This file is indexed.

/usr/include/thunderbird/AudioEventTimeline.h is in thunderbird-dev 1:38.6.0+build1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef AudioEventTimeline_h_
#define AudioEventTimeline_h_

#include <algorithm>
#include "mozilla/Assertions.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/PodOperations.h"

#include "nsTArray.h"
#include "math.h"
#include "WebAudioUtils.h"

namespace mozilla {

namespace dom {

// This is an internal helper class and should not be used outside of this header.
struct AudioTimelineEvent {
  enum Type : uint32_t {
    SetValue,
    LinearRamp,
    ExponentialRamp,
    SetTarget,
    SetValueCurve
  };

  AudioTimelineEvent(Type aType, double aTime, float aValue, double aTimeConstant = 0.0,
                     float aDuration = 0.0, const float* aCurve = nullptr, uint32_t aCurveLength = 0)
    : mType(aType)
    , mTimeConstant(aTimeConstant)
    , mDuration(aDuration)
#ifdef DEBUG
    , mTimeIsInTicks(false)
#endif
  {
    mTime = aTime;
    if (aType == AudioTimelineEvent::SetValueCurve) {
      SetCurveParams(aCurve, aCurveLength);
    } else {
      mValue = aValue;
    }
  }

  AudioTimelineEvent(const AudioTimelineEvent& rhs)
  {
    PodCopy(this, &rhs, 1);
    if (rhs.mType == AudioTimelineEvent::SetValueCurve) {
      SetCurveParams(rhs.mCurve, rhs.mCurveLength);
    }
  }

  ~AudioTimelineEvent()
  {
    if (mType == AudioTimelineEvent::SetValueCurve) {
      delete[] mCurve;
    }
  }

  bool IsValid() const
  {
    if (mType == AudioTimelineEvent::SetValueCurve) {
      if (!mCurve || !mCurveLength) {
        return false;
      }
      for (uint32_t i = 0; i < mCurveLength; ++i) {
        if (!IsValid(mCurve[i])) {
          return false;
        }
      }
    }

    if (mType == AudioTimelineEvent::SetTarget &&
        WebAudioUtils::FuzzyEqual(mTimeConstant, 0.0)) {
      return false;
    }

    return IsValid(mTime) &&
           IsValid(mValue) &&
           IsValid(mTimeConstant) &&
           IsValid(mDuration);
  }

  template <class TimeType>
  TimeType Time() const;

  void SetTimeInTicks(int64_t aTimeInTicks)
  {
    mTimeInTicks = aTimeInTicks;
#ifdef DEBUG
    mTimeIsInTicks = true;
#endif
  }

  void SetCurveParams(const float* aCurve, uint32_t aCurveLength) {
    mCurveLength = aCurveLength;
    if (aCurveLength) {
      mCurve = new float[aCurveLength];
      PodCopy(mCurve, aCurve, aCurveLength);
    } else {
      mCurve = nullptr;
    }
  }

  Type mType;
  union {
    float mValue;
    uint32_t mCurveLength;
  };
  // The time for an event can either be in absolute value or in ticks.
  // Initially the time of the event is always in absolute value.
  // In order to convert it to ticks, call SetTimeInTicks.  Once this
  // method has been called for an event, the time cannot be converted
  // back to absolute value.
  union {
    double mTime;
    int64_t mTimeInTicks;
  };
  // mCurve contains a buffer of SetValueCurve samples.  We sample the
  // values in the buffer depending on how far along we are in time.
  // If we're at time T and the event has started as time T0 and has a
  // duration of D, we sample the buffer at floor(mCurveLength*(T-T0)/D)
  // if T<T0+D, and just take the last sample in the buffer otherwise.
  float* mCurve;
  double mTimeConstant;
  double mDuration;
#ifdef DEBUG
  bool mTimeIsInTicks;
#endif

private:
  static bool IsValid(double value)
  {
    return mozilla::IsFinite(value);
  }
};

template <>
inline double AudioTimelineEvent::Time<double>() const
{
  MOZ_ASSERT(!mTimeIsInTicks);
  return mTime;
}

template <>
inline int64_t AudioTimelineEvent::Time<int64_t>() const
{
  MOZ_ASSERT(mTimeIsInTicks);
  return mTimeInTicks;
}

