/usr/include/wfmath-0.3/wfmath/rotmatrix_funcs.h is in libwfmath-0.3-dev 0.3.12-3ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 | // rotmatrix_funcs.h (RotMatrix<> template functions)
//
// The WorldForge Project
// Copyright (C) 2001 The WorldForge Project
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// For information about WorldForge and its authors, please contact
// the Worldforge Web Site at http://www.worldforge.org.
// Author: Ron Steinke
// Created: 2001-12-7
#ifndef WFMATH_ROTMATRIX_FUNCS_H
#define WFMATH_ROTMATRIX_FUNCS_H
#include <wfmath/rotmatrix.h>
#include <wfmath/vector.h>
#include <wfmath/error.h>
#include <wfmath/const.h>
#include <cmath>
#include <cassert>
namespace WFMath {
template<int dim>
inline RotMatrix<dim>::RotMatrix(const RotMatrix<dim>& m)
: m_flip(m.m_flip), m_valid(m.m_valid), m_age(1)
{
for(int i = 0; i < dim; ++i)
for(int j = 0; j < dim; ++j)
m_elem[i][j] = m.m_elem[i][j];
}
template<int dim>
inline RotMatrix<dim>& RotMatrix<dim>::operator=(const RotMatrix<dim>& m)
{
for(int i = 0; i < dim; ++i)
for(int j = 0; j < dim; ++j)
m_elem[i][j] = m.m_elem[i][j];
m_flip = m.m_flip;
m_valid = m.m_valid;
m_age = m.m_age;
return *this;
}
template<int dim>
inline bool RotMatrix<dim>::isEqualTo(const RotMatrix<dim>& m, double epsilon) const
{
// Since the sum of the squares of the elements in any row or column add
// up to 1, all the elements lie between -1 and 1, and each row has
// at least one element whose magnitude is at least 1/sqrt(dim).
// Therefore, we don't need to scale epsilon, as we did for
// Vector<> and Point<>.
assert(epsilon > 0);
for(int i = 0; i < dim; ++i)
for(int j = 0; j < dim; ++j)
if(fabs(m_elem[i][j] - m.m_elem[i][j]) > epsilon)
return false;
// Don't need to test m_flip, it's determined by the values of m_elem.
assert("Generated values, must be equal if all components are equal" &&
m_flip == m.m_flip);
return true;
}
template<int dim> // m1 * m2
inline RotMatrix<dim> Prod(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2)
{
RotMatrix<dim> out;
for(int i = 0; i < dim; ++i) {
for(int j = 0; j < dim; ++j) {
out.m_elem[i][j] = 0;
for(int k = 0; k < dim; ++k) {
out.m_elem[i][j] += m1.m_elem[i][k] * m2.m_elem[k][j];
}
}
}
out.m_flip = (m1.m_flip != m2.m_flip); // XOR
out.m_valid = m1.m_valid && m2.m_valid;
out.m_age = m1.m_age + m2.m_age;
out.checkNormalization();
return out;
}
template<int dim> // m1 * m2^-1
inline RotMatrix<dim> ProdInv(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2)
{
RotMatrix<dim> out;
for(int i = 0; i < dim; ++i) {
for(int j = 0; j < dim; ++j) {
out.m_elem[i][j] = 0;
for(int k = 0; k < dim; ++k) {
out.m_elem[i][j] += m1.m_elem[i][k] * m2.m_elem[j][k];
}
}
}
out.m_flip = (m1.m_flip != m2.m_flip); // XOR
out.m_valid = m1.m_valid && m2.m_valid;
out.m_age = m1.m_age + m2.m_age;
out.checkNormalization();
return out;
}
template<int dim> // m1^-1 * m2
inline RotMatrix<dim> InvProd(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2)
{
RotMatrix<dim> out;
for(int i = 0; i < dim; ++i) {
for(int j = 0; j < dim; ++j) {
out.m_elem[i][j] = 0;
for(int k = 0; k < dim; ++k) {
out.m_elem[i][j] += m1.m_elem[k][i] * m2.m_elem[k][j];
}
}
}
out.m_flip = (m1.m_flip != m2.m_flip); // XOR
out.m_valid = m1.m_valid && m2.m_valid;
out.m_age = m1.m_age + m2.m_age;
