This file is indexed.

/usr/lib/coffee-script/src/lexer.coffee is in coffeescript 1.9.3~dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
# The CoffeeScript Lexer. Uses a series of token-matching regexes to attempt
# matches against the beginning of the source code. When a match is found,
# a token is produced, we consume the match, and start again. Tokens are in the
# form:
#
#     [tag, value, locationData]
#
# where locationData is {first_line, first_column, last_line, last_column}, which is a
# format that can be fed directly into [Jison](http://github.com/zaach/jison).  These
# are read by jison in the `parser.lexer` function defined in coffee-script.coffee.

{Rewriter, INVERSES} = require './rewriter'

# Import the helpers we need.
{count, starts, compact, repeat, invertLiterate,
locationDataToString,  throwSyntaxError} = require './helpers'

# The Lexer Class
# ---------------

# The Lexer class reads a stream of CoffeeScript and divvies it up into tagged
# tokens. Some potential ambiguity in the grammar has been avoided by
# pushing some extra smarts into the Lexer.
exports.Lexer = class Lexer

  # **tokenize** is the Lexer's main method. Scan by attempting to match tokens
  # one at a time, using a regular expression anchored at the start of the
  # remaining code, or a custom recursive token-matching method
  # (for interpolations). When the next token has been recorded, we move forward
  # within the code past the token, and begin again.
  #
  # Each tokenizing method is responsible for returning the number of characters
  # it has consumed.
  #
  # Before returning the token stream, run it through the [Rewriter](rewriter.html).
  tokenize: (code, opts = {}) ->
    @literate   = opts.literate  # Are we lexing literate CoffeeScript?
    @indent     = 0              # The current indentation level.
    @baseIndent = 0              # The overall minimum indentation level
    @indebt     = 0              # The over-indentation at the current level.
    @outdebt    = 0              # The under-outdentation at the current level.
    @indents    = []             # The stack of all current indentation levels.
    @ends       = []             # The stack for pairing up tokens.
    @tokens     = []             # Stream of parsed tokens in the form `['TYPE', value, location data]`.

    @chunkLine =
      opts.line or 0         # The start line for the current @chunk.
    @chunkColumn =
      opts.column or 0       # The start column of the current @chunk.
    code = @clean code         # The stripped, cleaned original source code.

    # At every position, run through this list of attempted matches,
    # short-circuiting if any of them succeed. Their order determines precedence:
    # `@literalToken` is the fallback catch-all.
    i = 0
    while @chunk = code[i..]
      consumed = \
           @identifierToken() or
           @commentToken()    or
           @whitespaceToken() or
           @lineToken()       or
           @stringToken()     or
           @numberToken()     or
           @regexToken()      or
           @jsToken()         or
           @literalToken()

      # Update position
      [@chunkLine, @chunkColumn] = @getLineAndColumnFromChunk consumed

      i += consumed

      return {@tokens, index: i} if opts.untilBalanced and @ends.length is 0

    @closeIndentation()
    @error "missing #{end.tag}", end.origin[2] if end = @ends.pop()
    return @tokens if opts.rewrite is off
    (new Rewriter).rewrite @tokens

  # Preprocess the code to remove leading and trailing whitespace, carriage
  # returns, etc. If we're lexing literate CoffeeScript, strip external Markdown
  # by removing all lines that aren't indented by at least four spaces or a tab.
  clean: (code) ->
    code = code.slice(1) if code.charCodeAt(0) is BOM
    code = code.replace(/\r/g, '').replace TRAILING_SPACES, ''
    if WHITESPACE.test code
      code = "\n#{code}"
      @chunkLine--
    code = invertLiterate code if @literate
    code

  # Tokenizers
  # ----------

  # Matches identifying literals: variables, keywords, method names, etc.
  # Check to ensure that JavaScript reserved words aren't being used as
  # identifiers. Because CoffeeScript reserves a handful of keywords that are
  # allowed in JavaScript, we're careful not to tag them as keywords when
  # referenced as property names here, so you can still do `jQuery.is()` even
  # though `is` means `===` otherwise.
  identifierToken: ->
    return 0 unless match = IDENTIFIER.exec @chunk
    [input, id, colon] = match