/**
 * This class will be instantiated with different template arguments for testing and
 * production code.
 *
 * ErrorResult is a type which satisfies the following:
 *  - Implements a Throw() method taking an nsresult argument, representing an error code.
 */
template <class ErrorResult>
class AudioEventTimeline
{
public:
  explicit AudioEventTimeline(float aDefaultValue)
    : mValue(aDefaultValue),
      mComputedValue(aDefaultValue),
      mLastComputedValue(aDefaultValue)
  {
  }

  bool HasSimpleValue() const
  {
    return mEvents.IsEmpty();
  }

  float GetValue() const
  {
    // This method should only be called if HasSimpleValue() returns true
    MOZ_ASSERT(HasSimpleValue());
    return mValue;
  }

  float Value() const
  {
    // TODO: Return the current value based on the timeline of the AudioContext
    return mValue;
  }

  void SetValue(float aValue)
  {
    // Silently don't change anything if there are any events
    if (mEvents.IsEmpty()) {
      mLastComputedValue = mComputedValue = mValue = aValue;
    }
  }

  void SetValueAtTime(float aValue, double aStartTime, ErrorResult& aRv)
  {
    InsertEvent(AudioTimelineEvent(AudioTimelineEvent::SetValue, aStartTime, aValue), aRv);
  }

  void LinearRampToValueAtTime(float aValue, double aEndTime, ErrorResult& aRv)
  {
    InsertEvent(AudioTimelineEvent(AudioTimelineEvent::LinearRamp, aEndTime, aValue), aRv);
  }

  void ExponentialRampToValueAtTime(float aValue, double aEndTime, ErrorResult& aRv)
  {
    InsertEvent(AudioTimelineEvent(AudioTimelineEvent::ExponentialRamp, aEndTime, aValue), aRv);
  }

  void SetTargetAtTime(float aTarget, double aStartTime, double aTimeConstant, ErrorResult& aRv)
  {
    InsertEvent(AudioTimelineEvent(AudioTimelineEvent::SetTarget, aStartTime, aTarget, aTimeConstant), aRv);
  }

  void SetValueCurveAtTime(const float* aValues, uint32_t aValuesLength, double aStartTime, double aDuration, ErrorResult& aRv)
  {
    InsertEvent(AudioTimelineEvent(AudioTimelineEvent::SetValueCurve, aStartTime, 0.0f, 0.0f, aDuration, aValues, aValuesLength), aRv);
  }

  void CancelScheduledValues(double aStartTime)
  {
    for (unsigned i = 0; i < mEvents.Length(); ++i) {
      if (mEvents[i].mTime >= aStartTime) {
#ifdef DEBUG
        // Sanity check: the array should be sorted, so all of the following
        // events should have a time greater than aStartTime too.
        for (unsigned j = i + 1; j < mEvents.Length(); ++j) {
          MOZ_ASSERT(mEvents[j].mTime >= aStartTime);
        }
#endif
        mEvents.TruncateLength(i);
        break;
      }
    }
  }

  void CancelAllEvents()
  {
    mEvents.Clear();
  }

  static bool TimesEqual(int64_t aLhs, int64_t aRhs)
  {
    return aLhs == aRhs;
  }

  // Since we are going to accumulate error by adding 0.01 multiple time in a
  // loop, we want to fuzz the equality check in GetValueAtTime.
  static bool TimesEqual(double aLhs, double aRhs)
  {
    const float kEpsilon = 0.0000000001f;
    return fabs(aLhs - aRhs) < kEpsilon;
  }

  template<class TimeType>
  float GetValueAtTime(TimeType aTime)
  {
    mComputedValue = GetValueAtTimeHelper(aTime);
    return mComputedValue;
  }

  // This method computes the AudioParam value at a given time based on the event timeline
  template<class TimeType>
  float GetValueAtTimeHelper(TimeType aTime)
  {
    const AudioTimelineEvent* previous = nullptr;
    const AudioTimelineEvent* next = nullptr;

    bool bailOut = false;
    for (unsigned i = 0; !bailOut && i < mEvents.Length(); ++i) {
      switch (mEvents[i].mType) {
      case AudioTimelineEvent::SetValue:
      case AudioTimelineEvent::SetTarget:
      case AudioTimelineEvent::LinearRamp:
      case AudioTimelineEvent::ExponentialRamp:
      case AudioTimelineEvent::SetValueCurve:
        if (TimesEqual(aTime, mEvents[i].template Time<TimeType>())) {
          mLastComputedValue = mComputedValue;
          // Find the last event with the same time
          do {
            ++i;
          } while (i < mEvents.Length() &&
                   aTime == mEvents[i].template Time<TimeType>());

          // SetTarget nodes can be handled no matter what their next node is (if they have one)
          if (mEvents[i - 1].mType == AudioTimelineEvent::SetTarget) {
            // Follow the curve, without regard to the next event, starting at
            // the last value of the last event.
            return ExponentialApproach(mEvents[i - 1].template Time<TimeType>(),
                                       mLastComputedValue, mEvents[i - 1].mValue,
                                       mEvents[i - 1].mTimeConstant, aTime);
          }