out.checkNormalization();
return out;
}
template<int dim> // m1^-1 * m2^-1
inline RotMatrix<dim> InvProdInv(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2)
{
RotMatrix<dim> out;
for(int i = 0; i < dim; ++i) {
for(int j = 0; j < dim; ++j) {
out.m_elem[i][j] = 0;
for(int k = 0; k < dim; ++k) {
out.m_elem[i][j] += m1.m_elem[k][i] * m2.m_elem[j][k];
}
}
}
out.m_flip = (m1.m_flip != m2.m_flip); // XOR
out.m_valid = m1.m_valid && m2.m_valid;
out.m_age = m1.m_age + m2.m_age;
out.checkNormalization();
return out;
}
template<int dim> // m * v
inline Vector<dim> Prod(const RotMatrix<dim>& m, const Vector<dim>& v)
{
Vector<dim> out;
for(int i = 0; i < dim; ++i) {
out.m_elem[i] = 0;
for(int j = 0; j < dim; ++j) {
out.m_elem[i] += m.m_elem[i][j] * v.m_elem[j];
}
}
out.m_valid = m.m_valid && v.m_valid;
return out;
}
template<int dim> // m^-1 * v
inline Vector<dim> InvProd(const RotMatrix<dim>& m, const Vector<dim>& v)
{
Vector<dim> out;
for(int i = 0; i < dim; ++i) {
out.m_elem[i] = 0;
for(int j = 0; j < dim; ++j) {
out.m_elem[i] += m.m_elem[j][i] * v.m_elem[j];
}
}
out.m_valid = m.m_valid && v.m_valid;
return out;
}
template<int dim> // v * m
inline Vector<dim> Prod(const Vector<dim>& v, const RotMatrix<dim>& m)
{
return InvProd(m, v); // Since transpose() and inverse() are the same
}
template<int dim> // v * m^-1
inline Vector<dim> ProdInv(const Vector<dim>& v, const RotMatrix<dim>& m)
{
return Prod(m, v); // Since transpose() and inverse() are the same
}
template<int dim>
inline RotMatrix<dim> operator*(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2)
{
return Prod(m1, m2);
}
template<int dim>
inline Vector<dim> operator*(const RotMatrix<dim>& m, const Vector<dim>& v)
{
return Prod(m, v);
}
template<int dim>
inline Vector<dim> operator*(const Vector<dim>& v, const RotMatrix<dim>& m)
{
return InvProd(m, v); // Since transpose() and inverse() are the same
}
template<int dim>
inline bool RotMatrix<dim>::setVals(const CoordType vals[dim][dim], double precision)
{
// Scratch space for the backend
CoordType scratch_vals[dim*dim];
for(int i = 0; i < dim; ++i)
for(int j = 0; j < dim; ++j)
scratch_vals[i*dim+j] = vals[i][j];
return _setVals(scratch_vals, precision);
}
template<int dim>
inline bool RotMatrix<dim>::setVals(const CoordType vals[dim*dim], double precision)
{
// Scratch space for the backend
CoordType scratch_vals[dim*dim];
for(int i = 0; i < dim*dim; ++i)
scratch_vals[i] = vals[i];
return _setVals(scratch_vals, precision);
}
bool _MatrixSetValsImpl(const int size, CoordType* vals, bool& flip,
CoordType* buf1, CoordType* buf2, double precision);
template<int dim>
inline bool RotMatrix<dim>::_setVals(CoordType *vals, double precision)
{
// Cheaper to allocate space on the stack here than with
// new in _MatrixSetValsImpl()
CoordType buf1[dim*dim], buf2[dim*dim];
bool flip;
if(!_MatrixSetValsImpl(dim, vals, flip, buf1, buf2, precision))
return false;
// Do the assignment
for(int i = 0; i < dim; ++i)
for(int j = 0; j < dim; ++j)
m_elem[i][j] = vals[i*dim+j];
m_flip = flip;
m_valid = true;
m_age = 1;
return true;
}
template<int dim>
inline Vector<dim> RotMatrix<dim>::row(const int i) const
{
Vector<dim> out;
for(int j = 0; j < dim; ++j)
out[j] = m_elem[i][j];
out.setValid(m_valid);
return out;
}
template<int dim>