    # Preserve length of id for location data
    idLength = id.length
    poppedToken = undefined

    if id is 'own' and @tag() is 'FOR'
      @token 'OWN', id
      return id.length
    if id is 'from' and @tag() is 'YIELD'
      @token 'FROM', id
      return id.length
    [..., prev] = @tokens
    forcedIdentifier = colon or prev? and
      (prev[0] in ['.', '?.', '::', '?::'] or
      not prev.spaced and prev[0] is '@')
    tag = 'IDENTIFIER'

    if not forcedIdentifier and (id in JS_KEYWORDS or id in COFFEE_KEYWORDS)
      tag = id.toUpperCase()
      if tag is 'WHEN' and @tag() in LINE_BREAK
        tag = 'LEADING_WHEN'
      else if tag is 'FOR'
        @seenFor = yes
      else if tag is 'UNLESS'
        tag = 'IF'
      else if tag in UNARY
        tag = 'UNARY'
      else if tag in RELATION
        if tag isnt 'INSTANCEOF' and @seenFor
          tag = 'FOR' + tag
          @seenFor = no
        else
          tag = 'RELATION'
          if @value() is '!'
            poppedToken = @tokens.pop()
            id = '!' + id

    if id in JS_FORBIDDEN
      if forcedIdentifier
        tag = 'IDENTIFIER'
        id  = new String id
        id.reserved = yes
      else if id in RESERVED
        @error "reserved word '#{id}'", length: id.length

    unless forcedIdentifier
      if id in COFFEE_ALIASES
        alias = id
        id = COFFEE_ALIAS_MAP[id]
      tag = switch id
        when '!'                 then 'UNARY'
        when '==', '!='          then 'COMPARE'
        when '&&', '||'          then 'LOGIC'
        when 'true', 'false'     then 'BOOL'
        when 'break', 'continue' then 'STATEMENT'
        else  tag

    tagToken = @token tag, id, 0, idLength
    tagToken.origin = [tag, alias, tagToken[2]] if alias
    tagToken.variable = not forcedIdentifier
    if poppedToken
      [tagToken[2].first_line, tagToken[2].first_column] =
        [poppedToken[2].first_line, poppedToken[2].first_column]
    if colon
      colonOffset = input.lastIndexOf ':'
      @token ':', ':', colonOffset, colon.length

    input.length

  # Matches numbers, including decimals, hex, and exponential notation.
  # Be careful not to interfere with ranges-in-progress.
  numberToken: ->
    return 0 unless match = NUMBER.exec @chunk
    number = match[0]
    lexedLength = number.length
    if /^0[BOX]/.test number
      @error "radix prefix in '#{number}' must be lowercase", offset: 1
    else if /E/.test(number) and not /^0x/.test number
      @error "exponential notation in '#{number}' must be indicated with a lowercase 'e'",
        offset: number.indexOf('E')
    else if /^0\d*[89]/.test number
      @error "decimal literal '#{number}' must not be prefixed with '0'", length: lexedLength
    else if /^0\d+/.test number
      @error "octal literal '#{number}' must be prefixed with '0o'", length: lexedLength
    if octalLiteral = /^0o([0-7]+)/.exec number
      number = '0x' + parseInt(octalLiteral[1], 8).toString 16
    if binaryLiteral = /^0b([01]+)/.exec number
      number = '0x' + parseInt(binaryLiteral[1], 2).toString 16
    @token 'NUMBER', number, 0, lexedLength
    lexedLength

  # Matches strings, including multi-line strings, as well as heredocs, with or without
  # interpolation.
  stringToken: ->
    [quote] = STRING_START.exec(@chunk) || []
    return 0 unless quote
    regex = switch quote
      when "'"   then STRING_SINGLE
      when '"'   then STRING_DOUBLE
      when "'''" then HEREDOC_SINGLE
      when '"""' then HEREDOC_DOUBLE
    heredoc = quote.length is 3

    {tokens, index: end} = @matchWithInterpolations regex, quote
    $ = tokens.length - 1

    delimiter = quote.charAt(0)
    if heredoc
      # Find the smallest indentation. It will be removed from all lines later.
      indent = null
      doc = (token[1] for token, i in tokens when token[0] is 'NEOSTRING').join '#{}'
      while match = HEREDOC_INDENT.exec doc
        attempt = match[1]
        indent = attempt if indent is null or 0 < attempt.length < indent.length
      indentRegex = /// ^#{indent} ///gm if indent
      @mergeInterpolationTokens tokens, {delimiter}, (value, i) =>
        value = @formatString value
        value = value.replace LEADING_BLANK_LINE,  '' if i is 0
        value = value.replace TRAILING_BLANK_LINE, '' if i is $
        value = value.replace indentRegex, '' if indentRegex
        value
    else
      @mergeInterpolationTokens tokens, {delimiter}, (value, i) =>
        value = @formatString value
        value = value.replace SIMPLE_STRING_OMIT, (match, offset) ->
          if (i is 0 and offset is 0) or
             (i is $ and offset + match.length is value.length)
            ''
          else
            ' '
        value

    end

  # Matches and consumes comments.
  commentToken: ->
    return 0 unless match = @chunk.match COMMENT
    [comment, here] = match
    if here
      if match = HERECOMMENT_ILLEGAL.exec comment
        @error "block comments cannot contain #{match[0]}",
          offset: match.index, length: match[0].length
      if here.indexOf('\n') >= 0
        here = here.replace /// \n #{repeat ' ', @indent} ///g, '\n'
      @token 'HERECOMMENT', here, 0, comment.length
    comment.length

