/usr/lib/python3/dist-packages/postgresql/types/__init__.py is in python3-postgresql 1.1.0-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 | ##
# types. - Package for I/O and PostgreSQL specific types.
##
"""
PostgreSQL types and identifiers.
"""
# XXX: Would be nicer to generate these from a header file...
InvalidOid = 0
RECORDOID = 2249
BOOLOID = 16
BITOID = 1560
VARBITOID = 1562
ACLITEMOID = 1033
CHAROID = 18
NAMEOID = 19
TEXTOID = 25
BYTEAOID = 17
BPCHAROID = 1042
VARCHAROID = 1043
CSTRINGOID = 2275
UNKNOWNOID = 705
REFCURSOROID = 1790
UUIDOID = 2950
TSVECTOROID = 3614
GTSVECTOROID = 3642
TSQUERYOID = 3615
REGCONFIGOID = 3734
REGDICTIONARYOID = 3769
JSONOID = 114
XMLOID = 142
MACADDROID = 829
INETOID = 869
CIDROID = 650
TYPEOID = 71
PROCOID = 81
CLASSOID = 83
ATTRIBUTEOID = 75
DATEOID = 1082
TIMEOID = 1083
TIMESTAMPOID = 1114
TIMESTAMPTZOID = 1184
INTERVALOID = 1186
TIMETZOID = 1266
ABSTIMEOID = 702
RELTIMEOID = 703
TINTERVALOID = 704
INT8OID = 20
INT2OID = 21
INT4OID = 23
OIDOID = 26
TIDOID = 27
XIDOID = 28
CIDOID = 29
CASHOID = 790
FLOAT4OID = 700
FLOAT8OID = 701
NUMERICOID = 1700
POINTOID = 600
LINEOID = 628
LSEGOID = 601
PATHOID = 602
BOXOID = 603
POLYGONOID = 604
CIRCLEOID = 718
OIDVECTOROID = 30
INT2VECTOROID = 22
INT4ARRAYOID = 1007
REGPROCOID = 24
REGPROCEDUREOID = 2202
REGOPEROID = 2203
REGOPERATOROID = 2204
REGCLASSOID = 2205
REGTYPEOID = 2206
REGTYPEARRAYOID = 2211
TRIGGEROID = 2279
LANGUAGE_HANDLEROID = 2280
INTERNALOID = 2281
OPAQUEOID = 2282
VOIDOID = 2278
ANYARRAYOID = 2277
ANYELEMENTOID = 2283
ANYOID = 2276
ANYNONARRAYOID = 2776
ANYENUMOID = 3500
#: Mapping of type Oid to SQL type name.
oid_to_sql_name = {
BPCHAROID : 'CHARACTER',
VARCHAROID : 'CHARACTER VARYING',
# *OID : 'CHARACTER LARGE OBJECT',
# SELECT X'0F' -> bit. XXX: Does bytea have any play here?
#BITOID : 'BINARY',
#BYTEAOID : 'BINARY VARYING',
# *OID : 'BINARY LARGE OBJECT',
BOOLOID : 'BOOLEAN',
# exact numeric types
INT2OID : 'SMALLINT',
INT4OID : 'INTEGER',
INT8OID : 'BIGINT',
NUMERICOID : 'NUMERIC',
# approximate numeric types
FLOAT4OID : 'REAL',
FLOAT8OID : 'DOUBLE PRECISION',
# datetime types
TIMEOID : 'TIME WITHOUT TIME ZONE',
TIMETZOID : 'TIME WITH TIME ZONE',
TIMESTAMPOID : 'TIMESTAMP WITHOUT TIME ZONE',
TIMESTAMPTZOID : 'TIMESTAMP WITH TIME ZONE',
DATEOID : 'DATE',
# interval types
INTERVALOID : 'INTERVAL',
XMLOID : 'XML',
}
#: Mapping of type Oid to name.
