/usr/include/HepMC/GenEvent.h is in libhepmc-dev 2.06.09-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 | //--------------------------------------------------------------------------
#ifndef HEPMC_GEN_EVENT_H
#define HEPMC_GEN_EVENT_H
//////////////////////////////////////////////////////////////////////////
// Matt.Dobbs@Cern.CH, September 1999, refer to:
// M. Dobbs and J.B. Hansen, "The HepMC C++ Monte Carlo Event Record for
// High Energy Physics", Computer Physics Communications (to be published).
//
// Event record for MC generators (for use at any stage of generation)
//////////////////////////////////////////////////////////////////////////
//
// This class is intended as both a "container class" ( to store a MC
// event for interface between MC generators and detector simulation )
// and also as a "work in progress class" ( that could be used inside
// a generator and modified as the event is built ).
//
// Iterators are provided which allow the user to easily obtain a
// list of particles or vertices in an event --- this list can be filled
// subject to some sort of selection criteria. Examples are given below
// ( see HepMC::copy_if and std::copy )
///
/// \namespace HepMC
/// All classes in the HepMC packages are in the HepMC namespace
///
namespace HepMC {
// To create a list from an iterator, use: (i.e. for a list of particles);
// #include <algorithm>
// list<GenParticle*> thelist;
// copy( evt->particles_begin(), evt->particles_end(),
// back_inserter(thelist) );
// to create a list subject to a condition (predicate) use:
// list<GenParticle*> thelist;
// HepMC::copy_if( evt->particles_begin(), evt->particles_end(),
// back_inserter(thelist), is_photon() );
// where is_photon() is a predicate like:
// class is_photon {
// public:
// bool operator() ( GenParticle const * p ) {
// if ( p && p->pdg_id() == 22 ) return true;
// return false;
// }
// };
// which the user defines herself.
/// define the type of iterator to use
template <class InputIterator, class OutputIterator, class Predicate>
void copy_if( InputIterator first, InputIterator last, OutputIterator out,
Predicate pred ) {
for ( ; first != last; ++first ) { if ( pred(*first) ) out = *first; }
}
} // HepMC
// Since a container of all vertices in the event is maintained, the time
// required to loop over all vertices (or particles) is very fast -- and
// the user does not gain much by first making his own list.
// (this is not true for the GenVertex:: versions of these iterators, which
// allow you to specify the vertex starting point and range)
// Data Members:
// signal_process_id() The integer ID that uniquely specifies this signal
// process, i.e. MSUB in Pythia. It is necessary to
// package this with each event rather than with the run
// because many processes may be generated within one
// run.
// event_number() Strictly speaking we cannot think of any reason that
// an event would need to know its own event number, it
// is more likely something that would be assigned by
// a database. It is included anyway (tradition?) since
// we expect it may be useful for debugging. It can
// be reset later by a database.
// mpi() The number of multi parton interactions in the event.
// This is NOT beam pileup. Set to -1 by default.
// beam_particles() A pair of pointers to the incoming beam particles.
// signal_process_vertex() pointer to the vertex containing the signal process
// weights() Vector of doubles which specify th weight of the evnt,
// the first entry will be the "event weight" used for
// hit and miss etc., but a general vector is used to
// allow for reweighting etc. We envision a list of
// WeightTags to be included with a run class which
// would specify the meaning of the Weights .
// random_states() Vector of integers which specify the random number
// generator's state for this event. It is left to the
// generator to make use of this. We envision a vector of
// RndmStatesTags to be included with a run class which
// would specify the meaning of the random_states.
//
///////////////////////
// Memory allocation //
///////////////////////
// -When a vertex (particle) is added to a event (vertex), it is "adopted"
// and becomes the responsibility of the event (vertex) to delete that
// particle.
// -objects responsible for deleting memory:
// -events delete included vertices
// -each vertex deletes its outgoing particles which do not have decay
// vertices
// -each vertex deletes its incoming particles which do not
// have creation vertices
//
////////////////////////
// About the Barcodes //
////////////////////////
// - each vertex or particle has a barcode, which is just an integer which
// uniquely identifies it inside the event (i.e. there is a one to one
// mapping between particle memory addresses and particle barcodes... and
// the same applied for vertices)
// - The value of a barcode has NO MEANING and NO ORDER!