  # Matches JavaScript interpolated directly into the source via backticks.
  jsToken: ->
    return 0 unless @chunk.charAt(0) is '`' and match = JSTOKEN.exec @chunk
    @token 'JS', (script = match[0])[1...-1], 0, script.length
    script.length

  # Matches regular expression literals, as well as multiline extended ones.
  # Lexing regular expressions is difficult to distinguish from division, so we
  # borrow some basic heuristics from JavaScript and Ruby.
  regexToken: ->
    switch
      when match = REGEX_ILLEGAL.exec @chunk
        @error "regular expressions cannot begin with #{match[2]}",
          offset: match.index + match[1].length
      when match = @matchWithInterpolations HEREGEX, '///'
        {tokens, index} = match
      when match = REGEX.exec @chunk
        [regex, body, closed] = match
        @validateEscapes body, isRegex: yes, offsetInChunk: 1
        index = regex.length
        [..., prev] = @tokens
        if prev
          if prev.spaced and prev[0] in CALLABLE
            return 0 if not closed or POSSIBLY_DIVISION.test regex
          else if prev[0] in NOT_REGEX
            return 0
        @error 'missing / (unclosed regex)' unless closed
      else
        return 0

    [flags] = REGEX_FLAGS.exec @chunk[index..]
    end = index + flags.length
    origin = @makeToken 'REGEX', null, 0, end
    switch
      when not VALID_FLAGS.test flags
        @error "invalid regular expression flags #{flags}", offset: index, length: flags.length
      when regex or tokens.length is 1
        body ?= @formatHeregex tokens[0][1]
        @token 'REGEX', "#{@makeDelimitedLiteral body, delimiter: '/'}#{flags}", 0, end, origin
      else
        @token 'REGEX_START', '(', 0, 0, origin
        @token 'IDENTIFIER', 'RegExp', 0, 0
        @token 'CALL_START', '(', 0, 0
        @mergeInterpolationTokens tokens, {delimiter: '"', double: yes}, @formatHeregex
        if flags
          @token ',', ',', index, 0
          @token 'STRING', '"' + flags + '"', index, flags.length
        @token ')', ')', end, 0
        @token 'REGEX_END', ')', end, 0

    end

  # Matches newlines, indents, and outdents, and determines which is which.
  # If we can detect that the current line is continued onto the the next line,
  # then the newline is suppressed:
  #
  #     elements
  #       .each( ... )
  #       .map( ... )
  #
  # Keeps track of the level of indentation, because a single outdent token
  # can close multiple indents, so we need to know how far in we happen to be.
  lineToken: ->
    return 0 unless match = MULTI_DENT.exec @chunk
    indent = match[0]
    @seenFor = no
    size = indent.length - 1 - indent.lastIndexOf '\n'
    noNewlines = @unfinished()
    if size - @indebt is @indent
      if noNewlines then @suppressNewlines() else @newlineToken 0
      return indent.length

    if size > @indent
      if noNewlines
        @indebt = size - @indent
        @suppressNewlines()
        return indent.length
      unless @tokens.length
        @baseIndent = @indent = size
        return indent.length
      diff = size - @indent + @outdebt
      @token 'INDENT', diff, indent.length - size, size
      @indents.push diff
      @ends.push {tag: 'OUTDENT'}
      @outdebt = @indebt = 0
      @indent = size
    else if size < @baseIndent
      @error 'missing indentation', offset: indent.length
    else
      @indebt = 0
      @outdentToken @indent - size, noNewlines, indent.length
    indent.length

