/usr/include/blitz/array/funcs.h is in libblitz0-dev 1:0.10-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | // -*- C++ -*-
/***************************************************************************
* blitz/array/funcs.h Math functions on arrays
*
* $Id$
*
* Copyright (C) 1997-2011 Todd Veldhuizen <tveldhui@acm.org>
*
* This file is a part of Blitz.
*
* Blitz is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Blitz is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Blitz. If not, see <http://www.gnu.org/licenses/>.
*
* Suggestions: blitz-devel@lists.sourceforge.net
* Bugs: blitz-support@lists.sourceforge.net
*
* For more information, please see the Blitz++ Home Page:
* https://sourceforge.net/projects/blitz/
*
****************************************************************************/
#ifndef BZ_ARRAY_FUNCS_H
#define BZ_ARRAY_FUNCS_H
#include <blitz/funcs.h>
#include <blitz/array/newet-macros.h>
#include <blitz/array/reduce.h>
#include <blitz/levicivita.h>
BZ_NAMESPACE(blitz)
/* This file contains definitions of the math functions for ETBase
types. Note that these definitions are in the blitz namespace and
will hide the definitions of the builtin math functions in the
global namespace. For this reason, the calls to the builtin math
functions in the functors' apply() methods must explicitly qualify
the namespace.
*/
// unary functions
BZ_DECLARE_ARRAY_ET_UNARY(abs, Fn_abs)
BZ_DECLARE_ARRAY_ET_UNARY(acos, Fn_acos)
BZ_DECLARE_ARRAY_ET_UNARY(asin, Fn_asin)
BZ_DECLARE_ARRAY_ET_UNARY(atan, Fn_atan)
BZ_DECLARE_ARRAY_ET_UNARY(ceil, Fn_ceil)
BZ_DECLARE_ARRAY_ET_UNARY(cexp, Fn_exp)
BZ_DECLARE_ARRAY_ET_UNARY(cos, Fn_cos)
BZ_DECLARE_ARRAY_ET_UNARY(cosh, Fn_cosh)
BZ_DECLARE_ARRAY_ET_UNARY(csqrt, Fn_sqrt)
BZ_DECLARE_ARRAY_ET_UNARY(cube, Fn_cube)
BZ_DECLARE_ARRAY_ET_UNARY(exp, Fn_exp)
BZ_DECLARE_ARRAY_ET_UNARY(fabs, Fn_fabs)
BZ_DECLARE_ARRAY_ET_UNARY(floor, Fn_floor)
BZ_DECLARE_ARRAY_ET_UNARY(log, Fn_log)
BZ_DECLARE_ARRAY_ET_UNARY(log10, Fn_log10)
BZ_DECLARE_ARRAY_ET_UNARY(pow2, Fn_sqr)
BZ_DECLARE_ARRAY_ET_UNARY(pow3, Fn_cube)
BZ_DECLARE_ARRAY_ET_UNARY(pow4, Fn_pow4)
BZ_DECLARE_ARRAY_ET_UNARY(pow5, Fn_pow5)
BZ_DECLARE_ARRAY_ET_UNARY(pow6, Fn_pow6)
BZ_DECLARE_ARRAY_ET_UNARY(pow7, Fn_pow7)
BZ_DECLARE_ARRAY_ET_UNARY(pow8, Fn_pow8)
BZ_DECLARE_ARRAY_ET_UNARY(sin, Fn_sin)
BZ_DECLARE_ARRAY_ET_UNARY(sinh, Fn_sinh)
BZ_DECLARE_ARRAY_ET_UNARY(sqr, Fn_sqr)
BZ_DECLARE_ARRAY_ET_UNARY(sqrt, Fn_sqrt)
BZ_DECLARE_ARRAY_ET_UNARY(tan, Fn_tan)
BZ_DECLARE_ARRAY_ET_UNARY(tanh, Fn_tanh)
#ifdef BZ_HAVE_COMPLEX_FCNS
BZ_DECLARE_ARRAY_ET_UNARY(arg, Fn_arg)
