/usr/include/blitz/array/methods.cc is in libblitz0-dev 1:0.10-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 | /***************************************************************************
* blitz/array/methods.cc General array class methods.
*
* $Id$
*
* Copyright (C) 1997-2011 Todd Veldhuizen <tveldhui@acm.org>
*
* This file is a part of Blitz.
*
* Blitz is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Blitz is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Blitz. If not, see <http://www.gnu.org/licenses/>.
*
* Suggestions: blitz-devel@lists.sourceforge.net
* Bugs: blitz-support@lists.sourceforge.net
*
* For more information, please see the Blitz++ Home Page:
* https://sourceforge.net/projects/blitz/
*
****************************************************************************/
#ifndef BZ_ARRAYMETHODS_CC
#define BZ_ARRAYMETHODS_CC
#ifndef BZ_ARRAY_H
#error <blitz/array/methods.cc> must be included via <blitz/array.h>
#endif
BZ_NAMESPACE(blitz)
template<typename P_numtype, int N_rank> template<typename T_expr>
Array<P_numtype,N_rank>::Array(_bz_ArrayExpr<T_expr> expr)
{
// Determine extent of the array expression
TinyVector<int,N_rank> lbound, extent, ordering;
TinyVector<bool,N_rank> ascendingFlag;
TinyVector<bool,N_rank> in_ordering;
in_ordering = false;
int j = 0;
for (int i=0; i < N_rank; ++i)
{
lbound(i) = expr.lbound(i);
int ubound = expr.ubound(i);
extent(i) = ubound - lbound(i) + 1;
int orderingj = expr.ordering(i);
if (orderingj != INT_MIN && orderingj < N_rank &&
!in_ordering( orderingj )) { // unique value in ordering array
in_ordering( orderingj ) = true;
ordering(j++) = orderingj;
}
int ascending = expr.ascending(i);
ascendingFlag(i) = (ascending == 1);
#ifdef BZ_DEBUG
if ((lbound(i) == INT_MIN) || (ubound == INT_MAX)
|| (ordering(i) == INT_MIN) || (ascending == INT_MIN))
{
BZPRECHECK(0,
"Attempted to construct an array from an expression " << endl
<< "which does not have a shape. To use this constructor, "
<< endl
<< "the expression must contain at least one array operand.");
return;
}
#endif
}
// It is possible that ordering is not a permutation of 0,...,N_rank-1.
// In that case j will be less than N_rank. We fill in ordering with the
// usused values in decreasing order.
for (int i = N_rank-1; j < N_rank; ++j) {
while (in_ordering(i))
--i;
ordering(j) = i--;
}
Array<T_numtype,N_rank> A(lbound,extent,
GeneralArrayStorage<N_rank>(ordering,ascendingFlag));
A = expr;
reference(A);
}
template<typename P_numtype, int N_rank>
Array<P_numtype,N_rank>::Array(const TinyVector<int, N_rank>& lbounds,
const TinyVector<int, N_rank>& extent,
const GeneralArrayStorage<N_rank>& storage)
: storage_(storage)
{
length_ = extent;
storage_.setBase(lbounds);
setupStorage(N_rank - 1);
}
/** This routine takes the storage information for the array
(ascendingFlag_[], base_[], and ordering_[]) and the size of the
array (length_[]) and computes the stride vector (stride_[]) and
the zero offset (see explanation in array.h).