  # Record an outdent token or multiple tokens, if we happen to be moving back
  # inwards past several recorded indents. Sets new @indent value.
  outdentToken: (moveOut, noNewlines, outdentLength) ->
    decreasedIndent = @indent - moveOut
    while moveOut > 0
      lastIndent = @indents[@indents.length - 1]
      if not lastIndent
        moveOut = 0
      else if lastIndent is @outdebt
        moveOut -= @outdebt
        @outdebt = 0
      else if lastIndent < @outdebt
        @outdebt -= lastIndent
        moveOut  -= lastIndent
      else
        dent = @indents.pop() + @outdebt
        if outdentLength and @chunk[outdentLength] in INDENTABLE_CLOSERS
          decreasedIndent -= dent - moveOut
          moveOut = dent
        @outdebt = 0
        # pair might call outdentToken, so preserve decreasedIndent
        @pair 'OUTDENT'
        @token 'OUTDENT', moveOut, 0, outdentLength
        moveOut -= dent
    @outdebt -= moveOut if dent
    @tokens.pop() while @value() is ';'

    @token 'TERMINATOR', '\n', outdentLength, 0 unless @tag() is 'TERMINATOR' or noNewlines
    @indent = decreasedIndent
    this

  # Matches and consumes non-meaningful whitespace. Tag the previous token
  # as being "spaced", because there are some cases where it makes a difference.
  whitespaceToken: ->
    return 0 unless (match = WHITESPACE.exec @chunk) or
                    (nline = @chunk.charAt(0) is '\n')
    [..., prev] = @tokens
    prev[if match then 'spaced' else 'newLine'] = true if prev
    if match then match[0].length else 0

  # Generate a newline token. Consecutive newlines get merged together.
  newlineToken: (offset) ->
    @tokens.pop() while @value() is ';'
    @token 'TERMINATOR', '\n', offset, 0 unless @tag() is 'TERMINATOR'
    this

  # Use a `\` at a line-ending to suppress the newline.
  # The slash is removed here once its job is done.
  suppressNewlines: ->
    @tokens.pop() if @value() is '\\'
    this

  # We treat all other single characters as a token. E.g.: `( ) , . !`
  # Multi-character operators are also literal tokens, so that Jison can assign
  # the proper order of operations. There are some symbols that we tag specially
  # here. `;` and newlines are both treated as a `TERMINATOR`, we distinguish
  # parentheses that indicate a method call from regular parentheses, and so on.
  literalToken: ->
    if match = OPERATOR.exec @chunk
      [value] = match
      @tagParameters() if CODE.test value
    else
      value = @chunk.charAt 0
    tag  = value
    [..., prev] = @tokens
    if value is '=' and prev
      if not prev[1].reserved and prev[1] in JS_FORBIDDEN
        prev = prev.origin if prev.origin
        @error "reserved word '#{prev[1]}' can't be assigned", prev[2]
      if prev[1] in ['||', '&&']
        prev[0] = 'COMPOUND_ASSIGN'
        prev[1] += '='
        return value.length
    if value is ';'
      @seenFor = no
      tag = 'TERMINATOR'
    else if value in MATH            then tag = 'MATH'
    else if value in COMPARE         then tag = 'COMPARE'
    else if value in COMPOUND_ASSIGN then tag = 'COMPOUND_ASSIGN'
    else if value in UNARY           then tag = 'UNARY'
    else if value in UNARY_MATH      then tag = 'UNARY_MATH'
    else if value in SHIFT           then tag = 'SHIFT'
    else if value in LOGIC or value is '?' and prev?.spaced then tag = 'LOGIC'
    else if prev and not prev.spaced
      if value is '(' and prev[0] in CALLABLE
        prev[0] = 'FUNC_EXIST' if prev[0] is '?'
        tag = 'CALL_START'
      else if value is '[' and prev[0] in INDEXABLE
        tag = 'INDEX_START'
        switch prev[0]
          when '?'  then prev[0] = 'INDEX_SOAK'
    token = @makeToken tag, value
    switch value
      when '(', '{', '[' then @ends.push {tag: INVERSES[value], origin: token}
      when ')', '}', ']' then @pair value
    @tokens.push token
    value.length

  # Token Manipulators
  # ------------------

  # A source of ambiguity in our grammar used to be parameter lists in function
  # definitions versus argument lists in function calls. Walk backwards, tagging
  # parameters specially in order to make things easier for the parser.
  tagParameters: ->
    return this if @tag() isnt ')'
    stack = []
    {tokens} = this
    i = tokens.length
    tokens[--i][0] = 'PARAM_END'
    while tok = tokens[--i]
      switch tok[0]
        when ')'
          stack.push tok
        when '(', 'CALL_START'
          if stack.length then stack.pop()
          else if tok[0] is '('
            tok[0] = 'PARAM_START'
            return this
          else return this
    this