BZ_DECLARE_ARRAY_ET_UNARY(conj, Fn_conj)
BZ_DECLARE_ARRAY_ET_UNARY(imag, Fn_imag)
BZ_DECLARE_ARRAY_ET_UNARY(norm, Fn_norm)
BZ_DECLARE_ARRAY_ET_UNARY(real, Fn_real)
#endif
#ifdef BZ_HAVE_IEEE_MATH
// finite and trunc omitted: blitz-bugs/archive/0189.html
BZ_DECLARE_ARRAY_ET_UNARY(acosh, Fn_acosh)
BZ_DECLARE_ARRAY_ET_UNARY(asinh, Fn_asinh)
BZ_DECLARE_ARRAY_ET_UNARY(atanh, Fn_atanh)
BZ_DECLARE_ARRAY_ET_UNARY(cbrt, Fn_cbrt)
BZ_DECLARE_ARRAY_ET_UNARY(erf, Fn_erf)
BZ_DECLARE_ARRAY_ET_UNARY(erfc, Fn_erfc)
BZ_DECLARE_ARRAY_ET_UNARY(expm1, Fn_expm1)
// BZ_DECLARE_ARRAY_ET_UNARY(finite, Fn_finite)
BZ_DECLARE_ARRAY_ET_UNARY(ilogb, Fn_ilogb)
BZ_DECLARE_ARRAY_ET_UNARY(blitz_isnan, Fn_isnan)
BZ_DECLARE_ARRAY_ET_UNARY(j0, Fn_j0)
BZ_DECLARE_ARRAY_ET_UNARY(j1, Fn_j1)
BZ_DECLARE_ARRAY_ET_UNARY(lgamma, Fn_lgamma)
BZ_DECLARE_ARRAY_ET_UNARY(logb, Fn_logb)
BZ_DECLARE_ARRAY_ET_UNARY(log1p, Fn_log1p)
BZ_DECLARE_ARRAY_ET_UNARY(rint, Fn_rint)
// BZ_DECLARE_ARRAY_ET_UNARY(trunc, Fn_trunc)
BZ_DECLARE_ARRAY_ET_UNARY(y0, Fn_y0)
BZ_DECLARE_ARRAY_ET_UNARY(y1, Fn_y1)
#endif
#ifdef BZ_HAVE_SYSTEM_V_MATH
BZ_DECLARE_ARRAY_ET_UNARY(_class, Fn__class)
BZ_DECLARE_ARRAY_ET_UNARY(itrunc, Fn_itrunc)
BZ_DECLARE_ARRAY_ET_UNARY(nearest, Fn_nearest)
BZ_DECLARE_ARRAY_ET_UNARY(rsqrt, Fn_rsqrt)
BZ_DECLARE_ARRAY_ET_UNARY(uitrunc, Fn_uitrunc)
#endif
// cast() function
template<typename T_cast, typename T1>
_bz_inline_et
_bz_ArrayExpr<_bz_ArrayExprUnaryOp<_bz_typename asExpr<T1>::T_expr,
Cast<_bz_typename asExpr<T1>::T_expr::T_numtype, T_cast> > >
cast(const ETBase<T1>& expr)
{
return _bz_ArrayExpr<_bz_ArrayExprUnaryOp<
_bz_typename asExpr<T1>::T_expr,
Cast<_bz_typename asExpr<T1>::T_expr::T_numtype,T_cast> > >
(expr.unwrap());
}
// binary functions
BZ_DECLARE_ARRAY_ET_BINARY(atan2, Fn_atan2)
BZ_DECLARE_ARRAY_ET_BINARY(fmod, Fn_fmod)
BZ_DECLARE_ARRAY_ET_BINARY(pow, Fn_pow)
#ifdef BZ_HAVE_COMPLEX_FCNS
BZ_DECLARE_ARRAY_ET_BINARY(polar, Fn_polar)
#endif
#ifdef BZ_HAVE_SYSTEM_V_MATH
BZ_DECLARE_ARRAY_ET_BINARY(copysign, Fn_copysign)
BZ_DECLARE_ARRAY_ET_BINARY(drem, Fn_drem)
BZ_DECLARE_ARRAY_ET_BINARY(hypot, Fn_hypot)
BZ_DECLARE_ARRAY_ET_BINARY(nextafter, Fn_nextafter)
BZ_DECLARE_ARRAY_ET_BINARY(remainder, Fn_remainder)
BZ_DECLARE_ARRAY_ET_BINARY(scalb, Fn_scalb)
BZ_DECLARE_ARRAY_ET_BINARY(unordered, Fn_unordered)
#endif
BZ_DECLARE_ARRAY_ET_BINARY((min), Min)
BZ_DECLARE_ARRAY_ET_BINARY((max), Max)
#ifdef BZ_HAVE_SYSTEM_V_MATH
#define BZ_DECLARE_ARRAY_ET_SCALAR_FUNCS(sca) \
\
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(atan2, Fn_atan2, sca) \