*/
template<typename P_numtype, int N_rank>
_bz_inline2 void Array<P_numtype, N_rank>::computeStrides()
{
if (N_rank > 1)
{
diffType stride = 1;
// This flag simplifies the code in the loop, encouraging
// compile-time computation of strides through constant folding.
bool allAscending = storage_.allRanksStoredAscending();
// BZ_OLD_FOR_SCOPING
int n;
for (n=0; n < N_rank; ++n)
{
int strideSign = +1;
// If this rank is stored in descending order, then the stride
// will be negative.
if (!allAscending)
{
if (!isRankStoredAscending(ordering(n)))
strideSign = -1;
}
// The stride for this rank is the product of the lengths of
// the ranks minor to it.
stride_[ordering(n)] = stride * strideSign;
if((storage_.padding()==paddedData)&&(n==0)) {
// The lowest rank dimension is padded to vecWidth, so this
// needs to be accounted for in the stride
stride *= simdTypes<T_numtype>::paddedLength(length_[ordering(0)]);
}
else
stride *= length_[ordering(n)];
}
}
else {
// Specialization for N_rank == 1
// This simpler calculation makes it easier for the compiler
// to propagate stride values.
if (isRankStoredAscending(0))
stride_[0] = 1;
else
stride_[0] = -1;
}
calculateZeroOffset();
}
template<typename P_numtype, int N_rank>
void Array<P_numtype, N_rank>::calculateZeroOffset()
{
// Calculate the offset of (0,0,...,0)
zeroOffset_ = 0;
// zeroOffset_ = - sum(where(ascendingFlag_, stride_ * base_,
// (length_ - 1 + base_) * stride_))
for (int n=0; n < N_rank; ++n)
{
if (!isRankStoredAscending(n))
zeroOffset_ -= (length_[n] - 1 + base(n)) * stride_[n];
else
zeroOffset_ -= stride_[n] * base(n);
}
}
template<typename P_numtype, int N_rank>
bool Array<P_numtype, N_rank>::isStorageContiguous() const
{
// The storage is contiguous if for the set
// { | stride[i] * extent[i] | }, i = 0..N_rank-1,
// there is only one value which is not in the set
// of strides; and if there is one stride which is 1.
// This algorithm is quadratic in the rank. It is hard
// to imagine this being a serious problem.
int numStridesMissing = 0;
bool haveUnitStride = false;
for (int i=0; i < N_rank; ++i)
{
diffType stride = BZ_MATHFN_SCOPE(abs)(stride_[i]);
if (stride == 1)
haveUnitStride = true;
diffType vi = stride * length_[i];
int j = 0;
for (j=0; j < N_rank; ++j)
if (BZ_MATHFN_SCOPE(abs)(stride_[j]) == vi)
break;
if (j == N_rank)
{
++numStridesMissing;
if (numStridesMissing == 2)
return false;
}
}
return haveUnitStride;
}
template<typename P_numtype, int N_rank>
void Array<P_numtype, N_rank>::dumpStructureInformation(ostream& os) const
{
os << "Dump of Array<" << BZ_DEBUG_TEMPLATE_AS_STRING_LITERAL(P_numtype)
<< ", " << N_rank << ">:" << endl
<< "ordering_ = " << storage_.ordering() << endl
<< "ascendingFlag_ = " << storage_.ascendingFlag() << endl
<< "base_ = " << storage_.base() << endl
<< "length_ = " << length_ << endl
<< "stride_ = " << stride_ << endl
<< "zeroOffset_ = " << zeroOffset_ << endl
<< "numElements() = " << numElements() << endl
<< "isStorageContiguous() = " << isStorageContiguous() << endl;
}
/**
Make this array a view of another array's data. This overrides the
current storage of the array.
*/
template<typename P_numtype, int N_rank>
void Array<P_numtype, N_rank>::reference(const Array<P_numtype, N_rank>& array)
{
storage_ = array.storage_;
length_ = array.length_;
stride_ = array.stride_;
zeroOffset_ = array.zeroOffset_;
T_base::changeBlock(array.noConst());
}
/** This method makes the array reference another, but it does it as a
"weak" reference that is not counted. If you can guarantee that
the array memory block containing the data is persistent, this
will allow reference counting to be bypassed for this array, which
if mutex-locking is involved is a significant overhead. */
template<typename P_numtype, int N_rank>
void
Array<P_numtype, N_rank>::weakReference(const Array<P_numtype, N_rank>& array)
{
storage_ = array.storage_;
length_ = array.length_;
stride_ = array.stride_;
zeroOffset_ = array.zeroOffset_;
T_base::changeToNullBlock();
data_ = array.data_;
}
/**
Modify the Array storage. Array must be unallocated.