oid_to_name = {
RECORDOID : 'record',
BOOLOID : 'bool',
BITOID : 'bit',
VARBITOID : 'varbit',
ACLITEMOID : 'aclitem',
CHAROID : 'char',
NAMEOID : 'name',
TEXTOID : 'text',
BYTEAOID : 'bytea',
BPCHAROID : 'bpchar',
VARCHAROID : 'varchar',
CSTRINGOID : 'cstring',
UNKNOWNOID : 'unknown',
REFCURSOROID : 'refcursor',
UUIDOID : 'uuid',
TSVECTOROID : 'tsvector',
GTSVECTOROID : 'gtsvector',
TSQUERYOID : 'tsquery',
REGCONFIGOID : 'regconfig',
REGDICTIONARYOID : 'regdictionary',
XMLOID : 'xml',
MACADDROID : 'macaddr',
INETOID : 'inet',
CIDROID : 'cidr',
TYPEOID : 'type',
PROCOID : 'proc',
CLASSOID : 'class',
ATTRIBUTEOID : 'attribute',
DATEOID : 'date',
TIMEOID : 'time',
TIMESTAMPOID : 'timestamp',
TIMESTAMPTZOID : 'timestamptz',
INTERVALOID : 'interval',
TIMETZOID : 'timetz',
ABSTIMEOID : 'abstime',
RELTIMEOID : 'reltime',
TINTERVALOID : 'tinterval',
INT8OID : 'int8',
INT2OID : 'int2',
INT4OID : 'int4',
OIDOID : 'oid',
TIDOID : 'tid',
XIDOID : 'xid',
CIDOID : 'cid',
CASHOID : 'cash',
FLOAT4OID : 'float4',
FLOAT8OID : 'float8',
NUMERICOID : 'numeric',
POINTOID : 'point',
LINEOID : 'line',
LSEGOID : 'lseg',
PATHOID : 'path',
BOXOID : 'box',
POLYGONOID : 'polygon',
CIRCLEOID : 'circle',
OIDVECTOROID : 'oidvector',
INT2VECTOROID : 'int2vector',
INT4ARRAYOID : 'int4array',
REGPROCOID : 'regproc',
REGPROCEDUREOID : 'regprocedure',
REGOPEROID : 'regoper',
REGOPERATOROID : 'regoperator',
REGCLASSOID : 'regclass',
REGTYPEOID : 'regtype',
REGTYPEARRAYOID : 'regtypearray',
TRIGGEROID : 'trigger',
LANGUAGE_HANDLEROID : 'language_handler',
INTERNALOID : 'internal',
OPAQUEOID : 'opaque',
VOIDOID : 'void',
ANYARRAYOID : 'anyarray',
ANYELEMENTOID : 'anyelement',
ANYOID : 'any',
ANYNONARRAYOID : 'anynonarray',
ANYENUMOID : 'anyenum',
}
name_to_oid = dict(
[(v,k) for k,v in oid_to_name.items()]
)
class Array(object):
"""
Type used to mimic PostgreSQL arrays. While there are many semantic
differences, the primary one is that the elements contained by an Array
instance are not strongly typed. The purpose of this class is to provide
some consistency with PostgreSQL with respect to the structure of an Array.
The structure consists of three parts:
* The elements of the array.
* The lower boundaries.
* The upper boundaries.
There is also a `dimensions` property, but it is derived from the
`lowerbounds` and `upperbounds` to yield a normalized description of the
ARRAY's structure.
The Python interfaces, such as __getitem__, are *not* subjected to the
semantics of the lower and upper bounds. Rather, the normalized dimensions
provide the primary influence for these interfaces. So, unlike SQL
indirection, getting an index that does *not* exist will raise a Python
`IndexError`.
"""
# return an iterator over the absolute elements of a nested sequence
@classmethod
def unroll_nest(typ, hier, dimensions, depth = 0):
dsize = dimensions and dimensions[depth] or 0
if len(hier) != dsize:
raise ValueError("list size not consistent with dimensions at depth " + str(depth))
r = []
ndepth = depth + 1
if ndepth == len(dimensions):
# at the bottom
r = hier
else:
# go deeper
for x in hier:
r.extend(typ.unroll_nest(x, dimensions, ndepth))
return r
# Detect the dimensions of a nested sequence
@staticmethod
def detect_dimensions(hier, len = len):
# if the list is empty, it's a zero-dimension array.
if hier:
yield len(hier)
hier = hier[0]
depth = 1
while hier.__class__ is list:
depth += 1
l = len(hier)
if l < 1:
raise ValueError("axis {0} is empty".format(depth))
yield l
hier = hier[0]
@classmethod
def from_elements(typ,
elements : "iterable of elements in the array",
lowerbounds : "beginning of each axis" = None,
upperbounds : "upper bounds; size of each axis" = None,
len = len,
):
"""
Instantiate an Array from the given elements, lowerbounds, and upperbounds.
The given elements are bound to the array which provides them with the
structure defined by the lower boundaries and the upper boundaries.
