/usr/lib/perl5/PDL/Stats/TS.pm is in libpdl-stats-perl 0.6.2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 | #
# GENERATED WITH PDL::PP! Don't modify!
#
package PDL::Stats::TS;
@EXPORT_OK = qw( PDL::PP _acf PDL::PP _acvf PDL::PP diff PDL::PP inte PDL::PP dseason PDL::PP _fill_ma PDL::PP filter_exp PDL::PP filter_ma PDL::PP mae PDL::PP mape PDL::PP wmape PDL::PP portmanteau PDL::PP _pred_ar );
%EXPORT_TAGS = (Func=>[@EXPORT_OK]);
use PDL::Core;
use PDL::Exporter;
use DynaLoader;
@ISA = ( 'PDL::Exporter','DynaLoader' );
push @PDL::Core::PP, __PACKAGE__;
bootstrap PDL::Stats::TS ;
=head1 NAME
PDL::Stats::TS -- basic time series functions
=head1 DESCRIPTION
The terms FUNCTIONS and METHODS are arbitrarily used to refer to methods that are threadable and methods that are NOT threadable, respectively. Plots require PDL::Graphics::PGPLOT.
***EXPERIMENTAL!*** In particular, bad value support is spotty and may be shaky. USE WITH DISCRETION!
=head1 SYNOPSIS
use PDL::LiteF;
use PDL::NiceSlice;
use PDL::Stats::TS;
my $r = $data->acf(5);
=cut
use Carp;
use PDL::LiteF;
use PDL::NiceSlice;
use PDL::Stats::Basic;
use PDL::Stats::Kmeans;
$PDL::onlinedoc->scan(__FILE__) if $PDL::onlinedoc;
eval {
require PDL::Graphics::PGPLOT::Window;
PDL::Graphics::PGPLOT::Window->import( 'pgwin' );
};
my $PGPLOT = 1 if !$@;
my $DEV = ($^O =~ /win/i)? '/png' : '/xs';
=head1 FUNCTIONS
=cut
*_acf = \&PDL::_acf;
*_acvf = \&PDL::_acvf;
=head2 acf
=for sig
Signature: (x(t); int h(); [o]r(h+1))
=for ref
Autocorrelation function for up to lag h. If h is not specified it's set to t-1 by default.
acf does not process bad values.
=for usage
usage:
perldl> $a = sequence 10
# lags 0 .. 5
perldl> p $a->acf(5)
[1 0.7 0.41212121 0.14848485 -0.078787879 -0.25757576]
=cut
*acf = \&PDL::acf;
sub PDL::acf {
my ($self, $h) = @_;
$h ||= $self->dim(0) - 1;
return $self->_acf($h+1);
}
=head2 acvf
=for sig
Signature: (x(t); int h(); [o]v(h+1))
=for ref
Autocovariance function for up to lag h. If h is not specified it's set to t-1 by default.
acvf does not process bad values.
=for usage
usage:
perldl> $a = sequence 10
# lags 0 .. 5
perldl> p $a->acvf(5)
[82.5 57.75 34 12.25 -6.5 -21.25]
# autocorrelation
perldl> p $a->acvf(5) / $a->acvf(0)
[1 0.7 0.41212121 0.14848485 -0.078787879 -0.25757576]
=cut
*acvf = \&PDL::acvf;
sub PDL::acvf {
my ($self, $h) = @_;
$h ||= $self->dim(0) - 1;
return $self->_acvf($h+1);
}
=head2 diff
=for sig
Signature: (x(t); [o]dx(t))
=for ref
Differencing. DX(t) = X(t) - X(t-1), DX(0) = X(0). Can be done inplace.
=for bad
diff does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*diff = \&PDL::diff;
=head2 inte
=for sig
Signature: (x(n); [o]ix(n))
=for ref
Integration. Opposite of differencing. IX(t) = X(t) + X(t-1), IX(0) = X(0). Can be done inplace.
=for bad
inte does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*inte = \&PDL::inte;
=head2 dseason
=for sig
Signature: (x(t); int d(); [o]xd(t))
=for ref
Deseasonalize data using moving average filter the size of period d.