  # Close up all remaining open blocks at the end of the file.
  closeIndentation: ->
    @outdentToken @indent

  # Match the contents of a delimited token and expand variables and expressions
  # inside it using Ruby-like notation for substitution of arbitrary
  # expressions.
  #
  #     "Hello #{name.capitalize()}."
  #
  # If it encounters an interpolation, this method will recursively create a new
  # Lexer and tokenize until the `{` of `#{` is balanced with a `}`.
  #
  #  - `regex` matches the contents of a token (but not `delimiter`, and not
  #    `#{` if interpolations are desired).
  #  - `delimiter` is the delimiter of the token. Examples are `'`, `"`, `'''`,
  #    `"""` and `///`.
  #
  # This method allows us to have strings within interpolations within strings,
  # ad infinitum.
  matchWithInterpolations: (regex, delimiter) ->
    tokens = []
    offsetInChunk = delimiter.length
    return null unless @chunk[...offsetInChunk] is delimiter
    str = @chunk[offsetInChunk..]
    loop
      [strPart] = regex.exec str

      @validateEscapes strPart, {isRegex: delimiter.charAt(0) is '/', offsetInChunk}

      # Push a fake 'NEOSTRING' token, which will get turned into a real string later.
      tokens.push @makeToken 'NEOSTRING', strPart, offsetInChunk

      str = str[strPart.length..]
      offsetInChunk += strPart.length

      break unless str[...2] is '#{'

      # The `1`s are to remove the `#` in `#{`.
      [line, column] = @getLineAndColumnFromChunk offsetInChunk + 1
      {tokens: nested, index} =
        new Lexer().tokenize str[1..], line: line, column: column, untilBalanced: on
      # Skip the trailing `}`.
      index += 1

      # Turn the leading and trailing `{` and `}` into parentheses. Unnecessary
      # parentheses will be removed later.
      [open, ..., close] = nested
      open[0]  = open[1]  = '('
      close[0] = close[1] = ')'
      close.origin = ['', 'end of interpolation', close[2]]

      # Remove leading 'TERMINATOR' (if any).
      nested.splice 1, 1 if nested[1]?[0] is 'TERMINATOR'

      # Push a fake 'TOKENS' token, which will get turned into real tokens later.
      tokens.push ['TOKENS', nested]

      str = str[index..]
      offsetInChunk += index

    unless str[...delimiter.length] is delimiter
      @error "missing #{delimiter}", length: delimiter.length

    [firstToken, ..., lastToken] = tokens
    firstToken[2].first_column -= delimiter.length
    lastToken[2].last_column += delimiter.length
    lastToken[2].last_column -= 1 if lastToken[1].length is 0

    {tokens, index: offsetInChunk + delimiter.length}

  # Merge the array `tokens` of the fake token types 'TOKENS' and 'NEOSTRING'
  # (as returned by `matchWithInterpolations`) into the token stream. The value
  # of 'NEOSTRING's are converted using `fn` and turned into strings using
  # `options` first.
  mergeInterpolationTokens: (tokens, options, fn) ->
    if tokens.length > 1
      lparen = @token 'STRING_START', '(', 0, 0

    firstIndex = @tokens.length
    for token, i in tokens
      [tag, value] = token
      switch tag
        when 'TOKENS'
          # Optimize out empty interpolations (an empty pair of parentheses).
          continue if value.length is 2
          # Push all the tokens in the fake 'TOKENS' token. These already have
          # sane location data.
          locationToken = value[0]
          tokensToPush = value
        when 'NEOSTRING'
          # Convert 'NEOSTRING' into 'STRING'.
          converted = fn token[1], i
          # Optimize out empty strings. We ensure that the tokens stream always
          # starts with a string token, though, to make sure that the result
          # really is a string.
          if converted.length is 0
            if i is 0
              firstEmptyStringIndex = @tokens.length
            else
              continue
          # However, there is one case where we can optimize away a starting
          # empty string.
          if i is 2 and firstEmptyStringIndex?
            @tokens.splice firstEmptyStringIndex, 2 # Remove empty string and the plus.
          token[0] = 'STRING'
          token[1] = @makeDelimitedLiteral converted, options
          locationToken = token
          tokensToPush = [token]
      if @tokens.length > firstIndex
        # Create a 0-length "+" token.
        plusToken = @token '+', '+'
        plusToken[2] =
          first_line:   locationToken[2].first_line
          first_column: locationToken[2].first_column
          last_line:    locationToken[2].first_line
          last_column:  locationToken[2].first_column
      @tokens.push tokensToPush...