A `ValueError` will be raised in the following situations:
* The number of elements given are inconsistent with the number of elements
described by the upper and lower bounds.
* The lower bounds at a given axis exceeds the upper bounds at a given
axis.
* The number of lower bounds is inconsistent with the number of upper
bounds.
"""
# resolve iterable
elements = list(elements)
nelements = len(elements)
# If ndims is zero, lowerbounds will be ()
if lowerbounds is None:
if upperbounds:
lowerbounds = (1,) * len(upperbounds)
elif nelements == 0:
# special for empty ARRAY; no dimensions.
lowerbounds = ()
else:
# one dimension.
lowerbounds = (1,)
else:
lowerbounds = tuple(lowerbounds)
if upperbounds is not None:
upperbounds = tuple(upperbounds)
dimensions = []
# upperbounds were given, so check.
if upperbounds:
elcount = 1
for lb, ub in zip(lowerbounds, upperbounds):
x = ub - lb + 1
if x < 1:
# special case empty ARRAYs
if nelements == 0:
upperbounds = ()
lowerbounds = ()
dimensions = ()
elcount = 0
break
raise ValueError("lowerbounds exceeds upperbounds")
# physical dimensions.
dimensions.append(x)
elcount = x * elcount
else:
elcount = 0
if nelements != elcount:
raise ValueError("element count inconsistent with boundaries")
dimensions = tuple(dimensions)
else:
# fill in default
if nelements == 0:
upperbounds = ()
dimensions = ()
else:
upperbounds = (nelements,)
dimensions = (nelements,)
# consistency..
if len(lowerbounds) != len(upperbounds):
raise ValueError("number of lowerbounds inconsistent with upperbounds")
rob = super().__new__(typ)
rob._elements = elements
rob.lowerbounds = lowerbounds
rob.upperbounds = upperbounds
rob.dimensions = dimensions
rob.ndims = len(dimensions)
rob._weight = len(rob._elements) // (dimensions and dimensions[0] or 1)
return rob
# Method used to create an Array() from nested lists.
@classmethod
def from_nest(typ, nest):
dims = tuple(typ.detect_dimensions(nest))
return typ.from_elements(
list(typ.unroll_nest(nest, dims)),
upperbounds = dims,
# lowerbounds is implied to (1,)*len(upper)
)
def __new__(typ, nested_elements):
"""
Create an types.Array() using the given nested lists. The boundaries of
the array are detected by traversing the first items of the nested
lists::
Array([[1,2,4],[3,4,8]])
Lists are used to define the boundaries so that tuples may be used to
represent any complex elements. The above array will the `lowerbounds`
``(1,1)``, and the `upperbounds` ``(2,3)``.
"""
if nested_elements.__class__ is Array:
return nested_elements
return typ.from_nest(list(nested_elements))
def __getnewargs__(self):
return (self.nest(),)
def elements(self):
"""
Returns an iterator to the elements of the Array. The elements are
produced in physical order.
"""
return iter(self._elements)
def nest(self, seqtype = list):
"""
Transform the array into a nested list.
The `seqtype` keyword can be used to override the type used to represent
the elements of a given axis.
"""
if self.ndims < 2:
return seqtype(self._elements)
else:
rl = []
for x in self:
rl.append(x.nest(seqtype = seqtype))
return seqtype(rl)
def get_element(self, address,
idxerr = "index {0} at axis {1} is out of range {2}".format
):
"""
Get an element in the array using the given axis sequence.
>>> a=Array([[1,2],[3,4]])
>>> a.get_element((0,0)) == 1
True
>>> a.get_element((1,1)) == 4
True
This is similar to getting items in a nested list::
>>> l=[[1,2],[3,4]]
>>> l[0][0] == 1
True
"""
if not self.dimensions:
raise IndexError("array is empty")
if len(address) != len(self.dimensions):
raise ValueError("given axis sequence is inconsistent with number of dimensions")
# normalize axis specification (-N + DIM), check for IndexErrors, and
# resolve the element's position.
cur = 0
nelements = len(self._elements)
for n, a, dim in zip(range(len(address)), address, self.dimensions):
if a < 0:
a = a + dim
if a < 0:
raise IndexError(idxerr(a, n, dim))
else:
if a >= dim:
raise IndexError(idxerr(a, n, dim))
nelements = nelements // dim
cur += (a * nelements)
return self._elements[cur]
def sql_get_element(self, address):
"""
Like `get_element`, but with SQL indirection semantics. Notably, returns
`None` on IndexError.