// For the user's convenience, when an event is read in via an IO_method
// from an indexed list (like the HEPEVT common block), then the index will
// become the barcode for that particle.
// - particle barcodes are always positive integers
// vertex barcodes are always negative integers
// The barcodes are chosen and set automatically when a vertex or particle
// comes under the ownership of an event (i.e. it is contained in an event).
// - You can tell when a particle or vertex is owned, because its
// parent_event() return value will return a pointer to the event which owns
// it (or null if its an orphan).
// - Please note that the barcodes are intended for internal use within HepMC
// as a unique identifier for the particles and vertices.
// Using the barcode to encode extra information is an abuse of
// the barcode data member and causes confusion among users.
//
#include "HepMC/GenVertex.h"
#include "HepMC/GenParticle.h"
#include "HepMC/WeightContainer.h"
#include "HepMC/GenCrossSection.h"
#include "HepMC/HeavyIon.h"
#include "HepMC/PdfInfo.h"
#include "HepMC/Units.h"
#include "HepMC/HepMCDefs.h"
#include <map>
#include <string>
#include <vector>
#include <algorithm>
#include <iostream>
namespace HepMC {
class GenEventVertexRange;
class ConstGenEventVertexRange;
class GenEventParticleRange;
class ConstGenEventParticleRange;
//! The GenEvent class is the core of HepMC
///
/// \class GenEvent
/// HepMC::GenEvent contains information about generated particles.
/// GenEvent is structured as a set of vertices which contain the particles.
///
class GenEvent {
friend class GenParticle;
friend class GenVertex;
public:
/// default constructor creates null pointers to HeavyIon, PdfInfo, and GenCrossSection
GenEvent( int signal_process_id = 0, int event_number = 0,
GenVertex* signal_vertex = 0,
const WeightContainer& weights = std::vector<double>(),
const std::vector<long>& randomstates = std::vector<long>(),
Units::MomentumUnit = Units::default_momentum_unit(),
Units::LengthUnit = Units::default_length_unit() );
/// explicit constructor that takes HeavyIon and PdfInfo
GenEvent( int signal_process_id, int event_number,
GenVertex* signal_vertex, const WeightContainer& weights,
const std::vector<long>& randomstates,
const HeavyIon& ion, const PdfInfo& pdf,
Units::MomentumUnit = Units::default_momentum_unit(),
Units::LengthUnit = Units::default_length_unit() );
/// constructor requiring units - all else is default
GenEvent( Units::MomentumUnit, Units::LengthUnit,
int signal_process_id = 0, int event_number = 0,
GenVertex* signal_vertex = 0,
const WeightContainer& weights = std::vector<double>(),
const std::vector<long>& randomstates = std::vector<long>() );
/// explicit constructor with units first that takes HeavyIon and PdfInfo
GenEvent( Units::MomentumUnit, Units::LengthUnit,
int signal_process_id, int event_number,
GenVertex* signal_vertex, const WeightContainer& weights,
const std::vector<long>& randomstates,
const HeavyIon& ion, const PdfInfo& pdf );
GenEvent( const GenEvent& inevent ); //!< deep copy
GenEvent& operator=( const GenEvent& inevent ); //!< make a deep copy
virtual ~GenEvent(); //!<deletes all vertices/particles in this evt
void swap( GenEvent & other ); //!< swap
void print( std::ostream& ostr = std::cout ) const; //!< dumps to ostr
void print_version( std::ostream& ostr = std::cout ) const; //!< dumps release version to ostr
/// assign a barcode to a particle
GenParticle* barcode_to_particle( int barCode ) const;
/// assign a barcode to a vertex
GenVertex* barcode_to_vertex( int barCode ) const;
////////////////////
// access methods //
////////////////////
int signal_process_id() const; //!< unique signal process id
int event_number() const; //!< event number
int mpi() const; //!< number of multi parton interactions
double event_scale() const; //!< energy scale, see hep-ph/0109068
double alphaQCD() const; //!< QCD coupling, see hep-ph/0109068
double alphaQED() const; //!< QED coupling, see hep-ph/0109068
/// pointer to the vertex containing the signal process
GenVertex* signal_process_vertex() const;
/// test to see if we have two valid beam particles
bool valid_beam_particles() const;
/// pair of pointers to the two incoming beam particles
std::pair<HepMC::GenParticle*,HepMC::GenParticle*> beam_particles() const;
/// check GenEvent for validity
/// A GenEvent is presumed valid if it has particles and/or vertices.