    if lparen
      [..., lastToken] = tokens
      lparen.origin = ['STRING', null,
        first_line:   lparen[2].first_line
        first_column: lparen[2].first_column
        last_line:    lastToken[2].last_line
        last_column:  lastToken[2].last_column
      ]
      rparen = @token 'STRING_END', ')'
      rparen[2] =
        first_line:   lastToken[2].last_line
        first_column: lastToken[2].last_column
        last_line:    lastToken[2].last_line
        last_column:  lastToken[2].last_column

  # Pairs up a closing token, ensuring that all listed pairs of tokens are
  # correctly balanced throughout the course of the token stream.
  pair: (tag) ->
    [..., prev] = @ends
    unless tag is wanted = prev?.tag
      @error "unmatched #{tag}" unless 'OUTDENT' is wanted
      # Auto-close INDENT to support syntax like this:
      #
      #     el.click((event) ->
      #       el.hide())
      #
      [..., lastIndent] = @indents
      @outdentToken lastIndent, true
      return @pair tag
    @ends.pop()

  # Helpers
  # -------

  # Returns the line and column number from an offset into the current chunk.
  #
  # `offset` is a number of characters into @chunk.
  getLineAndColumnFromChunk: (offset) ->
    if offset is 0
      return [@chunkLine, @chunkColumn]

    if offset >= @chunk.length
      string = @chunk
    else
      string = @chunk[..offset-1]

    lineCount = count string, '\n'

    column = @chunkColumn
    if lineCount > 0
      [..., lastLine] = string.split '\n'
      column = lastLine.length
    else
      column += string.length

    [@chunkLine + lineCount, column]

  # Same as "token", exception this just returns the token without adding it
  # to the results.
  makeToken: (tag, value, offsetInChunk = 0, length = value.length) ->
    locationData = {}
    [locationData.first_line, locationData.first_column] =
      @getLineAndColumnFromChunk offsetInChunk

    # Use length - 1 for the final offset - we're supplying the last_line and the last_column,
    # so if last_column == first_column, then we're looking at a character of length 1.
    lastCharacter = Math.max 0, length - 1
    [locationData.last_line, locationData.last_column] =
      @getLineAndColumnFromChunk offsetInChunk + lastCharacter

    token = [tag, value, locationData]

    token

  # Add a token to the results.
  # `offset` is the offset into the current @chunk where the token starts.
  # `length` is the length of the token in the @chunk, after the offset.  If
  # not specified, the length of `value` will be used.
  #
  # Returns the new token.
  token: (tag, value, offsetInChunk, length, origin) ->
    token = @makeToken tag, value, offsetInChunk, length
    token.origin = origin if origin
    @tokens.push token
    token

  # Peek at the last tag in the token stream.
  tag: ->
    [..., token] = @tokens
    token?[0]

  # Peek at the last value in the token stream.
  value: ->
    [..., token] = @tokens
    token?[1]

  # Are we in the midst of an unfinished expression?
  unfinished: ->
    LINE_CONTINUER.test(@chunk) or
    @tag() in ['\\', '.', '?.', '?::', 'UNARY', 'MATH', 'UNARY_MATH', '+', '-', 'YIELD',
               '**', 'SHIFT', 'RELATION', 'COMPARE', 'LOGIC', 'THROW', 'EXTENDS']

  formatString: (str) ->
    str.replace STRING_OMIT, '$1'

  formatHeregex: (str) ->
    str.replace HEREGEX_OMIT, '$1$2'

  # Validates escapes in strings and regexes.
  validateEscapes: (str, options = {}) ->
    match = INVALID_ESCAPE.exec str
    return unless match
    [[], before, octal, hex, unicode] = match
    return if options.isRegex and octal and octal.charAt(0) isnt '0'
    message =
      if octal
        "octal escape sequences are not allowed"
      else
        "invalid escape sequence"
    invalidEscape = "\\#{octal or hex or unicode}"
    @error "#{message} #{invalidEscape}",
      offset: (options.offsetInChunk ? 0) + match.index + before.length
      length: invalidEscape.length

  # Constructs a string or regex by escaping certain characters.
  makeDelimitedLiteral: (body, options = {}) ->
    body = '(?:)' if body is '' and options.delimiter is '/'
    regex = ///
        (\\\\)                               # escaped backslash
      | (\\0(?=[1-7]))                       # nul character mistaken as octal escape
      | \\?(#{options.delimiter})            # (possibly escaped) delimiter
      | \\?(?: (\n)|(\r)|(\u2028)|(\u2029) ) # (possibly escaped) newlines
      | (\\.)                                # other escapes
    ///g
    body = body.replace regex, (match, backslash, nul, delimiter, lf, cr, ls, ps, other) -> switch
      # Ignore escaped backslashes.
      when backslash then (if options.double then backslash + backslash else backslash)
      when nul       then '\\x00'
      when delimiter then "\\#{delimiter}"
      when lf        then '\\n'
      when cr        then '\\r'
      when ls        then '\\u2028'
      when ps        then '\\u2029'
      when other     then (if options.double then "\\#{other}" else other)
    "#{options.delimiter}#{body}#{options.delimiter}"

