/usr/include/thunderbird/skia/SkMath.h is in thunderbird-dev 1:38.6.0+build1-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | /*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkMath_DEFINED
#define SkMath_DEFINED
#include "SkTypes.h"
// 64bit -> 32bit utilities
/**
* Return true iff the 64bit value can exactly be represented in signed 32bits
*/
static inline bool sk_64_isS32(int64_t value) {
return (int32_t)value == value;
}
/**
* Return the 64bit argument as signed 32bits, asserting in debug that the arg
* exactly fits in signed 32bits. In the release build, no checks are preformed
* and the return value if the arg does not fit is undefined.
*/
static inline int32_t sk_64_asS32(int64_t value) {
SkASSERT(sk_64_isS32(value));
return (int32_t)value;
}
// Handy util that can be passed two ints, and will automatically promote to
// 64bits before the multiply, so the caller doesn't have to remember to cast
// e.g. (int64_t)a * b;
static inline int64_t sk_64_mul(int64_t a, int64_t b) {
return a * b;
}
///////////////////////////////////////////////////////////////////////////////
/**
* Computes numer1 * numer2 / denom in full 64 intermediate precision.
* It is an error for denom to be 0. There is no special handling if
* the result overflows 32bits.
*/
static inline int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom) {
SkASSERT(denom);
int64_t tmp = sk_64_mul(numer1, numer2) / denom;
return sk_64_asS32(tmp);
}
/**
* Computes (numer1 << shift) / denom in full 64 intermediate precision.
* It is an error for denom to be 0. There is no special handling if
* the result overflows 32bits.
*/
int32_t SkDivBits(int32_t numer, int32_t denom, int shift);
/**
* Return the integer square root of value, with a bias of bitBias
*/
int32_t SkSqrtBits(int32_t value, int bitBias);
/** Return the integer square root of n, treated as a SkFixed (16.16)
*/
#define SkSqrt32(n) SkSqrtBits(n, 15)
//! Returns the number of leading zero bits (0...32)
int SkCLZ_portable(uint32_t);
#ifndef SkCLZ
#if defined(_MSC_VER) && _MSC_VER >= 1400
#include <intrin.h>
static inline int SkCLZ(uint32_t mask) {
if (mask) {
DWORD index;
_BitScanReverse(&index, mask);
return index ^ 0x1F;
} else {
return 32;
}
}
#elif defined(SK_CPU_ARM32) || defined(__GNUC__) || defined(__clang__)
static inline int SkCLZ(uint32_t mask) {
// __builtin_clz(0) is undefined, so we have to detect that case.
return mask ? __builtin_clz(mask) : 32;
}
#else
#define SkCLZ(x) SkCLZ_portable(x)
#endif
#endif
/**
* Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches)
*/
static inline int SkClampPos(int value) {
return value & ~(value >> 31);
}
/** Given an integer and a positive (max) integer, return the value
* pinned against 0 and max, inclusive.
* @param value The value we want returned pinned between [0...max]
* @param max The positive max value
* @return 0 if value < 0, max if value > max, else value
*/
static inline int SkClampMax(int value, int max) {
// ensure that max is positive
SkASSERT(max >= 0);
if (value < 0) {
value = 0;
}
if (value > max) {
value = max;
}
return value;
}
/**
* Returns the smallest power-of-2 that is >= the specified value. If value
* is already a power of 2, then it is returned unchanged. It is undefined
* if value is <= 0.
*/
static inline int SkNextPow2(int value) {
SkASSERT(value > 0);
return 1 << (32 - SkCLZ(value - 1));
}
/**
* Returns the log2 of the specified value, were that value to be rounded up
* to the next power of 2. It is undefined to pass 0. Examples:
* SkNextLog2(1) -> 0
* SkNextLog2(2) -> 1
* SkNextLog2(3) -> 2
* SkNextLog2(4) -> 2
* SkNextLog2(5) -> 3
*/
static inline int SkNextLog2(uint32_t value) {
SkASSERT(value != 0);
return 32 - SkCLZ(value - 1);
}
/**
* Returns true if value is a power of 2. Does not explicitly check for
* value <= 0.
*/
static inline bool SkIsPow2(int value) {
return (value & (value - 1)) == 0;
}
///////////////////////////////////////////////////////////////////////////////
/**
* SkMulS16(a, b) multiplies a * b, but requires that a and b are both int16_t.
* With this requirement, we can generate faster instructions on some
* architectures.
*/
#ifdef SK_ARM_HAS_EDSP
static inline int32_t SkMulS16(S16CPU x, S16CPU y) {
SkASSERT((int16_t)x == x);
SkASSERT((int16_t)y == y);
int32_t product;
asm("smulbb %0, %1, %2 \n"
: "=r"(product)
: "r"(x), "r"(y)
);
return product;
}
#else
#ifdef SK_DEBUG
static inline int32_t SkMulS16(S16CPU x, S16CPU y) {
SkASSERT((int16_t)x == x);
SkASSERT((int16_t)y == y);
return x * y;
}
#else
#define SkMulS16(x, y) ((x) * (y))
#endif
#endif
/**
* Return a*b/((1 << shift) - 1), rounding any fractional bits.
* Only valid if a and b are unsigned and <= 32767 and shift is > 0 and <= 8
*/
static inline unsigned SkMul16ShiftRound(U16CPU a, U16CPU b, int shift) {
SkASSERT(a <= 32767);
SkASSERT(b <= 32767);
SkASSERT(shift > 0 && shift <= 8);
unsigned prod = SkMulS16(a, b) + (1 << (shift - 1));
return (prod + (prod >> shift)) >> shift;
}
/**
* Return a*b/255, rounding any fractional bits.
* Only valid if a and b are unsigned and <= 32767.
*/
static inline U8CPU SkMulDiv255Round(U16CPU a, U16CPU b) {
SkASSERT(a <= 32767);
SkASSERT(b <= 32767);
unsigned prod = SkMulS16(a, b) + 128;
return (prod + (prod >> 8)) >> 8;
}
/**
* Stores numer/denom and numer%denom into div and mod respectively.
*/
template <typename In, typename Out>
inline void SkTDivMod(In numer, In denom, Out* div, Out* mod) {
#ifdef SK_CPU_ARM32
// If we wrote this as in the else branch, GCC won't fuse the two into one
// divmod call, but rather a div call followed by a divmod. Silly! This
// version is just as fast as calling __aeabi_[u]idivmod manually, but with
// prettier code.
//
// This benches as around 2x faster than the code in the else branch.
const In d = numer/denom;
*div = static_cast<Out>(d);
*mod = static_cast<Out>(numer-d*denom);
#else
// On x86 this will just be a single idiv.
*div = static_cast<Out>(numer/denom);
*mod = static_cast<Out>(numer%denom);
#endif
}
#endif
|