*/
template<typename P_numtype, int N_rank>
void Array<P_numtype, N_rank>::setStorage(GeneralArrayStorage<N_rank> x)
{
#ifdef BZ_DEBUG
if (size() != 0) {
BZPRECHECK(0,"Cannot modify storage format of an Array that has already been allocated!" << endl);
return;
}
#endif
storage_ = x;
return;
}
/**
This method is called to allocate memory for a new array. It
assumes the storage_ and length_ members are already initialized.
*/
template<typename P_numtype, int N_rank>
_bz_inline2 void Array<P_numtype, N_rank>::setupStorage(int lastRankInitialized)
{
TAU_TYPE_STRING(p1, "Array<T,N>::setupStorage() [T="
+ CT(P_numtype) + ",N=" + CT(N_rank) + "]");
TAU_PROFILE(" ", p1, TAU_BLITZ);
/*
* If the length of some of the ranks was unspecified, fill these
* in using the last specified value.
*
* e.g. Array<int,3> A(40) results in a 40x40x40 array.
*/
for (int i=lastRankInitialized + 1; i < N_rank; ++i)
{
storage_.setBase(i, storage_.base(lastRankInitialized));
length_[i] = length_[lastRankInitialized];
}
// Compute strides
computeStrides();
// Allocate a block of memory.
TinyVector<int, N_rank> alloc_length = length();
if(storage_.padding()==paddedData) {
// The size of the block is NOT equal to numelements, because the
// lowest rank dimension is padded to vecWidth
alloc_length[ordering(0)] =
simdTypes<T_numtype>::paddedLength(alloc_length[ordering(0)]);
}
sizeType numElem = _bz_returntype<sizeType>::product(alloc_length);
if (numElem==0)
T_base::changeToNullBlock();
else
T_base::newBlock(numElem);
// Adjust the base of the array to account for non-zero base
// indices and reversals
data_ += zeroOffset_;
}
/** Return a deep copy of an array (as opposed to the reference copy
done by the copy constructor. */
template<typename P_numtype, int N_rank>
Array<P_numtype, N_rank> Array<P_numtype, N_rank>::copy() const
{
if (numElements())
{
Array<T_numtype, N_rank> z(length_, storage_);
z = *this;
return z;
}
else {
// Null array-- don't bother allocating an empty block.
return *this;
}
}
/** Make the array have its own memory block by making a copy if the
block has a reference count greater than one. */
template<typename P_numtype, int N_rank>
void Array<P_numtype, N_rank>::makeUnique()
{
if (T_base::numReferences() > 1)
{
T_array tmp = copy();
reference(tmp);
}
}
template<typename P_numtype, int N_rank>
Array<P_numtype, N_rank> Array<P_numtype, N_rank>::transpose(int r0, int r1,
int r2, int r3, int r4, int r5, int r6, int r7, int r8, int r9, int r10) const
{
T_array B(*this);
B.transposeSelf(r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10);
return B;
}
template<typename P_numtype, int N_rank>
void Array<P_numtype, N_rank>::transposeSelf(int r0, int r1, int r2, int r3,
int r4, int r5, int r6, int r7, int r8, int r9, int r10)
{
BZPRECHECK(r0+r1+r2+r3+r4+r5+r6+r7+r8+r9+r10 == N_rank * (N_rank-1) / 2,
"Invalid array transpose() arguments." << endl
<< "Arguments must be a permutation of the numerals (0,...,"
<< (N_rank - 1) << ")");
// Create a temporary reference copy of this array
Array<T_numtype, N_rank> x(*this);
// Now reorder the dimensions using the supplied permutation
doTranspose(0, r0, x);
doTranspose(1, r1, x);
doTranspose(2, r2, x);
doTranspose(3, r3, x);
doTranspose(4, r4, x);
doTranspose(5, r5, x);
doTranspose(6, r6, x);
doTranspose(7, r7, x);
doTranspose(8, r8, x);
doTranspose(9, r9, x);
doTranspose(10, r10, x);
}
template<typename P_numtype, int N_rank>
void Array<P_numtype, N_rank>::doTranspose(int destRank, int sourceRank,
Array<T_numtype, N_rank>& array)
{
// BZ_NEEDS_WORK: precondition check
if (destRank >= N_rank)
return;
length_[destRank] = array.length_[sourceRank];
stride_[destRank] = array.stride_[sourceRank];
storage_.setAscendingFlag(destRank,
array.isRankStoredAscending(sourceRank));
storage_.setBase(destRank, array.base(sourceRank));
// BZ_NEEDS_WORK: Handling the storage ordering is currently O(N^2)
// but it can be done fairly easily in linear time by constructing
// the appropriate permutation.