  # Throws an error at either a given offset from the current chunk or at the
  # location of a token (`token[2]`).
  error: (message, options = {}) ->
    location =
      if 'first_line' of options
        options
      else
        [first_line, first_column] = @getLineAndColumnFromChunk options.offset ? 0
        {first_line, first_column, last_column: first_column + (options.length ? 1) - 1}
    throwSyntaxError message, location

# Constants
# ---------

# Keywords that CoffeeScript shares in common with JavaScript.
JS_KEYWORDS = [
  'true', 'false', 'null', 'this'
  'new', 'delete', 'typeof', 'in', 'instanceof'
  'return', 'throw', 'break', 'continue', 'debugger', 'yield'
  'if', 'else', 'switch', 'for', 'while', 'do', 'try', 'catch', 'finally'
  'class', 'extends', 'super'
]

# CoffeeScript-only keywords.
COFFEE_KEYWORDS = ['undefined', 'then', 'unless', 'until', 'loop', 'of', 'by', 'when']

COFFEE_ALIAS_MAP =
  and  : '&&'
  or   : '||'
  is   : '=='
  isnt : '!='
  not  : '!'
  yes  : 'true'
  no   : 'false'
  on   : 'true'
  off  : 'false'

COFFEE_ALIASES  = (key for key of COFFEE_ALIAS_MAP)
COFFEE_KEYWORDS = COFFEE_KEYWORDS.concat COFFEE_ALIASES

# The list of keywords that are reserved by JavaScript, but not used, or are
# used by CoffeeScript internally. We throw an error when these are encountered,
# to avoid having a JavaScript error at runtime.
RESERVED = [
  'case', 'default', 'function', 'var', 'void', 'with', 'const', 'let', 'enum'
  'export', 'import', 'native', 'implements', 'interface', 'package', 'private'
  'protected', 'public', 'static'
]

STRICT_PROSCRIBED = ['arguments', 'eval', 'yield*']

# The superset of both JavaScript keywords and reserved words, none of which may
# be used as identifiers or properties.
JS_FORBIDDEN = JS_KEYWORDS.concat(RESERVED).concat(STRICT_PROSCRIBED)

exports.RESERVED = RESERVED.concat(JS_KEYWORDS).concat(COFFEE_KEYWORDS).concat(STRICT_PROSCRIBED)
exports.STRICT_PROSCRIBED = STRICT_PROSCRIBED

# The character code of the nasty Microsoft madness otherwise known as the BOM.
BOM = 65279

# Token matching regexes.
IDENTIFIER = /// ^
  (?!\d)
  ( (?: (?!\s)[$\w\x7f-\uffff] )+ )
  ( [^\n\S]* : (?!:) )?  # Is this a property name?
///

NUMBER     = ///
  ^ 0b[01]+    |              # binary
  ^ 0o[0-7]+   |              # octal
  ^ 0x[\da-f]+ |              # hex
  ^ \d*\.?\d+ (?:e[+-]?\d+)?  # decimal
///i

OPERATOR   = /// ^ (
  ?: [-=]>             # function
   | [-+*/%<>&|^!?=]=  # compound assign / compare
   | >>>=?             # zero-fill right shift
   | ([-+:])\1         # doubles
   | ([&|<>*/%])\2=?   # logic / shift / power / floor division / modulo
   | \?(\.|::)         # soak access
   | \.{2,3}           # range or splat
) ///

WHITESPACE = /^[^\n\S]+/

COMMENT    = /^###([^#][\s\S]*?)(?:###[^\n\S]*|###$)|^(?:\s*#(?!##[^#]).*)+/

CODE       = /^[-=]>/

MULTI_DENT = /^(?:\n[^\n\S]*)+/

JSTOKEN    = /^`[^\\`]*(?:\\.[^\\`]*)*`/

# String-matching-regexes.
STRING_START   = /^(?:'''|"""|'|")/

STRING_SINGLE  = /// ^(?: [^\\']  | \\[\s\S]                      )* ///
STRING_DOUBLE  = /// ^(?: [^\\"#] | \\[\s\S] |           \#(?!\{) )* ///
HEREDOC_SINGLE = /// ^(?: [^\\']  | \\[\s\S] | '(?!'')            )* ///
HEREDOC_DOUBLE = /// ^(?: [^\\"#] | \\[\s\S] | "(?!"") | \#(?!\{) )* ///