          // SetValueCurve events can be handled no matter what their event node is (if they have one)
          if (mEvents[i - 1].mType == AudioTimelineEvent::SetValueCurve) {
            return ExtractValueFromCurve(mEvents[i - 1].template Time<TimeType>(),
                                         mEvents[i - 1].mCurve,
                                         mEvents[i - 1].mCurveLength,
                                         mEvents[i - 1].mDuration, aTime);
          }

          // For other event types
          return mEvents[i - 1].mValue;
        }
        previous = next;
        next = &mEvents[i];
        if (aTime < mEvents[i].template Time<TimeType>()) {
          bailOut = true;
        }
        break;
      default:
        MOZ_ASSERT(false, "unreached");
      }
    }
    // Handle the case where the time is past all of the events
    if (!bailOut) {
      previous = next;
      next = nullptr;
    }

    // Just return the default value if we did not find anything
    if (!previous && !next) {
      return mValue;
    }

    // If the requested time is before all of the existing events
    if (!previous) {
      return mValue;
    }

    // SetTarget nodes can be handled no matter what their next node is (if they have one)
    if (previous->mType == AudioTimelineEvent::SetTarget) {
      return ExponentialApproach(previous->template Time<TimeType>(),
                                 mLastComputedValue, previous->mValue,
                                 previous->mTimeConstant, aTime);
    }

    // SetValueCurve events can be handled no mattar what their next node is (if they have one)
    if (previous->mType == AudioTimelineEvent::SetValueCurve) {
      return ExtractValueFromCurve(previous->template Time<TimeType>(),
                                   previous->mCurve, previous->mCurveLength,
                                   previous->mDuration, aTime);
    }

    // If the requested time is after all of the existing events
    if (!next) {
      switch (previous->mType) {
      case AudioTimelineEvent::SetValue:
      case AudioTimelineEvent::LinearRamp:
      case AudioTimelineEvent::ExponentialRamp:
        // The value will be constant after the last event
        return previous->mValue;
      case AudioTimelineEvent::SetValueCurve:
        return ExtractValueFromCurve(previous->template Time<TimeType>(),
                                     previous->mCurve, previous->mCurveLength,
                                     previous->mDuration, aTime);
      case AudioTimelineEvent::SetTarget:
        MOZ_ASSERT(false, "unreached");
      }
      MOZ_ASSERT(false, "unreached");
    }

    // Finally, handle the case where we have both a previous and a next event

    // First, handle the case where our range ends up in a ramp event
    switch (next->mType) {
    case AudioTimelineEvent::LinearRamp:
      return LinearInterpolate(previous->template Time<TimeType>(), previous->mValue, next->template Time<TimeType>(), next->mValue, aTime);
    case AudioTimelineEvent::ExponentialRamp:
      return ExponentialInterpolate(previous->template Time<TimeType>(), previous->mValue, next->template Time<TimeType>(), next->mValue, aTime);
    case AudioTimelineEvent::SetValue:
    case AudioTimelineEvent::SetTarget:
    case AudioTimelineEvent::SetValueCurve:
      break;
    }

    // Now handle all other cases
    switch (previous->mType) {
    case AudioTimelineEvent::SetValue:
    case AudioTimelineEvent::LinearRamp:
    case AudioTimelineEvent::ExponentialRamp:
      // If the next event type is neither linear or exponential ramp, the
      // value is constant.
      return previous->mValue;
    case AudioTimelineEvent::SetValueCurve:
      return ExtractValueFromCurve(previous->template Time<TimeType>(),
                                   previous->mCurve, previous->mCurveLength,
                                   previous->mDuration, aTime);
    case AudioTimelineEvent::SetTarget:
      MOZ_ASSERT(false, "unreached");
    }

    MOZ_ASSERT(false, "unreached");
    return 0.0f;
  }

  // Return the number of events scheduled
  uint32_t GetEventCount() const
  {
    return mEvents.Length();
  }

  static float LinearInterpolate(double t0, float v0, double t1, float v1, double t)
  {
    return v0 + (v1 - v0) * ((t - t0) / (t1 - t0));
  }

  static float ExponentialInterpolate(double t0, float v0, double t1, float v1, double t)
  {
    return v0 * powf(v1 / v0, (t - t0) / (t1 - t0));
  }

  static float ExponentialApproach(double t0, double v0, float v1, double timeConstant, double t)
  {
    return v1 + (v0 - v1) * expf(-(t - t0) / timeConstant);
  }

  static float ExtractValueFromCurve(double startTime, float* aCurve, uint32_t aCurveLength, double duration, double t)
  {
    if (t >= startTime + duration) {
      // After the duration, return the last curve value
      return aCurve[aCurveLength - 1];
    }
    double ratio = std::max((t - startTime) / duration, 0.0);
    if (ratio >= 1.0) {
      return aCurve[aCurveLength - 1];
    }
    return aCurve[uint32_t(aCurveLength * ratio)];
  }

