/usr/share/matita/lib/lambdaN/subterms.ma is in matita 0.99.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | (*
||M|| This file is part of HELM, an Hypertextual, Electronic
||A|| Library of Mathematics, developed at the Computer Science
||T|| Department of the University of Bologna, Italy.
||I||
||T||
||A|| This file is distributed under the terms of the
\ / GNU General Public License Version 2
\ /
V_______________________________________________________________ *)
include "lambdaN/subst.ma".
inductive subterm : T → T → Prop ≝
| appl : ∀M,N. subterm M (App M N)
| appr : ∀M,N. subterm N (App M N)
| lambdal : ∀M,N. subterm M (Lambda M N)
| lambdar : ∀M,N. subterm N (Lambda M N)
| prodl : ∀M,N. subterm M (Prod M N)
| prodr : ∀M,N. subterm N (Prod M N)
| dl : ∀M,N. subterm M (D M N)
| dr : ∀M,N. subterm N (D M N)
| sub_trans : ∀M,N,P. subterm M N → subterm N P → subterm M P.
inverter subterm_myinv for subterm (?%).
lemma subapp: ∀S,M,N. subterm S (App M N) →
S = M ∨ S = N ∨ subterm S M ∨ subterm S N.
#S #M #N #subH (@(subterm_myinv … subH))
[#M1 #N1 #eqapp destruct /4/
|#M1 #N1 #eqapp destruct /4/
|3,4,5,6,7,8: #M1 #N1 #eqapp destruct
|#M1 #N1 #P #sub1 #sub2 #H1 #H2 #eqapp
(cases (H2 eqapp))
[* [* /3/ | #subN1 %1 %2 /2/ ]
|#subN1 %2 /2/
]
]
qed.
lemma sublam: ∀S,M,N. subterm S (Lambda M N) →
S = M ∨ S = N ∨ subterm S M ∨ subterm S N.
#S #M #N #subH (@(subterm_myinv … subH))
[1,2,5,6,7,8: #M1 #N1 #eqH destruct
|3,4:#M1 #N1 #eqH destruct /4/
|#M1 #N1 #P #sub1 #sub2 #H1 #H2 #eqH
(cases (H2 eqH))
[* [* /3/ | #subN1 %1 %2 /2/ ]
|#subN1 %2 /2/
]
]
qed.
lemma subprod: ∀S,M,N. subterm S (Prod M N) →
S = M ∨ S = N ∨ subterm S M ∨ subterm S N.
#S #M #N #subH (@(subterm_myinv … subH))
[1,2,3,4,7,8: #M1 #N1 #eqH destruct
|5,6:#M1 #N1 #eqH destruct /4/
|#M1 #N1 #P #sub1 #sub2 #H1 #H2 #eqH
(cases (H2 eqH))
[* [* /3/ | #subN1 %1 %2 /2/ ]
|#subN1 %2 /2/
]
]
qed.
lemma subd: ∀S,M,N. subterm S (D M N) →
S = M ∨ S = N ∨ subterm S M ∨ subterm S N.
#S #M #N #subH (@(subterm_myinv … subH))
[1,2,3,4,5,6: #M1 #N1 #eqH destruct
|7,8: #M1 #N1 #eqH destruct /4/
|#M1 #N1 #P #sub1 #sub2 #_ #H #eqH
(cases (H eqH))
[* [* /3/ | #subN1 %1 %2 /2/ ]
|#subN1 %2 /2/
]
]
qed.
lemma subsort: ∀S,n. ¬ subterm S (Sort n).
#S #n % #subH (@(subterm_myinv … subH))
[1,2,3,4,5,6,7,8: #M1 #N1 #eqH destruct
|/2/
]
qed.
lemma subrel: ∀S,n. ¬ subterm S (Rel n).
#S #n % #subH (@(subterm_myinv … subH))
[1,2,3,4,5,6,7,8: #M1 #N1 #eqH destruct
|/2/
]
qed.
theorem Telim: ∀P: T → Prop. (∀M. (∀N. subterm N M → P N) → P M) →
∀M. P M.
#P #H #M (cut (P M ∧ (∀N. subterm N M → P N)))
[2: * //]
(elim M)
[#n %
[@H #N1 #subN1 @False_ind /2/
|#N #subN1 @False_ind /2/
]
|#n %
[@H #N1 #subN1 @False_ind /2/
|#N #subN1 @False_ind /2/
]
|#M1 #M2 * #PM1 #Hind1 * #PM2 #Hind2
(cut (∀N.subterm N (App M1 M2) → P N))
[#N1 #subN1 (cases (subapp … subN1))
[* [* // | @Hind1 ] | @Hind2 ]]
#Hcut % /3/
|#M1 #M2 * #PM1 #Hind1 * #PM2 #Hind2
(cut (∀N.subterm N (Lambda M1 M2) → P N))
[#N1 #subN1 (cases (sublam … subN1))
[* [* // | @Hind1 ] | @Hind2 ]]
#Hcut % /3/
|#M1 #M2 * #PM1 #Hind1 * #PM2 #Hind2
(cut (∀N.subterm N (Prod M1 M2) → P N))
[#N1 #subN1 (cases (subprod … subN1))
[* [* // | @Hind1 ] | @Hind2 ]]
#Hcut % /3/
|#M1 #M2 * #PM1 #Hind1 * #PM2 #Hind2
(cut (∀N.subterm N (D M1 M2) → P N))
[#N1 #subN1 (cases (subd … subN1))
[* [* // | @Hind1 ] | @Hind2 ]]
#Hcut % /3/
]
qed.
let rec size M ≝
match M with
[Sort N ⇒ 1
|Rel N ⇒ 1
|App P Q ⇒ size P + size Q + 1
|Lambda P Q ⇒ size P + size Q + 1
|Prod P Q ⇒ size P + size Q + 1
|D P Q ⇒ size P + size Q + 1
]
.
(* axiom pos_size: ∀M. 1 ≤ size M. *)
theorem Telim_size: ∀P: T → Prop.
(∀M. (∀N. size N < size M → P N) → P M) → ∀M. P M.
#P #H #M (cut (∀p,N. size N = p → P N))
[2: /2/]
#p @(nat_elim1 p) #m #H1 #N #sizeN @H #N0 #Hlt @(H1 (size N0)) //
qed.
(* size of subterms *)
lemma size_subterm : ∀N,M. subterm N M → size N < size M.
#N #M #subH (elim subH) normalize //
#M1 #N1 #P #sub1 #sub2 #size1 #size2 @(transitive_lt … size1 size2)
qed.
|