore the values in this line
                ddensity = float(temp[-2])
                maxdiiserr = float(temp[-1])
                if not self.geoopt:
                    values.append([denergy, ddensity])
                else:
                    values.append([ddensity])
                line = inputfile.next()
            self.scfvalues.append(values)

        # Hartree-Fock energy after SCF
        if line[1:18] == "SCFE: SCF energy:":
            if not hasattr(self, "scfenergies"):
                self.scfenergies = []
            temp = line.strip().split()
            scfenergy = float(temp[temp.index("hartrees") - 1])
            scfenergy = utils.convertor(scfenergy, "hartree", "eV")
            self.scfenergies.append(scfenergy)

        # Energy after LMP2 correction
        if line[1:18] == "Total LMP2 Energy":
            if not hasattr(self, "mpenergies"):
                self.mpenergies = [[]]
            lmp2energy = float(line.split()[-1])
            lmp2energy = utils.convertor(lmp2energy, "hartree", "eV")
            self.mpenergies[-1].append(lmp2energy)

        if line[2:14] == "new geometry" or line[1:21] == "Symmetrized geometry" or line.find("Input geometry") > 0:
        # Get the atom coordinates
            if not hasattr(self, "atomcoords") or line[1:21] == "Symmetrized geometry":
                # Wipe the "Input geometry" if "Symmetrized geometry" present
                self.atomcoords = []
            p = re.compile("(\D+)\d+") # One/more letters followed by a number
            atomcoords = []
            atomnos = []
            angstrom = inputfile.next()
            title = inputfile.next()
            line = inputfile.next()
            while line.strip():
                temp = line.split()
                element = p.findall(temp[0])[0]
                atomnos.append(self.table.number[element])
                atomcoords.append(map(float, temp[1:]))
                line = inputfile.next()
            self.atomcoords.append(atomcoords)
            self.atomnos = numpy.array(atomnos, "i")
            self.natom = len(atomcoords)

        # Extract charge and multiplicity
        if line[2:22] == "net molecular charge":
            self.charge = int(line.split()[-1])
            self.mult = int(inputfile.next().split()[-1])

        if line[2:24] == "start of program geopt":
            if not self.geoopt:
                # Need to keep only the RMS density change info
                # if this is a geoopt
                self.scftargets = [[self.scftargets[0][0]]]
                if hasattr(self, "scfvalues"):
                    self.scfvalues[0] = [[x[0]] for x in self.scfvalues[0]]
                self.geoopt = True
            else:
                self.scftargets.append([5E-5])

        if line[2:28] == "geometry optimization step":
        # Get Geometry Opt convergence information
            if not hasattr(self, "geovalues"):
                self.geovalues = []
                self.geotargets = numpy.zeros(5, "d")
            gopt_step = int(line.split()[-1])
            energy = inputfile.next()
            # quick hack for messages of the sort:
            #   ** restarting optimization from step    2 **
            # as found in regression file ptnh3_2_H2O_2_2plus.out
            if inputfile.next().strip():
                blank = inputfile.next()
            line = inputfile.next()
            values = []
            target_index = 0                
            if gopt_step == 1:
                # The first optimization step does not produce an energy change
                values.append(0.0)
                target_index = 1
            while line.strip():
                if len(line) > 40 and line[41] == "(":
                    # A new geo convergence value
                    values.append(float(line[26:37]))
                    self.geotargets[target_index] = float(line[43:54])
                    target_index += 1
                line = inputfile.next()
            self.geovalues.append(values)

        if line.find("number of occupied orbitals") > 0:
        # Get number of MOs
            occs = int(line.split()[-1])
            line = inputfile.next()
            virts = int(line.split()[-1])
            self.nmo = occs + virts
            self.homos = numpy.array([occs-1], "i")

            self.unrestrictedflag = False

        if line.find("number of alpha occupied orb") > 0:
        # Get number of MOs for an unrestricted calc

            aoccs = int(line.split()[-1])
            line = inputfile.next()
            avirts = int(line.split()[-1])
            line = inputfile.next()
            boccs = int(line.split()[-1])
            line = inputfile.next()
            bvirt = int(line.split()[-1])

            self.nmo = aoccs + avirts
            self.homos = numpy.array([aoccs-1, boccs-1], "i")
            self.unrestrictedflag = True

        # MO energies and symmetries.
        # Jaguar 7.0: provides energies and symmetries for both
        #   restricted and unrestricted calculations, like this:
        #     Alpha Orbital energies/symmetry label: 
        #     -10.25358 Bu  -10.25353 Ag  -10.21931 Bu  -10.21927 Ag     
        #     -10.21792 Bu  -10.21782 Ag  -10.21773 Bu  -10.21772 Ag     
        #     ...
        # Jaguar 6.5: prints both only for restricted calculations,
        #   so for unrestricted calculations the output it looks like this:
        #     Alpha Orbital energies: 
        #     -10.25358  -10.25353  -10.21931  -10.21927  -10.21792  -10.21782
        #     -10.21773  -10.21772  -10.21537  -10.21537   -1.02078   -0.96193
        #     ...
        # Presence of 'Orbital energies' is enough to catch all versions.
        if "Orbital energies" in line:

            # Parsing results is identical for restricted/unrestricted
            #   calculations, just assert later that alpha/beta order is OK.
            spin = int(line[2:6] == "Beta")

            # Check if symmetries are printed also.
            issyms = "symmetry label" in line

            if not hasattr(self, "moenergies"):
                self.moenergies = []
            if issyms and not hasattr(self, "mosyms"):
                self.mosyms = []
            
            # Grow moeneriges/mosyms and make sure they are empty when
            #   parsed multiple times - currently cclib returns only
            #   the final output (ex. in a geomtry optimization).
            if len(self.moenergies) < spin+1:
                self.moenergies.append([])
            self.moenergies[spin] = []
            if issyms:
                if len(self.mosyms) < spin+1:
                    self.mosyms.append([])
                self.mosyms[spin] = []
            
            line = inputfile.next().split()
            while len(line) > 0:
                if issyms:
                    energies = [float(line[2*i]) for i in range(len(line)/2)]
                    syms = [line[2*i+1] for i in range(len(line)/2)]
                else:
                    energies = [float(e) for e in line]
                energies = [utils.convertor(e, "hartree", "eV") for e in energies]
                self.moenergies[spin].extend(energies)
                if issyms:
                    syms = [self.normalisesym(s) for s in syms]
                    self.mosyms[spin].extend(syms)
                line = inputfile.next().split()
            
            # There should always be an extra blank line after all this.
            line = inputfile.next()

        if line.find("Occupied + virtual Orbitals- final wvfn") > 0:
            
            blank = inputfile.next()
            stars = inputfile.next()
            blank = inputfile.next()
            blank = inputfile.next()
            
            if not hasattr(self,"mocoeffs"):
                if self.unrestrictedflag:
                    spin = 2
                else:
                    spin = 1

                self.mocoeffs = []
                
            
            aonames = []
            lastatom = "X"
            
            readatombasis = False
            if not hasattr(self, "atombasis"):
                self.atombasis = []
                for i in range(self.natom):
                    self.atombasis.append([])
                readatombasis = True

            offset = 0

            for s in range(spin):
                mocoeffs = numpy.zeros((len(self.moenergies[s]), self.nbasis), "d")

                if s == 1: #beta case
                    stars = inputfile.next()
                    blank = inputfile.next()
                    title = inputfile.next()
                    blank = inputfile.next()
                    stars = inputfile.next()
                    blank = inputfile.next()
                    blank = inputfile.next()

                for k in range(0, len(self.moenergies[s]), 5):
                    if self.progress:
                        self.updateprogress(inputfile, "Coefficients")

                    numbers = inputfile.next()
                    eigens = inputfile.next()
                    line = inputfile.next()

                    for i in range(self.nbasis):

                        info = line.split()
                        
                        # Fill atombasis only first time around.
                        if readatombasis and k == 0:
                            orbno = int(info[0])
                            atom = info[1]
                            if atom[1].isalpha():
                                atomno = int(atom[2:])
                            else:
                                atomno = int(atom[1:])
                            self.atombasis[atomno-1].append(orbno-1)

                        if not hasattr(self,"aonames"):
                            if lastatom != info[1]:
                                scount = 1
                                pcount = 3
                                dcount = 6 #six d orbitals in Jaguar

                            if info[2] == 'S':
                                aonames.append("%s_%i%s"%(info[1], scount, info[2]))
                                scount += 1
                        
                            if info[2] == 'X' or info[2] == 'Y' or info[2] == 'Z':
                                aonames.append("%s_%iP%s"%(info[1], pcount / 3, info[2]))
                                pcount += 1
                        
                            if info[2] == 'XX' or info[2] == 'YY' or info[2] == 'ZZ' or \
                               info[2] == 'XY' or info[2] == 'XZ' or info[2] == 'YZ':

                                aonames.append("%s_%iD%s"%(info[1], dcount / 6, info[2]))
                                dcount += 1

                            lastatom = info[1]

                        for j in range(len(info[3:])):
                            mocoeffs[j+k, i] = float(info[3+j])

                        line = inputfile.next()

                    if not hasattr(self,"aonames"):
                        self.aonames = aonames

                    offset += 5
                self.mocoeffs.append(mocoeffs)
                        