  void ConvertEventTimesToTicks(int64_t (*aConvertor)(double aTime, void* aClosure), void* aClosure,
                                int32_t aSampleRate)
  {
    for (unsigned i = 0; i < mEvents.Length(); ++i) {
      mEvents[i].SetTimeInTicks(aConvertor(mEvents[i].template Time<double>(), aClosure));
      mEvents[i].mTimeConstant *= aSampleRate;
      mEvents[i].mDuration *= aSampleRate;
    }
  }

private:
  const AudioTimelineEvent* GetPreviousEvent(double aTime) const
  {
    const AudioTimelineEvent* previous = nullptr;
    const AudioTimelineEvent* next = nullptr;

    bool bailOut = false;
    for (unsigned i = 0; !bailOut && i < mEvents.Length(); ++i) {
      switch (mEvents[i].mType) {
      case AudioTimelineEvent::SetValue:
      case AudioTimelineEvent::SetTarget:
      case AudioTimelineEvent::LinearRamp:
      case AudioTimelineEvent::ExponentialRamp:
      case AudioTimelineEvent::SetValueCurve:
        if (aTime == mEvents[i].mTime) {
          // Find the last event with the same time
          do {
            ++i;
          } while (i < mEvents.Length() &&
                   aTime == mEvents[i].mTime);
          return &mEvents[i - 1];
        }
        previous = next;
        next = &mEvents[i];
        if (aTime < mEvents[i].mTime) {
          bailOut = true;
        }
        break;
      default:
        MOZ_ASSERT(false, "unreached");
      }
    }
    // Handle the case where the time is past all of the events
    if (!bailOut) {
      previous = next;
    }

    return previous;
  }

  void InsertEvent(const AudioTimelineEvent& aEvent, ErrorResult& aRv)
  {
    if (!aEvent.IsValid()) {
      aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
      return;
    }

    // Make sure that non-curve events don't fall within the duration of a
    // curve event.
    for (unsigned i = 0; i < mEvents.Length(); ++i) {
      if (mEvents[i].mType == AudioTimelineEvent::SetValueCurve &&
          mEvents[i].mTime <= aEvent.mTime &&
          (mEvents[i].mTime + mEvents[i].mDuration) >= aEvent.mTime) {
        aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
        return;
      }
    }

    // Make sure that curve events don't fall in a range which includes other
    // events.
    if (aEvent.mType == AudioTimelineEvent::SetValueCurve) {
      for (unsigned i = 0; i < mEvents.Length(); ++i) {
        if (mEvents[i].mTime > aEvent.mTime &&
            mEvents[i].mTime < (aEvent.mTime + aEvent.mDuration)) {
          aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
          return;
        }
      }
    }

    // Make sure that invalid values are not used for exponential curves
    if (aEvent.mType == AudioTimelineEvent::ExponentialRamp) {
      if (aEvent.mValue <= 0.f) {
        aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
        return;
      }
      const AudioTimelineEvent* previousEvent = GetPreviousEvent(aEvent.mTime);
      if (previousEvent) {
        if (previousEvent->mValue <= 0.f) {
          aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
          return;
        }
      } else {
        if (mValue <= 0.f) {
          aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
          return;
        }
      }
    }

    for (unsigned i = 0; i < mEvents.Length(); ++i) {
      if (aEvent.mTime == mEvents[i].mTime) {
        if (aEvent.mType == mEvents[i].mType) {
          // If times and types are equal, replace the event
          mEvents.ReplaceElementAt(i, aEvent);
        } else {
          // Otherwise, place the element after the last event of another type
          do {
            ++i;
          } while (i < mEvents.Length() &&
                   aEvent.mType != mEvents[i].mType &&
                   aEvent.mTime == mEvents[i].mTime);
          mEvents.InsertElementAt(i, aEvent);
        }
        return;
      }
      // Otherwise, place the event right after the latest existing event
      if (aEvent.mTime < mEvents[i].mTime) {
        mEvents.InsertElementAt(i, aEvent);
        return;
      }
    }

    // If we couldn't find a place for the event, just append it to the list
    mEvents.AppendElement(aEvent);
  }

private:
  // This is a sorted array of the events in the timeline.  Queries of this
  // data structure should probably be more frequent than modifications to it,
  // and that is the reason why we're using a simple array as the data structure.
  // We can optimize this in the future if the performance of the array ends up
  // being a bottleneck.
  nsTArray<AudioTimelineEvent> mEvents;
  float mValue;
  // This is the value of this AudioParam we computed at the last call.
  float mComputedValue;
  // This is the value of this AudioParam at the last tick of the previous event.
  float mLastComputedValue;
};

}
}

#endif