STRING_OMIT    = ///
    ((?:\\\\)+)      # consume (and preserve) an even number of backslashes
  | \\[^\S\n]*\n\s*  # remove escaped newlines
///g
SIMPLE_STRING_OMIT = /\s*\n\s*/g
HEREDOC_INDENT     = /\n+([^\n\S]*)(?=\S)/g

# Regex-matching-regexes.
REGEX = /// ^
  / (?!/) ((
  ?: [^ [ / \n \\ ]  # every other thing
   | \\[^\n]         # anything but newlines escaped
   | \[              # character class
       (?: \\[^\n] | [^ \] \n \\ ] )*
     \]
  )*) (/)?
///

REGEX_FLAGS  = /^\w*/
VALID_FLAGS  = /^(?!.*(.).*\1)[imgy]*$/

HEREGEX      = /// ^(?: [^\\/#] | \\[\s\S] | /(?!//) | \#(?!\{) )* ///

HEREGEX_OMIT = ///
    ((?:\\\\)+)     # consume (and preserve) an even number of backslashes
  | \\(\s)          # preserve escaped whitespace
  | \s+(?:#.*)?     # remove whitespace and comments
///g

REGEX_ILLEGAL = /// ^ ( / | /{3}\s*) (\*) ///

POSSIBLY_DIVISION   = /// ^ /=?\s ///

# Other regexes.
HERECOMMENT_ILLEGAL = /\*\//

LINE_CONTINUER      = /// ^ \s* (?: , | \??\.(?![.\d]) | :: ) ///

INVALID_ESCAPE      = ///
  ( (?:^|[^\\]) (?:\\\\)* )        # make sure the escape isn’t escaped
  \\ (
     ?: (0[0-7]|[1-7])             # octal escape
      | (x(?![\da-fA-F]{2}).{0,2}) # hex escape
      | (u(?![\da-fA-F]{4}).{0,4}) # unicode escape
  )
///

LEADING_BLANK_LINE  = /^[^\n\S]*\n/
TRAILING_BLANK_LINE = /\n[^\n\S]*$/

TRAILING_SPACES     = /\s+$/

# Compound assignment tokens.
COMPOUND_ASSIGN = [
  '-=', '+=', '/=', '*=', '%=', '||=', '&&=', '?=', '<<=', '>>=', '>>>='
  '&=', '^=', '|=', '**=', '//=', '%%='
]

# Unary tokens.
UNARY = ['NEW', 'TYPEOF', 'DELETE', 'DO']

UNARY_MATH = ['!', '~']

# Logical tokens.
LOGIC = ['&&', '||', '&', '|', '^']

# Bit-shifting tokens.
SHIFT = ['<<', '>>', '>>>']

# Comparison tokens.
COMPARE = ['==', '!=', '<', '>', '<=', '>=']

# Mathematical tokens.
MATH = ['*', '/', '%', '//', '%%']

# Relational tokens that are negatable with `not` prefix.
RELATION = ['IN', 'OF', 'INSTANCEOF']

# Boolean tokens.
BOOL = ['TRUE', 'FALSE']

# Tokens which could legitimately be invoked or indexed. An opening
# parentheses or bracket following these tokens will be recorded as the start
# of a function invocation or indexing operation.
CALLABLE  = ['IDENTIFIER', ')', ']', '?', '@', 'THIS', 'SUPER']
INDEXABLE = CALLABLE.concat [
  'NUMBER', 'STRING', 'STRING_END', 'REGEX', 'REGEX_END'
  'BOOL', 'NULL', 'UNDEFINED', '}', '::'
]

# Tokens which a regular expression will never immediately follow (except spaced
# CALLABLEs in some cases), but which a division operator can.
#
# See: http://www-archive.mozilla.org/js/language/js20-2002-04/rationale/syntax.html#regular-expressions
NOT_REGEX = INDEXABLE.concat ['++', '--']

# Tokens that, when immediately preceding a `WHEN`, indicate that the `WHEN`
# occurs at the start of a line. We disambiguate these from trailing whens to
# avoid an ambiguity in the grammar.
LINE_BREAK = ['INDENT', 'OUTDENT', 'TERMINATOR']

# Additional indent in front of these is ignored.
INDENTABLE_CLOSERS = [')', '}', ']']