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(fmod, Fn_fmod, sca) \
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(pow, Fn_pow, sca) \
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(copysign, Fn_copysign, sca) \
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(drem, Fn_drem, sca) \
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(hypot, Fn_hypot, sca) \
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(nextafter, Fn_nextafter, sca) \
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(remainder, Fn_remainder, sca) \
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(scalb, Fn_scalb, sca) \
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(unordered, Fn_unordered, sca) \
#else
#define BZ_DECLARE_ARRAY_ET_SCALAR_FUNCS(sca) \
\
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(atan2, Fn_atan2, sca) \
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(fmod, Fn_fmod, sca) \
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(pow, Fn_pow, sca) \
#endif
BZ_DECLARE_ARRAY_ET_SCALAR_FUNCS(int)
BZ_DECLARE_ARRAY_ET_SCALAR_FUNCS(float)
BZ_DECLARE_ARRAY_ET_SCALAR_FUNCS(double)
BZ_DECLARE_ARRAY_ET_SCALAR_FUNCS(long double)
#ifdef BZ_HAVE_COMPLEX_FCNS
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(polar, Fn_polar, int)
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(polar, Fn_polar, float)
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(polar, Fn_polar, double)
BZ_DECLARE_ARRAY_ET_BINARY_SCALAR(polar, Fn_polar, long double)
template<typename T1, typename T2>
inline _bz_ArrayExprBinaryOp<
typename asExpr<complex<T1> >::T_expr,
typename asExpr<T2>::T_expr,
Fn_pow<complex<T1>,typename asExpr<T2>::T_expr::T_numtype> >
pow(const complex<T1> d1, const ETBase<T2>& d2)
{
return _bz_ArrayExprBinaryOp<
typename asExpr<complex<T1> >::T_expr,
typename asExpr<T2>::T_expr,
Fn_pow<complex<T1>,typename asExpr<T2>::T_expr::T_numtype> >
(asExpr<complex<T1> >::getExpr(d1),
asExpr<T2>::getExpr(d2.unwrap()));
}
// global functions that don't fit anywhere else
// we define a generalized dot product for all classes as sum(a*b)
template<typename T1, typename T2>
inline
_bz_typename ReduceSum<_bz_typename BZ_BLITZ_SCOPE(BzBinaryExprResult)<Multiply,T1,T2>::T_result::T_numtype
>::T_resulttype
dot(const ETBase<T1>& d1, const ETBase<T2>& d2)
{
return sum(d1 * d2);
}
// we define a generalized cross product for all classes using the
// Levi-Civita symbol. Return type is nice (ever heard of "write-once
// code")... it took 10 times longer to figure out how to write the
// return type than to do everything else...