inline Vector<dim> RotMatrix<dim>::column(const int i) const
{
Vector<dim> out;
for(int j = 0; j < dim; ++j)
out[j] = m_elem[j][i];
out.setValid(m_valid);
return out;
}
template<int dim>
inline RotMatrix<dim> RotMatrix<dim>::inverse() const
{
RotMatrix<dim> m;
for(int i = 0; i < dim; ++i)
for(int j = 0; j < dim; ++j)
m.m_elem[j][i] = m_elem[i][j];
m.m_flip = m_flip;
m.m_valid = m_valid;
m.m_age = m_age + 1;
return m;
}
template<int dim>
inline RotMatrix<dim>& RotMatrix<dim>::identity()
{
for(int i = 0; i < dim; ++i)
for(int j = 0; j < dim; ++j)
m_elem[i][j] = ((i == j) ? 1.0f : 0.0f);
m_flip = false;
m_valid = true;
m_age = 0; // 1 and 0 are exact, no roundoff error
return *this;
}
template<int dim>
inline CoordType RotMatrix<dim>::trace() const
{
CoordType out = 0;
for(int i = 0; i < dim; ++i)
out += m_elem[i][i];
return out;
}
template<int dim>
RotMatrix<dim>& RotMatrix<dim>::rotation (const int i, const int j,
CoordType theta)
{
assert(i >= 0 && i < dim && j >= 0 && j < dim && i != j);
CoordType ctheta = std::cos(theta), stheta = std::sin(theta);
for(int k = 0; k < dim; ++k) {
for(int l = 0; l < dim; ++l) {
if(k == l) {
if(k == i || k == j)
m_elem[k][l] = ctheta;
else
m_elem[k][l] = 1;
}
else {
if(k == i && l == j)
m_elem[k][l] = stheta;
else if(k == j && l == i)
m_elem[k][l] = -stheta;
else
m_elem[k][l] = 0;
}
}
}
m_flip = false;
m_valid = true;
m_age = 1;
return *this;
}
template<int dim>
RotMatrix<dim>& RotMatrix<dim>::rotation (const Vector<dim>& v1,
const Vector<dim>& v2,
CoordType theta)
{
CoordType v1_sqr_mag = v1.sqrMag();
assert("need nonzero length vector" && v1_sqr_mag > 0);
// Get an in-plane vector which is perpendicular to v1
Vector<dim> vperp = v2 - v1 * Dot(v1, v2) / v1_sqr_mag;
CoordType vperp_sqr_mag = vperp.sqrMag();
if((vperp_sqr_mag / v1_sqr_mag) < (dim * WFMATH_EPSILON * WFMATH_EPSILON)) {
assert("need nonzero length vector" && v2.sqrMag() > 0);
// The original vectors were parallel
throw ColinearVectors<dim>(v1, v2);
}
// If we were rotating a vector vin, the answer would be
// vin + Dot(v1, vin) * (v1 (cos(theta) - 1)/ v1_sqr_mag
// + vperp * sin(theta) / sqrt(v1_sqr_mag * vperp_sqr_mag))
// + Dot(vperp, vin) * (a similar term). From this, we find
// the matrix components.
CoordType mag_prod = std::sqrt(v1_sqr_mag * vperp_sqr_mag);
CoordType ctheta = std::cos(theta),
stheta = std::sin(theta);
identity(); // Initialize to identity matrix
for(int i = 0; i < dim; ++i)
for(int j = 0; j < dim; ++j)
m_elem[i][j] += ((ctheta - 1) * (v1[i] * v1[j] / v1_sqr_mag
+ vperp[i] * vperp[j] / vperp_sqr_mag)
- stheta * (vperp[i] * v1[j] - v1[i] * vperp[j]) / mag_prod);
m_flip = false;
m_valid = true;
m_age = 1;
return *this;
}
template<int dim>
RotMatrix<dim>& RotMatrix<dim>::rotation(const Vector<dim>& from,
const Vector<dim>& to)
{
// This is sort of similar to the above, with the rotation angle determined
// by the angle between the vectors
CoordType fromSqrMag = from.sqrMag();
assert("need nonzero length vector" && fromSqrMag > 0);
CoordType toSqrMag = to.sqrMag();
assert("need nonzero length vector" && toSqrMag > 0);
CoordType dot = Dot(from, to);
CoordType sqrmagprod = fromSqrMag * toSqrMag;
CoordType magprod = std::sqrt(sqrmagprod);
CoordType ctheta_plus_1 = dot / magprod + 1;
if(ctheta_plus_1 < WFMATH_EPSILON) {
// 180 degree rotation, rotation plane indeterminate