=for bad
dseason does handle bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*dseason = \&PDL::dseason;
=head2 fill_ma
=for sig
Signature: (x(t); int q(); [o]xf(t))
=for ref
Fill missing value with moving average. xf(t) = sum(x(t-q .. t-1, t+1 .. t+q)) / 2q.
fill_ma does handle bad values. Output pdl bad flag is cleared unless the specified window size q is too small and there are still bad values.
=for usage
my $x_filled = $x->fill_ma( $q );
=cut
*fill_ma = \&PDL::fill_ma;
sub PDL::fill_ma {
my ($x, $q) = @_;
my $x_filled = $x->_fill_ma($q);
$x_filled->check_badflag;
# carp "ma window too small, still has bad value"
# if $x_filled->badflag;
return $x_filled;
}
*_fill_ma = \&PDL::_fill_ma;
=head2 filter_exp
=for sig
Signature: (x(t); a(); [o]xf(t))
=for ref
Filter, exponential smoothing. xf(t) = a * x(t) + (1-a) * xf(t-1)
=for usage
=for bad
filter_exp does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*filter_exp = \&PDL::filter_exp;
=head2 filter_ma
=for sig
Signature: (x(t); int q(); [o]xf(t))
=for ref
Filter, moving average. xf(t) = sum(x(t-q .. t+q)) / (2q + 1)
=for bad
filter_ma does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*filter_ma = \&PDL::filter_ma;
=head2 mae
=for sig
Signature: (a(n); b(n); float+ [o]c())
=for ref
Mean absolute error. MAE = 1/n * sum( abs(y - y_pred) )
=for usage
Usage:
$mae = $y->mae( $y_pred );
=for bad
mae does handle bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*mae = \&PDL::mae;
=head2 mape
=for sig
Signature: (a(n); b(n); float+ [o]c())
=for ref
Mean absolute percent error. MAPE = 1/n * sum(abs((y - y_pred) / y))
=for usage
Usage:
$mape = $y->mape( $y_pred );
=for bad
mape does handle bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*mape = \&PDL::mape;
=head2 wmape
=for sig
Signature: (a(n); b(n); float+ [o]c())
=for ref
Weighted mean absolute percent error. avg(abs(error)) / avg(abs(data)). Much more robust compared to mape with division by zero error (cf. Schütz, W., & Kolassa, 2006).
=for usage
Usage:
$wmape = $y->wmape( $y_pred );
=for bad
wmape does handle bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*wmape = \&PDL::wmape;
=head2 portmanteau
=for sig
Signature: (r(h); longlong t(); [o]Q())
=for ref
Portmanteau significance test (Ljung-Box) for autocorrelations.
=for usage
Usage:
perldl> $a = sequence 10
# acf for lags 0-5
# lag 0 excluded from portmanteau
perldl> p $chisq = $a->acf(5)->portmanteau( $a->nelem )
11.1753902662994
# get p-value from chisq distr
perldl> use PDL::GSL::CDF
perldl> p 1 - gsl_cdf_chisq_P( $chisq, 5 )
0.0480112934306748
=for bad
portmanteau does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*portmanteau = \&PDL::portmanteau;
=head2 pred_ar
=for sig
Signature: (x(d); b(p|p+1); int t(); [o]pred(t))
=for ref
Calculates predicted values up to period t (extend current series up to period t) for autoregressive series, with or without constant. If there is constant, it is the last element in b, as would be returned by ols or ols_t.
pred_ar does not process bad values.
=for options
CONST => 1,
=for usage
Usage:
perldl> $x = sequence 2
# last element is constant
perldl> $b = pdl(.8, -.2, .3)
perldl> p $x->pred_ar($b, 7)
[0 1 1.1 0.74 0.492 0.3656 0.31408]
# no constant
perldl> p $x->pred_ar($b(0:1), 7, {const=>0})
[0 1 0.8 0.44 0.192 0.0656 0.01408]
=cut
sub PDL::pred_ar {
my ($x, $b, $t, $opt) = @_;
my %opt = ( CONST => 1 );
$opt and $opt{uc $_} = $opt->{$_} for (keys %$opt);
$b = pdl $b
unless ref $b eq 'PDL'; # allows passing simple number
my $ext;
if ($opt{CONST}) {
my $t_ = $t - ( $x->dim(0) - $b->dim(0) + 1 );
$ext = $x(-$b->dim(0)+1:-1, )->_pred_ar($b(0:-2), $t_);
$ext($b->dim(0)-1:-1) += $b(-1);
return $x->append( $ext( $b->dim(0)-1 : -1 ) );
}
else {
my $t_ = $t - ( $x->dim(0) - $b->dim(0) );
$ext = $x(-$b->dim(0):-1, )->_pred_ar($b, $t_);
return $x->append($ext($b->dim(0) : -1));
}
}
*_pred_ar = \&PDL::_pred_ar;
=head2 season_m
Given length of season, returns seasonal mean and var for each period (returns seasonal mean only in scalar context).