bool is_valid() const;
/// direct access to the weights container is allowed.
/// Thus you can use myevt.weights()[2];
/// to access element 2 of the weights.
/// or use myevt.weights().push_back( mywgt ); to add an element.
/// and you can set the weights with myevt.weights() = myvector;
WeightContainer& weights(); //!< direct access to WeightContainer
const WeightContainer& weights() const; //!< direct access to WeightContainer
/// access the GenCrossSection container if it exists
GenCrossSection const * cross_section() const;
GenCrossSection* cross_section();
/// access the HeavyIon container if it exists
HeavyIon const * heavy_ion() const;
HeavyIon* heavy_ion();
/// access the PdfInfo container if it exists
PdfInfo const * pdf_info() const;
PdfInfo* pdf_info();
/// vector of integers containing information about the random state
const std::vector<long>& random_states() const;
/// how many particle barcodes exist?
int particles_size() const;
/// return true if there are no particle barcodes
bool particles_empty() const;
/// how many vertex barcodes exist?
int vertices_size() const;
/// return true if there are no vertex barcodes
bool vertices_empty() const;
/// Write the unit information to an output stream.
/// If the output stream is not defined, use std::cout.
void write_units( std::ostream & os = std::cout ) const;
/// If the cross section is defined,
/// write the cross section information to an output stream.
/// If the output stream is not defined, use std::cout.
void write_cross_section( std::ostream& ostr = std::cout ) const;
/// Units used by the GenParticle momentum FourVector.
Units::MomentumUnit momentum_unit() const;
/// Units used by the GenVertex position FourVector.
Units::LengthUnit length_unit() const;
std::ostream& write(std::ostream&);
std::istream& read(std::istream&);
/////////////////////
// mutator methods //
/////////////////////
bool add_vertex( GenVertex* vtx ); //!< adds to evt and adopts
bool remove_vertex( GenVertex* vtx ); //!< erases vtx from evt
void clear(); //!< empties the entire event
void set_signal_process_id( int id ); //!< set unique signal process id
void set_event_number( int eventno ); //!< set event number
void set_mpi( int ); //!< set number of multi parton interactions
void set_event_scale( double scale ); //!< set energy scale
void set_alphaQCD( double a ); //!< set QCD coupling
void set_alphaQED( double a ); //!< set QED coupling
/// set pointer to the vertex containing the signal process
void set_signal_process_vertex( GenVertex* );
/// set incoming beam particles
bool set_beam_particles(GenParticle*, GenParticle*);
/// use a pair of GenParticle*'s to set incoming beam particles
bool set_beam_particles(std::pair<HepMC::GenParticle*,HepMC::GenParticle*> const &);
/// provide random state information
void set_random_states( const std::vector<long>& randomstates );
/// provide a pointer to the GenCrossSection container
void set_cross_section( const GenCrossSection& );
/// provide a pointer to the HeavyIon container
void set_heavy_ion( const HeavyIon& ion );
/// provide a pointer to the PdfInfo container
void set_pdf_info( const PdfInfo& p );
/// set the units using enums
/// This method will convert momentum and position data if necessary
void use_units( Units::MomentumUnit, Units::LengthUnit );
/// set the units using strings
/// the string must match the enum exactly
/// This method will convert momentum and position data if necessary
void use_units( std::string&, std::string& );
/// set the units using enums
/// This method will NOT convert momentum and position data
void define_units( Units::MomentumUnit, Units::LengthUnit );
/// set the units using strings
/// the string must match the enum exactly
/// This method will NOT convert momentum and position data
void define_units( std::string&, std::string& );
/// vertex range
GenEventVertexRange vertex_range();
/// vertex range
ConstGenEventVertexRange vertex_range() const;
/// particle range
GenEventParticleRange particle_range();
/// particle range
ConstGenEventParticleRange particle_range() const;
public:
///////////////////////////////
// vertex_iterators //
///////////////////////////////
// Note: the XXX_iterator is "resolvable" as XXX_const_iterator, but
// not the reverse, which is consistent with STL,
// see Musser, Derge, Saini 2ndEd. p. 69,70.