"""
try:
a = [a - lb for (a, lb) in zip(address, self.lowerbounds)]
# get_element accepts negatives, so check the converted sequence.
for x in a:
if x < 0:
return None
return self.get_element(a)
except IndexError:
return None
def __repr__(self):
return '%s.%s(%r)' %(
type(self).__module__,
type(self).__name__,
self.nest()
)
def __len__(self):
return self.dimensions and self.dimensions[0] or 0
def __eq__(self, ob):
return list(self) == ob
def __ne__(self, ob):
return list(self) != ob
def __gt__(self, ob):
return list(self) > ob
def __lt__(self, ob):
return list(self) < ob
def __le__(self, ob):
return list(self) <= ob
def __ge__(self, ob):
return list(self) >= ob
def __getitem__(self, item):
if self.ndims < 2:
# Array with 1dim is more or less a list.
return self._elements[item]
if isinstance(item, slice):
# get a sub-array slice
l = len(self)
n = 0
r = []
# for each offset in the slice, get the elements and add them
# to the new elements list used to build the new Array().
for x in range(*(item.indices(l))):
n = n + 1
r.extend(
self._elements[slice(self._weight*x,self._weight*(x+1))]
)
if n:
return self.__class__.from_elements(r,
lowerbounds = (1,) + self.lowerbounds[1:],
upperbounds = (n,) + self.upperbounds[1:],
)
else:
# Empty
return self.__class__.from_elements(())
else:
# get a sub-array
l = len(self)
if item > l:
raise IndexError("index {0} is out of range".format(l))
return self.__class__.from_elements(
self._elements[self._weight*item:self._weight*(item+1)],
lowerbounds = self.lowerbounds[1:],
upperbounds = self.upperbounds[1:],
)
def __iter__(self):
if self.ndims < 2:
# Special case empty and single dimensional ARRAYs
return self.elements()
return (self[x] for x in range(len(self)))
from operator import itemgetter
get0 = itemgetter(0)
get1 = itemgetter(1)
del itemgetter
class Row(tuple):
"Name addressable items tuple; mapping and sequence"
@classmethod
def from_mapping(typ, keymap, map, get1 = get1):
iter = [
map.get(k) for k,_ in sorted(keymap.items(), key = get1)
]
r = typ(iter)
r.keymap = keymap
return r
@classmethod
def from_sequence(typ, keymap, seq):
r = typ(seq)
r.keymap = keymap
return r
def __getitem__(self, i, gi = tuple.__getitem__):
if isinstance(i, (int, slice)):
return gi(self, i)
idx = self.keymap[i]
return gi(self, idx)
def get(self, i, gi = tuple.__getitem__, len = len):
if type(i) is int:
l = len(self)
if -l < i < l:
return gi(self, i)
else:
idx = self.keymap.get(i)
if idx is not None:
return gi(self, idx)
return None
def keys(self):
return self.keymap.keys()
def values(self):
return iter(self)
def items(self):
return zip(iter(self.column_names), iter(self))
def index_from_key(self, key):
return self.keymap.get(key)
def key_from_index(self, index):
for k,v in self.keymap.items():
if v == index:
return k
return None
@property
def column_names(self, get0 = get0, get1 = get1):
l=list(self.keymap.items())
l.sort(key=get1)
return tuple(map(get0, l))
def transform(self, *args, **kw):
"""
Make a new Row after processing the values with the callables associated
with the values either by index, \*args, or my column name, \*\*kw.
>>> r=Row.from_sequence({'col1':0,'col2':1}, (1,'two'))
>>> r.transform(str)
('1','two')
>>> r.transform(col2 = str.upper)
(1,'TWO')
>>> r.transform(str, col2 = str.upper)
('1','TWO')
Combine with methodcaller and map to transform lots of rows:
>>> rowseq = [r]
>>> xf = operator.methodcaller('transform', col2 = str.upper)
>>> list(map(xf, rowseq))
[(1,'TWO')]
"""
r = list(self)
i = 0
for x in args:
if x is not None:
r[i] = x(tuple.__getitem__(self, i))
i = i + 1
for k,v in kw.items():
if v is not None:
i = self.index_from_key(k)
if i is None:
raise KeyError("row has no such key, " + repr(k))
r[i] = v(self[k])
return type(self).from_sequence(self.keymap, r)
|