=for options
Default options (case insensitive):
START_POSITION => 0, # series starts at this position in season
MISSING => -999, # internal mark for missing points in season
PLOT => 1, # boolean
# see PDL::Graphics::PGPLOT::Window for next options
WIN => undef, # pass pgwin object for more plotting control
DEV => '/xs', # open and close dev for plotting if no WIN
# defaults to '/png' in Windows
COLOR => 1,
See PDL::Graphics::PGPLOT for detailed graphing options.
=for usage
my ($m, $ms) = $data->season_m( 24, { START_POSITION=>2 } );
=cut
*season_m = \&PDL::season_m;
sub PDL::season_m {
my ($self, $d, $opt) = @_;
my %opt = (
START_POSITION => 0, # series starts at this position in season
MISSING => -999, # internal mark for missing points in season
PLOT => 1,
WIN => undef, # pass pgwin object for more plotting control
DEV => $DEV, # see PDL::Graphics::PGPLOT for more info
COLOR => 1,
);
$opt and $opt{uc $_} = $opt->{$_} for (keys %$opt);
if ($opt{PLOT} and !$PGPLOT) {
carp "No PDL::Graphics::PGPLOT, no plot :(";
$opt{PLOT} = 0;
}
my $n_season = ($self->dim(0) + $opt{START_POSITION}) / $d;
$n_season = pdl($n_season)->ceil->sum;
my @dims = $self->dims;
$dims[0] = $n_season * $d;
my $data = zeroes( @dims ) + $opt{MISSING};
$data($opt{START_POSITION} : $opt{START_POSITION} + $self->dim(0)-1, ) .= $self;
$data->badflag(1);
$data->inplace->setvaltobad( $opt{MISSING} );
my $s = sequence $d;
$s = $s->dummy(1, $n_season)->flat;
$s = $s->iv_cluster();
my ($m, $ms) = $data->centroid( $s );
if ($opt{PLOT}) {
my $w = $opt{WIN};
if (!$w) {
$w = pgwin( Dev=>$opt{DEV} );
$w->env( 0, $d-1, $m->minmax,
{XTitle=>'period', YTitle=>'mean'} );
}
$w->points( sequence($d), $m, {COLOR=>$opt{COLOR}, PLOTLINE=>1} );
if ($m->squeeze->ndims < 2) {
$w->errb( sequence($d), $m, sqrt( $ms / $s->sumover ),
{COLOR=>$opt{COLOR}} );
}
else {
carp "errb does not support multi dim pdl";
}
$w->close
unless $opt{WIN};
}
return wantarray? ($m, $ms) : $m;
}
=head2 plot_dseason
=for ref
Plots deseasonalized data and original data points. Opens and closes default window for plotting unless a pgwin object is passed in options. Returns deseasonalized data.
=for options
Default options (case insensitive):
WIN => undef,
DEV => '/xs', # open and close dev for plotting if no WIN
# defaults to '/png' in Windows
COLOR => 1, # data point color
See PDL::Graphics::PGPLOT for detailed graphing options.