//! const vertex iterator
/// \class vertex_const_iterator
/// HepMC::GenEvent::vertex_const_iterator
/// is used to iterate over all vertices in the event.
class vertex_const_iterator :
public std::iterator<std::forward_iterator_tag,HepMC::GenVertex*,ptrdiff_t>{
// Iterates over all vertices in this event
public:
/// constructor requiring vertex information
vertex_const_iterator(
const
std::map<int,HepMC::GenVertex*,std::greater<int> >::const_iterator& i)
: m_map_iterator(i) {}
vertex_const_iterator() {}
/// copy constructor
vertex_const_iterator( const vertex_const_iterator& i )
{ *this = i; }
virtual ~vertex_const_iterator() {}
/// make a copy
vertex_const_iterator& operator=( const vertex_const_iterator& i )
{ m_map_iterator = i.m_map_iterator; return *this; }
/// return a pointer to a GenVertex
GenVertex* operator*(void) const { return m_map_iterator->second; }
/// Pre-fix increment
vertex_const_iterator& operator++(void) //Pre-fix increment
{ ++m_map_iterator; return *this; }
/// Post-fix increment
vertex_const_iterator operator++(int) //Post-fix increment
{ vertex_const_iterator out(*this); ++(*this); return out; }
/// equality
bool operator==( const vertex_const_iterator& a ) const
{ return m_map_iterator == a.m_map_iterator; }
/// inequality
bool operator!=( const vertex_const_iterator& a ) const
{ return !(m_map_iterator == a.m_map_iterator); }
protected:
/// const iterator to a vertex map
std::map<int,HepMC::GenVertex*,std::greater<int> >::const_iterator
m_map_iterator;
private:
/// Pre-fix increment -- is not allowed
vertex_const_iterator& operator--(void);
/// Post-fix increment -- is not allowed
vertex_const_iterator operator--(int);
};
friend class vertex_const_iterator;
/// begin vertex iteration
vertex_const_iterator vertices_begin() const
{ return GenEvent::vertex_const_iterator(
m_vertex_barcodes.begin() ); }
/// end vertex iteration
vertex_const_iterator vertices_end() const
{ return GenEvent::vertex_const_iterator(
m_vertex_barcodes.end() ); }
//! non-const vertex iterator
/// \class vertex_iterator
/// HepMC::GenEvent::vertex_iterator
/// is used to iterate over all vertices in the event.