template<typename T1, typename T2>
inline
_bz_ArrayExpr<
_bz_ArrayExprReduce<
_bz_ArrayExpr<
_bz_ArrayExprReduce<
_bz_typename BzBinaryExprResult<
Multiply,
_bz_typename BzBinaryExprResult<
Multiply,
_bz_ArrayExpr<LeviCivita>,
_bz_ArrayExpr<
ArrayIndexMapping<
_bz_typename asExpr<T1>::T_expr, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
>
>::T_result,
_bz_ArrayExpr<
ArrayIndexMapping<
_bz_typename asExpr<T2>::T_expr, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
>
>::T_result,
2,
ReduceSum<
_bz_typename BzBinaryExprResult<Multiply,_bz_typename BzBinaryExprResult<Multiply,_bz_ArrayExpr<LeviCivita>,_bz_ArrayExpr<ArrayIndexMapping<_bz_typename asExpr<T1>::T_expr, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> > >::T_result,_bz_ArrayExpr<ArrayIndexMapping<_bz_typename asExpr<T2>::T_expr, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> > > ::T_result::T_numtype,
BZ_SUMTYPE(bzCC(_bz_typename BzBinaryExprResult<Multiply,_bz_typename BzBinaryExprResult<Multiply,_bz_ArrayExpr<LeviCivita>,_bz_ArrayExpr<ArrayIndexMapping<_bz_typename asExpr<T1>::T_expr, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> > >::T_result,_bz_ArrayExpr<ArrayIndexMapping<_bz_typename asExpr<T2>::T_expr, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> > > ::T_result::T_numtype))>
>
>,
1,
ReduceSum<BZ_SUMTYPE(bzCC(_bz_typename BzBinaryExprResult<Multiply,_bz_typename BzBinaryExprResult<Multiply,_bz_ArrayExpr<LeviCivita>,_bz_ArrayExpr<ArrayIndexMapping<_bz_typename asExpr<T1>::T_expr, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> > >::T_result,_bz_ArrayExpr<ArrayIndexMapping<_bz_typename asExpr<T2>::T_expr, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> > > ::T_result::T_numtype))>
>
>
//int
cross(const ETBase<T1>& d1, const ETBase<T2>& d2)
{
_bz_ArrayExpr<
_bz_ArrayExprReduce<
_bz_ArrayExpr<
_bz_ArrayExprReduce<
_bz_typename BzBinaryExprResult<
Multiply,
_bz_typename BzBinaryExprResult<
Multiply,
_bz_ArrayExpr<LeviCivita>,
_bz_ArrayExpr<
ArrayIndexMapping<
_bz_typename asExpr<T1>::T_expr, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
>
>::T_result,
_bz_ArrayExpr<
ArrayIndexMapping<
_bz_typename asExpr<T2>::T_expr, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
>
>::T_result,
2,
ReduceSum<
_bz_typename BzBinaryExprResult<Multiply,_bz_typename BzBinaryExprResult<Multiply,_bz_ArrayExpr<LeviCivita>,_bz_ArrayExpr<ArrayIndexMapping<_bz_typename asExpr<T1>::T_expr, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> > >::T_result,_bz_ArrayExpr<ArrayIndexMapping<_bz_typename asExpr<T2>::T_expr, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> > > ::T_result::T_numtype,
BZ_SUMTYPE(bzCC(_bz_typename BzBinaryExprResult<Multiply,_bz_typename BzBinaryExprResult<Multiply,_bz_ArrayExpr<LeviCivita>,_bz_ArrayExpr<ArrayIndexMapping<_bz_typename asExpr<T1>::T_expr, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> > >::T_result,_bz_ArrayExpr<ArrayIndexMapping<_bz_typename asExpr<T2>::T_expr, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> > > ::T_result::T_numtype))>
>
>,
1,
ReduceSum<BZ_SUMTYPE(bzCC(_bz_typename BzBinaryExprResult<Multiply,_bz_typename BzBinaryExprResult<Multiply,_bz_ArrayExpr<LeviCivita>,_bz_ArrayExpr<ArrayIndexMapping<_bz_typename asExpr<T1>::T_expr, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> > >::T_result,_bz_ArrayExpr<ArrayIndexMapping<_bz_typename asExpr<T2>::T_expr, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> > > ::T_result::T_numtype))>
>
>* x;
//int a=*x;
return sum(sum(LeviCivita()*d1.unwrap()(tensor::j)*d2.unwrap()(tensor::k),
tensor::k),
tensor::j);
}
// "scalar" function converts something into a scalar expression. this
// is used to prevent parsing of multicomponent expressions as bitwise
// expressions between dissimilar containers.
template <typename T>
inline
_bz_ArrayExpr<_bz_ArrayExprConstant<T> >
scalar(const T& x) {
return _bz_ArrayExpr<_bz_ArrayExprConstant<T> >(x);
}
#endif
BZ_NAMESPACE_END
#endif // BZ_ARRAY_FUNCS_H
|