This file is indexed.

/usr/share/matita/lib/lambdaN/subterms.ma is in matita 0.99.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
(*
    ||M||  This file is part of HELM, an Hypertextual, Electronic        
    ||A||  Library of Mathematics, developed at the Computer Science     
    ||T||  Department of the University of Bologna, Italy.                     
    ||I||                                                                 
    ||T||  
    ||A||  This file is distributed under the terms of the 
    \   /  GNU General Public License Version 2        
     \ /      
      V_______________________________________________________________ *)

include "lambdaN/subst.ma".

inductive subterm : T → T → Prop ≝
  | appl : ∀M,N. subterm M (App M N)
  | appr : ∀M,N. subterm N (App M N)
  | lambdal : ∀M,N. subterm M (Lambda M N)
  | lambdar : ∀M,N. subterm N (Lambda M N)
  | prodl : ∀M,N. subterm M (Prod M N)
  | prodr : ∀M,N. subterm N (Prod M N)
  | dl : ∀M,N. subterm M (D M N)
  | dr : ∀M,N. subterm N (D M N)
  | sub_trans : ∀M,N,P. subterm M N → subterm N P → subterm M P.

inverter subterm_myinv for subterm (?%).

lemma subapp: ∀S,M,N. subterm S (App M N) →
 S = M ∨ S = N ∨ subterm S M ∨ subterm S N. 
#S #M #N #subH (@(subterm_myinv … subH))
  [#M1 #N1 #eqapp destruct /4/
  |#M1 #N1 #eqapp destruct /4/
  |3,4,5,6,7,8: #M1 #N1 #eqapp destruct
  |#M1 #N1 #P #sub1 #sub2 #H1 #H2 #eqapp
   (cases (H2 eqapp))
    [* [* /3/ | #subN1 %1 %2 /2/ ] 
    |#subN1 %2 /2/
    ]
  ]
qed.
 
lemma sublam: ∀S,M,N. subterm S (Lambda M N) →
 S = M ∨ S = N ∨ subterm S M ∨ subterm S N. 
#S #M #N #subH (@(subterm_myinv … subH))
  [1,2,5,6,7,8: #M1 #N1 #eqH destruct
  |3,4:#M1 #N1 #eqH destruct /4/
  |#M1 #N1 #P #sub1 #sub2 #H1 #H2 #eqH
   (cases (H2 eqH))
    [* [* /3/ | #subN1 %1 %2 /2/ ] 
    |#subN1 %2 /2/
    ]
  ]
qed.  

lemma subprod: ∀S,M,N. subterm S (Prod M N) →
 S = M ∨ S = N ∨ subterm S M ∨ subterm S N. 
#S #M #N #subH (@(subterm_myinv … subH))
  [1,2,3,4,7,8: #M1 #N1 #eqH destruct
  |5,6:#M1 #N1 #eqH destruct /4/
  |#M1 #N1 #P #sub1 #sub2 #H1 #H2 #eqH
   (cases (H2 eqH))
    [* [* /3/ | #subN1 %1 %2 /2/ ] 
    |#subN1 %2 /2/
    ]
  ]
qed.

lemma subd: ∀S,M,N. subterm S (D M N) →
 S = M ∨ S = N ∨ subterm S M ∨ subterm S N. 
#S #M #N #subH (@(subterm_myinv … subH))
  [1,2,3,4,5,6: #M1 #N1 #eqH destruct
  |7,8: #M1 #N1 #eqH destruct /4/
  |#M1 #N1 #P #sub1 #sub2 #_ #H #eqH
    (cases (H eqH))
    [* [* /3/ | #subN1 %1 %2 /2/ ] 
    |#subN1 %2 /2/
    ]
  ]
qed.    

lemma subsort: ∀S,n. ¬ subterm S (Sort n).
#S #n % #subH (@(subterm_myinv … subH))
  [1,2,3,4,5,6,7,8: #M1 #N1 #eqH destruct
  |/2/
  ]
qed.

lemma subrel: ∀S,n. ¬ subterm S (Rel n).
#S #n % #subH (@(subterm_myinv … subH))
  [1,2,3,4,5,6,7,8: #M1 #N1 #eqH destruct
  |/2/
  ]
qed.

theorem Telim: ∀P: T → Prop. (∀M. (∀N. subterm N M → P N) → P M) →
 ∀M. P M.
#P #H #M (cut (P M ∧ (∀N. subterm N M → P N)))
  [2: * //]
(elim M)
  [#n %
    [@H #N1 #subN1 @False_ind /2/
    |#N #subN1 @False_ind /2/
    ]
  |#n %
    [@H #N1 #subN1 @False_ind /2/
    |#N #subN1 @False_ind /2/
    ]
  |#M1 #M2 * #PM1 #Hind1 * #PM2 #Hind2 
   (cut (∀N.subterm N (App M1 M2) → P N))
    [#N1 #subN1 (cases (subapp … subN1))
      [* [* // | @Hind1 ] | @Hind2 ]]
    #Hcut % /3/
  |#M1 #M2 * #PM1 #Hind1 * #PM2 #Hind2 
   (cut (∀N.subterm N (Lambda M1 M2) → P N))
    [#N1 #subN1 (cases (sublam … subN1))
      [* [* // | @Hind1 ] | @Hind2 ]]
   #Hcut % /3/
  |#M1 #M2 * #PM1 #Hind1 * #PM2 #Hind2 
   (cut (∀N.subterm N (Prod M1 M2) → P N))
    [#N1 #subN1 (cases (subprod … subN1))
      [* [* // | @Hind1 ] | @Hind2 ]]
   #Hcut % /3/   
  |#M1 #M2 * #PM1 #Hind1 * #PM2 #Hind2 
   (cut (∀N.subterm N (D M1 M2) → P N))
    [#N1 #subN1 (cases (subd … subN1))
      [* [* // | @Hind1 ] | @Hind2 ]]
   #Hcut % /3/  
  ]  
qed.

let rec size M ≝
match M with
  [Sort N ⇒ 1
  |Rel N ⇒ 1
  |App P Q ⇒ size P + size Q + 1
  |Lambda P Q ⇒ size P + size Q + 1
  |Prod P Q ⇒ size P + size Q + 1
  |D P Q ⇒ size P + size Q + 1
  ]
.

(* axiom pos_size: ∀M. 1 ≤ size M. *)

theorem Telim_size: ∀P: T → Prop. 
 (∀M. (∀N. size N < size M → P N) → P M) → ∀M. P M.
#P #H #M (cut (∀p,N. size N = p → P N))
  [2: /2/]
#p @(nat_elim1 p) #m #H1 #N #sizeN @H #N0 #Hlt @(H1 (size N0)) //
qed.

(* size of subterms *)

lemma size_subterm : ∀N,M. subterm N M → size N < size M.
#N #M #subH (elim subH) normalize //
#M1 #N1 #P #sub1 #sub2 #size1 #size2 @(transitive_lt … size1 size2)
qed.