class vertex_iterator :
public std::iterator<std::forward_iterator_tag,HepMC::GenVertex*,ptrdiff_t>{
// Iterates over all vertices in this event
public:
/// constructor requiring vertex information
vertex_iterator(
const
std::map<int,HepMC::GenVertex*,std::greater<int> >::iterator& i )
: m_map_iterator( i ) {}
vertex_iterator() {}
/// copy constructor
vertex_iterator( const vertex_iterator& i ) { *this = i; }
virtual ~vertex_iterator() {}
/// make a copy
vertex_iterator& operator=( const vertex_iterator& i ) {
m_map_iterator = i.m_map_iterator;
return *this;
}
/// const vertex iterator
operator vertex_const_iterator() const
{ return vertex_const_iterator(m_map_iterator); }
/// return a pointer to a GenVertex
GenVertex* operator*(void) const
{ return m_map_iterator->second; }
/// Pre-fix increment
vertex_iterator& operator++(void) //Pre-fix increment
{ ++m_map_iterator; return *this; }
/// Post-fix increment
vertex_iterator operator++(int) //Post-fix increment
{ vertex_iterator out(*this); ++(*this); return out; }
/// equality
bool operator==( const vertex_iterator& a ) const
{ return m_map_iterator == a.m_map_iterator; }
/// inequality
bool operator!=( const vertex_iterator& a ) const
{ return !(m_map_iterator == a.m_map_iterator); }
protected:
/// iterator to the vertex map
std::map<int,HepMC::GenVertex*,std::greater<int> >::iterator
m_map_iterator;
private:
/// Pre-fix increment
vertex_iterator& operator--(void);
/// Post-fix increment
vertex_iterator operator--(int);
};
friend class vertex_iterator;
/// begin vertex iteration
vertex_iterator vertices_begin()
{ return GenEvent::vertex_iterator(
m_vertex_barcodes.begin() ); }
/// end vertex iteration
vertex_iterator vertices_end()
{ return GenEvent::vertex_iterator(
m_vertex_barcodes.end() ); }
public:
///////////////////////////////
// particle_iterator //
///////////////////////////////
// Example of iterating over all particles in the event:
// for ( GenEvent::particle_const_iterator p = particles_begin();
// p != particles_end(); ++p ) {
// (*p)->print();
// }
//
//! const particle iterator
/// \class particle_const_iterator
/// HepMC::GenEvent::particle_const_iterator
/// is used to iterate over all particles in the event.
class particle_const_iterator :
public std::iterator<std::forward_iterator_tag,HepMC::GenParticle*,ptrdiff_t>{
// Iterates over all vertices in this event
public:
/// iterate over particles
particle_const_iterator(
const std::map<int,HepMC::GenParticle*>::const_iterator& i )
: m_map_iterator(i) {}
particle_const_iterator() {}
/// copy constructor
particle_const_iterator( const particle_const_iterator& i )
{ *this = i; }
virtual ~particle_const_iterator() {}
/// make a copy
particle_const_iterator& operator=(
const particle_const_iterator& i )
{ m_map_iterator = i.m_map_iterator; return *this; }
/// return a pointer to GenParticle
GenParticle* operator*(void) const
{ return m_map_iterator->second; }
/// Pre-fix increment
particle_const_iterator& operator++(void) //Pre-fix increment
{ ++m_map_iterator; return *this; }
/// Post-fix increment
particle_const_iterator operator++(int) //Post-fix increment
{ particle_const_iterator out(*this); ++(*this); return out; }
/// equality
bool operator==( const particle_const_iterator& a ) const
{ return m_map_iterator == a.m_map_iterator; }
/// inequality
bool operator!=( const particle_const_iterator& a ) const
{ return !(m_map_iterator == a.m_map_iterator); }
protected:
/// const iterator to the GenParticle map
std::map<int,HepMC::GenParticle*>::const_iterator m_map_iterator;
private:
/// Pre-fix increment
particle_const_iterator& operator--(void);
/// Post-fix increment
particle_const_iterator operator--(int);
};
friend class particle_const_iterator;
/// begin particle iteration
particle_const_iterator particles_begin() const
{ return GenEvent::particle_const_iterator(
m_particle_barcodes.begin() ); }
/// end particle iteration
particle_const_iterator particles_end() const
{ return GenEvent::particle_const_iterator(
m_particle_barcodes.end() ); }
//! non-const particle iterator
/// \class particle_iterator
/// HepMC::GenEvent::particle_iterator
/// is used to iterate over all particles in the event.