if(dim == 2) { // special case, only one rotation plane possible
m_elem[0][0] = m_elem[1][1] = ctheta_plus_1 - 1;
CoordType sin_theta = std::sqrt(2 * ctheta_plus_1); // to leading order
bool direction = ((to[0] * from[1] - to[1] * from[0]) >= 0);
m_elem[0][1] = direction ? sin_theta : -sin_theta;
m_elem[1][0] = -m_elem[0][1];
m_flip = false;
m_valid = true;
m_age = 1;
return *this;
}
throw ColinearVectors<dim>(from, to);
}
for(int i = 0; i < dim; ++i) {
for(int j = i; j < dim; ++j) {
CoordType projfrom = from[i] * from[j] / fromSqrMag;
CoordType projto = to[i] * to[j] / toSqrMag;
CoordType ijprod = from[i] * to[j], jiprod = to[i] * from[j];
CoordType termthree = (ijprod + jiprod) * dot / sqrmagprod;
CoordType combined = (projfrom + projto - termthree) / ctheta_plus_1;
if(i == j) {
m_elem[i][i] = 1 - combined;
}
else {
CoordType diffterm = (jiprod - ijprod) / magprod;
m_elem[i][j] = -diffterm - combined;
m_elem[j][i] = diffterm - combined;
}
}
}
m_flip = false;
m_valid = true;
m_age = 1;
return *this;
}
template<> RotMatrix<3>& RotMatrix<3>::rotation (const Vector<3>& axis,
CoordType theta);
template<> RotMatrix<3>& RotMatrix<3>::rotation (const Vector<3>& axis);
template<> RotMatrix<3>& RotMatrix<3>::fromQuaternion(const Quaternion& q,
const bool not_flip);
template<> RotMatrix<3>& RotMatrix<3>::rotate(const Quaternion&);
template<int dim>
inline RotMatrix<dim>& RotMatrix<dim>::mirror(const int i)
{
assert(i >= 0 && i < dim);
identity();
m_elem[i][i] = -1;
m_flip = true;
// m_valid and m_age already set correctly
return *this;
}
template<int dim>
inline RotMatrix<dim>& RotMatrix<dim>::mirror (const Vector<dim>& v)
{
// Get a flip by subtracting twice the projection operator in the
// direction of the vector. A projection operator is idempotent (P*P == P),
// and symmetric, so I - 2P is an orthogonal matrix.
//
// (I - 2P) * (I - 2P)^T == (I - 2P)^2 == I - 4P + 4P^2 == I
CoordType sqr_mag = v.sqrMag();
assert("need nonzero length vector" && sqr_mag > 0);
// off diagonal
for(int i = 0; i < dim - 1; ++i)
for(int j = i + 1; j < dim; ++j)
m_elem[i][j] = m_elem[j][i] = -2 * v[i] * v[j] / sqr_mag;
// diagonal
for(int i = 0; i < dim; ++i)
m_elem[i][i] = 1 - 2 * v[i] * v[i] / sqr_mag;
m_flip = true;
m_valid = true;
m_age = 1;
return *this;
}
template<int dim>
inline RotMatrix<dim>& RotMatrix<dim>::mirror()
{
for(int i = 0; i < dim; ++i)
for(int j = 0; j < dim; ++j)
m_elem[i][j] = (i == j) ? -1 : 0;
m_flip = dim%2;
m_valid = true;
m_age = 0; // -1 and 0 are exact, no roundoff error
return *this;
}
bool _MatrixInverseImpl(const int size, CoordType* in, CoordType* out);
template<int dim>
inline void RotMatrix<dim>::normalize()
{
// average the matrix with it's inverse transpose,
// that will clean up the error to linear order
CoordType buf1[dim*dim], buf2[dim*dim];
for(int i = 0; i < dim; ++i) {
for(int j = 0; j < dim; ++j) {
buf1[j*dim + i] = m_elem[i][j];
buf2[j*dim + i] = ((i == j) ? 1.f : 0.f);
}
}
bool success = _MatrixInverseImpl(dim, buf1, buf2);
assert(success); // matrix can't be degenerate
if (!success) {
return;
}
for(int i = 0; i < dim; ++i) {
for(int j = 0; j < dim; ++j) {
CoordType& elem = m_elem[i][j];
elem += buf2[i*dim + j];
elem /= 2;
}
}
m_age = 1;
}
} // namespace WFMath
#endif // WFMATH_ROTMATRIX_FUNCS_H
|