// Find sourceRank in array.storage_.ordering_
int i=0;
for (; i < N_rank; ++i)
if (array.storage_.ordering(i) == sourceRank)
break;
storage_.setOrdering(i, destRank);
}
template<typename P_numtype, int N_rank>
void Array<P_numtype, N_rank>::reverseSelf(int rank)
{
BZPRECONDITION(rank < N_rank);
storage_.setAscendingFlag(rank, !isRankStoredAscending(rank));
diffType adjustment = static_cast<ptrdiff_t>(stride_[rank]) * (lbound(rank) + ubound(rank));
zeroOffset_ += adjustment;
data_ += adjustment;
stride_[rank] *= -1;
}
template<typename P_numtype, int N_rank>
Array<P_numtype, N_rank> Array<P_numtype,N_rank>::reverse(int rank)
{
T_array B(*this);
B.reverseSelf(rank);
return B;
}
template<typename P_numtype, int N_rank> template<typename P_numtype2>
Array<P_numtype2,N_rank> Array<P_numtype,N_rank>::extractComponent(P_numtype2,
int componentNumber, int numComponents) const
{
BZPRECONDITION((componentNumber >= 0)
&& (componentNumber < numComponents));
// If P_numtype is a multicomponent type, it may have an alignment
// setting. For this reason it is not correct to use
// numComponents, we must use sizeof(P_numtype)/sizeof(P_numtype2)
// instead.
BZASSERT(sizeof(P_numtype)%sizeof(P_numtype2)==0);
TinyVector<diffType, N_rank> stride2;
for (int i=0; i < N_rank; ++i)
stride2(i) = stride_(i) * sizeof(P_numtype)/sizeof(P_numtype2);
const P_numtype2* dataFirst2 =
((const P_numtype2*)dataFirst()) + componentNumber;
return Array<P_numtype2,N_rank>(const_cast<P_numtype2*>(dataFirst2),
length_, stride2, storage_);
}
/*
* These routines reindex the current array to use a new base vector.
* The first reindexes the array, the second just returns a reindex view
* of the current array, leaving the current array unmodified.
* (Contributed by Derrick Bass)
*/
template<typename P_numtype, int N_rank>
_bz_inline2 void Array<P_numtype, N_rank>::reindexSelf(const
TinyVector<int, N_rank>& newBase)
{
diffType delta = 0;
for (int i=0; i < N_rank; ++i)
delta += (base(i) - newBase(i)) * stride_(i);
data_ += delta;
// WAS: dot(base() - newBase, stride_);
storage_.setBase(newBase);
calculateZeroOffset();
}
template<typename P_numtype, int N_rank>
_bz_inline2 Array<P_numtype, N_rank>
Array<P_numtype, N_rank>::reindex(const TinyVector<int, N_rank>& newBase)
{
T_array B(*this);
B.reindexSelf(newBase);
return B;
}
BZ_NAMESPACE_END
#endif // BZ_ARRAY_CC
|