class particle_iterator :
public std::iterator<std::forward_iterator_tag,HepMC::GenParticle*,ptrdiff_t>{
// Iterates over all vertices in this event
public:
/// iterate over particles
particle_iterator( const std::map<int,HepMC::GenParticle*>::iterator& i )
: m_map_iterator( i ) {}
particle_iterator() {}
/// copy constructor
particle_iterator( const particle_iterator& i ) { *this = i; }
virtual ~particle_iterator() {}
/// make a copy
particle_iterator& operator=( const particle_iterator& i ) {
m_map_iterator = i.m_map_iterator;
return *this;
}
/// const particle iterator
operator particle_const_iterator() const
{ return particle_const_iterator(m_map_iterator); }
/// return pointer to GenParticle
GenParticle* operator*(void) const
{ return m_map_iterator->second; }
/// Pre-fix increment
particle_iterator& operator++(void)
{ ++m_map_iterator; return *this; }
/// Post-fix increment
particle_iterator operator++(int)
{ particle_iterator out(*this); ++(*this); return out; }
/// equality
bool operator==( const particle_iterator& a ) const
{ return m_map_iterator == a.m_map_iterator; }
/// inequality
bool operator!=( const particle_iterator& a ) const
{ return !(m_map_iterator == a.m_map_iterator); }
protected:
/// iterator for GenParticle map
std::map<int,HepMC::GenParticle*>::iterator m_map_iterator;
private:
/// Pre-fix increment
particle_iterator& operator--(void);
/// Post-fix increment
particle_iterator operator--(int);
};
friend class particle_iterator;
/// begin particle iteration
particle_iterator particles_begin()
{ return GenEvent::particle_iterator(
m_particle_barcodes.begin() ); }
/// end particle iteration
particle_iterator particles_end()
{ return GenEvent::particle_iterator(
m_particle_barcodes.end() ); }
////////////////////////////////////////////////
protected:
//
// Following methods intended for use by GenParticle/Vertex classes:
// In general there is no reason they should be used elsewhere.
/// set the barcode - intended for use by GenParticle
bool set_barcode( GenParticle* p, int suggested_barcode =false );
/// set the barcode - intended for use by GenVertex
bool set_barcode( GenVertex* v, int suggested_barcode =false );
/// intended for use by GenParticle
void remove_barcode( GenParticle* p );
/// intended for use by GenVertex
void remove_barcode( GenVertex* v );
void delete_all_vertices(); //!<delete all vertices owned by this event
private: // methods
/// internal method used when converting momentum units
bool use_momentum_unit( Units::MomentumUnit );
bool use_momentum_unit( std::string& );
/// internal method used when converting length units
bool use_length_unit( Units::LengthUnit );
bool use_length_unit( std::string& );
// the following internal methods are used by read() and write()
/// send the beam particles to ASCII output
std::ostream & write_beam_particles( std::ostream &,
std::pair<HepMC::GenParticle *,HepMC::GenParticle *> );
/// send a GenVertex to ASCII output
std::ostream & write_vertex( std::ostream &, GenVertex const * );
/// send a GenParticle to ASCII output
std::ostream & write_particle( std::ostream&, GenParticle const * );
/// find the file type
std::istream & find_file_type( std::istream & );
/// find the key at the end of the block
std::istream & find_end_key( std::istream &, int & );
/// get unit information from ASCII input
std::istream & read_units( std::istream & );
/// get weight names from ASCII input
std::istream & read_weight_names( std::istream & );
/// read the event header line
std::istream & process_event_line( std::istream &, int &, int &, int &, int & );
private: // data members
int m_signal_process_id;
int m_event_number;
int m_mpi; // number of multi paricle interactions
double m_event_scale;// energy scale, see hep-ph/0109068
double m_alphaQCD; // QCD coupling, see hep-ph/0109068
double m_alphaQED; // QED coupling, see hep-ph/0109068
GenVertex* m_signal_process_vertex;
GenParticle* m_beam_particle_1;
GenParticle* m_beam_particle_2;
WeightContainer m_weights; // weights for this event first weight
// is used by default for hit and miss
std::vector<long> m_random_states; // container of rndm num
// generator states
std::map< int,HepMC::GenVertex*,std::greater<int> > m_vertex_barcodes;
std::map< int,HepMC::GenParticle*,std::less<int> > m_particle_barcodes;
GenCrossSection* m_cross_section; // undefined by default
HeavyIon* m_heavy_ion; // undefined by default
PdfInfo* m_pdf_info; // undefined by default
Units::MomentumUnit m_momentum_unit; // default value set by configure switch
Units::LengthUnit m_position_unit; // default value set by configure switch
};
///////////////////////////
// IO Free Functions //
///////////////////////////
/// standard streaming IO output operator
std::ostream & operator << (std::ostream &, GenEvent &);
/// standard streaming IO input operator
std::istream & operator >> (std::istream &, GenEvent &);
/// set the units for this input stream
std::istream & set_input_units(std::istream &,
Units::MomentumUnit, Units::LengthUnit);
/// Explicitly write the begin block lines that IO_GenEvent uses
std::ostream & write_HepMC_IO_block_begin(std::ostream & );
/// Explicitly write the end block line that IO_GenEvent uses
std::ostream & write_HepMC_IO_block_end(std::ostream & );
///////////////////////////
// INLINE Free Functions //
///////////////////////////
// Implemented in terms of GenEvent::use_...