                        
        if line[2:6] == "olap":
            if line[6] == "-":
                return
                # This was continue (in loop) before parser refactoring.
                # continue # avoid "olap-dev"
            self.aooverlaps = numpy.zeros((self.nbasis, self.nbasis), "d")

            for i in range(0, self.nbasis, 5):
                if self.progress:
                    self.updateprogress(inputfile, "Overlap")

                blank = inputfile.next()
                header = inputfile.next()
                for j in range(i, self.nbasis):
                    temp = map(float, inputfile.next().split()[1:])
                    self.aooverlaps[j, i:(i+len(temp))] = temp
                    self.aooverlaps[i:(i+len(temp)), j] = temp
            
        if line[1:28] == "number of occupied orbitals":
            self.homos = numpy.array([float(line.strip().split()[-1])-1], "i")

        if line[2:27] == "number of basis functions":
            self.nbasis = int(line.strip().split()[-1])

        # IR output looks like this:
        #   frequencies        72.45   113.25   176.88   183.76   267.60   312.06
        #   symmetries       Au       Bg       Au       Bu       Ag       Bg      
        #   intensities         0.07     0.00     0.28     0.52     0.00     0.00
        #   reduc. mass         1.90     0.74     1.06     1.42     1.19     0.85
        #   force const         0.01     0.01     0.02     0.03     0.05     0.05
        #   C1       X     0.00000  0.00000  0.00000 -0.05707 -0.06716  0.00000
        #   C1       Y     0.00000  0.00000  0.00000  0.00909 -0.02529  0.00000
        #   C1       Z     0.04792 -0.06032 -0.01192  0.00000  0.00000  0.11613
        #   C2       X     0.00000  0.00000  0.00000 -0.06094 -0.04635  0.00000
        #   ... etc. ...
        # This is a complete ouput, some files will not have intensities,
        #   and older Jaguar versions sometimes skip the symmetries.
        if line[2:23] == "start of program freq":

            self.vibfreqs = []
            self.vibdisps = []
            forceconstants = False
            intensities = False
            blank = inputfile.next()
            line = inputfile.next()
            while line.strip():
                if "force const" in line:
                    forceconstants = True
                if "intensities" in line:
                    intensities = True
                line = inputfile.next()
            freqs = inputfile.next()
            
            # The last block has an extra blank line after it - catch it.
            while freqs.strip():

                # Number of modes (columns printed in this block).
                nmodes = len(freqs.split())-1

                # Append the frequencies.
                self.vibfreqs.extend(map(float, freqs.split()[1:]))
                line = inputfile.next().split()
                
                # May skip symmetries (older Jaguar versions).
                if line[0] == "symmetries":
                    if not hasattr(self, "vibsyms"):
                        self.vibsyms = []
                    self.vibsyms.extend(map(self.normalisesym, line[1:]))
                    line = inputfile.next().split()                                
                if intensities:
                    if not hasattr(self, "vibirs"):
                        self.vibirs = []
                    self.vibirs.extend(map(float, line[1:]))
                    line = inputfile.next().split()                                
                if forceconstants:
                    line = inputfile.next()

                # Start parsing the displacements.
                # Variable 'q' holds up to 7 lists of triplets.
                q = [ [] for i in range(7) ]
                for n in range(self.natom):
                    # Variable 'p' holds up to 7 triplets.
                    p = [ [] for i in range(7) ]
                    for i in range(3):
                        line = inputfile.next()
                        disps = [float(disp) for disp in line.split()[2:]]
                        for j in range(nmodes):
                            p[j].append(disps[j])
                    for i in range(nmodes):
                        q[i].append(p[i])

                self.vibdisps.extend(q[:nmodes])
                blank = inputfile.next()
                freqs = inputfile.next()

            # Convert new data to arrays.
            self.vibfreqs = numpy.array(self.vibfreqs, "d")
            self.vibdisps = numpy.array(self.vibdisps, "d")
            if hasattr(self, "vibirs"):
                self.vibirs = numpy.array(self.vibirs, "d")
                
        # Parse excited state output (for CIS calculations).
        # Jaguar calculates only singlet states.
        if line[2:15] == "Excited State":
            if not hasattr(self, "etenergies"):
                self.etenergies = []
            if not hasattr(self, "etoscs"):
                self.etoscs = []
            if not hasattr(self, "etsecs"):
                self.etsecs = []
                self.etsyms = []
            etenergy = float(line.split()[3])
            etenergy = utils.convertor(etenergy, "eV", "cm-1")
            self.etenergies.append(etenergy)
            # Skip 4 lines
            for i in range(5):
                line = inputfile.next()
            self.etsecs.append([])
            # Jaguar calculates only singlet states.
            self.etsyms.append('Singlet-A')
            while line.strip() != "":
                fromMO = int(line.split()[0])-1
                toMO = int(line.split()[2])-1
                coeff = float(line.split()[-1])
                self.etsecs[-1].append([(fromMO, 0), (toMO, 0), coeff])
                line = inputfile.next()
            # Skip 3 lines
            for i in range(4):
                line = inputfile.next()
            strength = float(line.split()[-1])
            self.etoscs.append(strength)

        
if __name__ == "__main__":
    import doctest, jaguarparser
    doctest.testmod(jaguarparser, verbose=False)