=cut
*plot_dseason = \&PDL::plot_dseason;
sub PDL::plot_dseason {
my ($self, $d, $opt) = @_;
!defined($d) and croak "please set season period length";
$self = $self->squeeze;
my $dsea;
if ($PGPLOT) {
my %opt = (
WIN => undef,
DEV => $DEV,
COLOR => 1, # data point color
);
$opt and $opt{uc $_} = $opt->{$_} for (keys %$opt);
$dsea = $self->dsea($d);
my $w = $opt{WIN};
if (!$opt{WIN}) {
$w = pgwin( $opt{DEV} );
$w->env( 0, $self->dim(0)-1, $self->minmax,
{XTitle=>'T', YTitle=>'DV'} );
}
my $missn = ushort $self->max + 1; # ushort in case precision issue
$w->line( sequence($self->dim(0)), $dsea->setbadtoval( $missn ),
{COLOR=>$opt{COLOR}+1, MISSING=>$missn} );
$w->points( sequence($self->dim(0)), $self, {COLOR=>$opt{COLOR}} );
$w->close
unless $opt{WIN};
}
else {
carp "Please install PDL::Graphics::PGPLOT for plotting";
}
return $dsea;
}
*filt_exp = \&PDL::filt_exp;
sub PDL::filt_exp {
print STDERR "filt_exp() deprecated since version 0.5.0. Please use filter_exp() instead\n";
return filter_exp( @_ );
}
*filt_ma = \&PDL::filt_ma;
sub PDL::filt_ma {
print STDERR "filt_ma() deprecated since version 0.5.0. Please use filter_ma() instead\n";
return filter_ma( @_ );
}
*dsea = \&PDL::dsea;
sub PDL::dsea {
print STDERR "dsea() deprecated since version 0.5.0. Please use dseason() instead\n";
return dseason( @_ );
}
*plot_season = \&PDL::plot_season;
sub PDL::plot_season {
print STDERR "plot_season() deprecated since version 0.5.0. Please use season_m() instead\n";
my ($self, $d, $opt) = @_;
$opt and $opt{uc $_} = $opt->{$_} for (keys %$opt);
$opt->{PLOT} = 1;
return $self->season_m( $d, $opt );
}
=head1 METHODS
=head2 plot_acf
=for ref
Plots and returns autocorrelations for a time series.
=for options
Default options (case insensitive):
SIG => 0.05, # can specify .10, .05, .01, or .001
DEV => '/xs', # open and close dev for plotting
# defaults to '/png' in Windows
=for usage
Usage:
perldl> $a = sequence 10
perldl> p $r = $a->plot_acf(5)
[1 0.7 0.41212121 0.14848485 -0.078787879 -0.25757576]
=cut
*plot_acf = \&PDL::plot_acf;
sub PDL::plot_acf {
my $opt = pop @_
if ref $_[-1] eq 'HASH';
my ($self, $h) = @_;
my $r = $self->acf($h);
if ($PGPLOT) {
my %opt = (
SIG => 0.05,
DEV => $DEV,
);
$opt and $opt{uc $_} = $opt->{$_} for (keys %$opt);
my $w = pgwin( Dev=>$opt{DEV} );
$w->env(-1, $h+1, -1.05, 1.05, {XTitle=>'lag', YTitle=>'acf'});
$w->line(pdl(-1,$h+1), zeroes(2)); # x axis
my $y_sig = ($opt{SIG} == 0.10)? 1.64485362695147
: ($opt{SIG} == 0.05)? 1.95996398454005
: ($opt{SIG} == 0.01)? 2.5758293035489
: ($opt{SIG} == 0.001)? 3.29052673149193
: 0
;
unless ($y_sig) {
carp "SIG outside of recognized value. default to 0.05";
$y_sig = 1.95996398454005;
}
$w->line( pdl(-1,$h+1), ones(2) * $y_sig / sqrt($self->dim(0)),
{ LINESTYLE=>"Dashed" } );
$w->line( pdl(-1,$h+1), ones(2) * $y_sig / sqrt($self->dim(0)) * -1,
{ LINESTYLE=>"Dashed" } );
for my $lag (0..$h) {
$w->line( ones(2)*$lag, pdl(0, $r($lag)) );
}
$w->close;
}
else {
carp "Please install PDL::Graphics::PGPLOT::Window for plotting";
}
return $r;
}
=head1 REFERENCES
Brockwell, P.J., & Davis, R.A. (2002). Introcution to Time Series and Forecasting (2nd ed.). New York, NY: Springer.
Schütz, W., & Kolassa, S. (2006). Foresight: advantages of the MAD/Mean ratio over the MAPE. Retrieved Jan 28, 2010, from http://www.saf-ag.com/226+M5965d28cd19.html
=head1 AUTHOR
Copyright (C) 2009 Maggie J. Xiong <maggiexyz users.sourceforge.net>
All rights reserved. There is no warranty. You are allowed to redistribute this software / documentation as described in the file COPYING in the PDL distribution.
=cut
;
# Exit with OK status
1;
|