inline GenEvent& convert_units(GenEvent & evt, Units::MomentumUnit m, Units::LengthUnit l)
{
evt.use_units(m, l);
return evt;
}
///////////////////////////
// INLINE Access Methods //
///////////////////////////
/// The integer ID that uniquely specifies this signal
/// process, i.e. MSUB in Pythia. It is necessary to
/// package this with each event rather than with the run
/// because many processes may be generated within one run.
inline int GenEvent::signal_process_id() const
{ return m_signal_process_id; }
inline int GenEvent::event_number() const { return m_event_number; }
/// Returns the number of multi parton interactions in the event.
/// This number is -1 if it is not set.
inline int GenEvent::mpi() const { return m_mpi; }
inline double GenEvent::event_scale() const { return m_event_scale; }
inline double GenEvent::alphaQCD() const { return m_alphaQCD; }
inline double GenEvent::alphaQED() const { return m_alphaQED; }
inline GenVertex* GenEvent::signal_process_vertex() const {
/// returns a (mutable) pointer to the signal process vertex
return m_signal_process_vertex;
}
inline WeightContainer& GenEvent::weights() { return m_weights; }
inline const WeightContainer& GenEvent::weights() const
{ return m_weights; }
inline GenCrossSection const * GenEvent::cross_section() const
{ return m_cross_section; }
inline GenCrossSection* GenEvent::cross_section()
{ return m_cross_section; }
inline HeavyIon const * GenEvent::heavy_ion() const
{ return m_heavy_ion; }
inline HeavyIon* GenEvent::heavy_ion()
{ return m_heavy_ion; }
inline PdfInfo const * GenEvent::pdf_info() const
{ return m_pdf_info; }
inline PdfInfo* GenEvent::pdf_info()
{ return m_pdf_info; }
/// Vector of integers which specify the random number
/// generator's state for this event. It is left to the
/// generator to make use of this. We envision a vector of
/// RndmStatesTags to be included with a run class which
/// would specify the meaning of the random_states.
inline const std::vector<long>& GenEvent::random_states() const
{ return m_random_states; }
inline void GenEvent::set_signal_process_id( int id )
{ m_signal_process_id = id; }
inline void GenEvent::set_event_number( int eventno )
{ m_event_number = eventno; }
/// Use this to set the number of multi parton interactions in each event.
inline void GenEvent::set_mpi( int nmpi )
{ m_mpi = nmpi; }
inline void GenEvent::set_event_scale( double sc ) { m_event_scale = sc; }
inline void GenEvent::set_alphaQCD( double a ) { m_alphaQCD = a; }
inline void GenEvent::set_alphaQED( double a ) { m_alphaQED = a; }
inline void GenEvent::set_signal_process_vertex( GenVertex* vtx ) {
m_signal_process_vertex = vtx;
if ( m_signal_process_vertex ) add_vertex( m_signal_process_vertex );
}
inline void GenEvent::set_cross_section( const GenCrossSection& xs )
{
delete m_cross_section;
m_cross_section = new GenCrossSection(xs);
}
inline void GenEvent::set_heavy_ion( const HeavyIon& ion )
{
delete m_heavy_ion;
m_heavy_ion = new HeavyIon(ion);
}
inline void GenEvent::set_pdf_info( const PdfInfo& p )
{
delete m_pdf_info;
m_pdf_info = new PdfInfo(p);
}
inline void GenEvent::set_random_states( const std::vector<long>&
randomstates )
{ m_random_states = randomstates; }
inline void GenEvent::remove_barcode( GenParticle* p )
{ m_particle_barcodes.erase( p->barcode() ); }
inline void GenEvent::remove_barcode( GenVertex* v )
{ m_vertex_barcodes.erase( v->barcode() ); }
/// Each vertex or particle has a barcode, which is just an integer which
/// uniquely identifies it inside the event (i.e. there is a one to one
/// mapping between particle memory addresses and particle barcodes... and
/// the same applied for vertices).
///
/// The value of a barcode has NO MEANING and NO ORDER!
/// For the user's convenience, when an event is read in via an IO_method
/// from an indexed list (like the HEPEVT common block), then the index will
/// become the barcode for that particle.
///
/// Particle barcodes are always positive integers.
/// The barcodes are chosen and set automatically when a vertex or particle
/// comes under the ownership of an event (i.e. it is contained in an event).
///
/// Please note that the barcodes are intended for internal use within
/// HepMC as a unique identifier for the particles and vertices.
/// Using the barcode to encode extra information is an abuse of
/// the barcode data member and causes confusion among users.
inline GenParticle* GenEvent::barcode_to_particle( int barCode ) const
{
std::map<int,HepMC::GenParticle*>::const_iterator i
= m_particle_barcodes.find(barCode);
return ( i != m_particle_barcodes.end() ) ? (*i).second : 0;
}
/// Each vertex or particle has a barcode, which is just an integer which
/// uniquely identifies it inside the event (i.e. there is a one to one
/// mapping between particle memory addresses and particle barcodes... and
/// the same applied for vertices).
///
/// The value of a barcode has NO MEANING and NO ORDER!
/// For the user's convenience, when an event is read in via an IO_method
/// from an indexed list (like the HEPEVT common block), then the index will
/// become the barcode for that particle.
///
/// Vertex barcodes are always negative integers.
/// The barcodes are chosen and set automatically when a vertex or particle
/// comes under the ownership of an event (i.e. it is contained in an event).
///
/// Please note that the barcodes are intended for internal use within
/// HepMC as a unique identifier for the particles and vertices.
/// Using the barcode to encode extra information is an abuse of
/// the barcode data member and causes confusion among users.
inline GenVertex* GenEvent::barcode_to_vertex( int barCode ) const
{
std::map<int,GenVertex*,std::greater<int> >::const_iterator i
= m_vertex_barcodes.find(barCode);
return ( i != m_vertex_barcodes.end() ) ? (*i).second : 0;
}
inline int GenEvent::particles_size() const {
return (int)m_particle_barcodes.size();
}
inline bool GenEvent::particles_empty() const {
return (bool)m_particle_barcodes.empty();
}
inline int GenEvent::vertices_size() const {
return (int)m_vertex_barcodes.size();
}
inline bool GenEvent::vertices_empty() const {
return (bool)m_vertex_barcodes.empty();
}
// beam particles
inline std::pair<HepMC::GenParticle *,HepMC::GenParticle *> GenEvent::beam_particles() const {
return std::pair<GenParticle *,GenParticle *> (m_beam_particle_1, m_beam_particle_2);
}
// units
inline Units::MomentumUnit GenEvent::momentum_unit() const {
return m_momentum_unit;
}
inline Units::LengthUnit GenEvent::length_unit() const {
return m_position_unit;
}
inline void GenEvent::use_units( Units::MomentumUnit new_m, Units::LengthUnit new_l ) {
use_momentum_unit( new_m );
use_length_unit( new_l );
}
inline void GenEvent::use_units( std::string& new_m, std::string& new_l ) {
use_momentum_unit( new_m );
use_length_unit( new_l );
}
inline void GenEvent::define_units( Units::MomentumUnit new_m, Units::LengthUnit new_l ) {
m_momentum_unit = new_m;
m_position_unit = new_l;
}
} // HepMC
#endif // HEPMC_GEN_EVENT_H
//--------------------------------------------------------------------------
|