This file is indexed.

/usr/share/gocode/src/github.com/ugorji/go/codec/helper.go is in golang-github-ugorji-go-codec-dev 0.0~git20151130.0.357a44b-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.

package codec

// Contains code shared by both encode and decode.

// Some shared ideas around encoding/decoding
// ------------------------------------------
//
// If an interface{} is passed, we first do a type assertion to see if it is
// a primitive type or a map/slice of primitive types, and use a fastpath to handle it.
//
// If we start with a reflect.Value, we are already in reflect.Value land and
// will try to grab the function for the underlying Type and directly call that function.
// This is more performant than calling reflect.Value.Interface().
//
// This still helps us bypass many layers of reflection, and give best performance.
//
// Containers
// ------------
// Containers in the stream are either associative arrays (key-value pairs) or
// regular arrays (indexed by incrementing integers).
//
// Some streams support indefinite-length containers, and use a breaking
// byte-sequence to denote that the container has come to an end.
//
// Some streams also are text-based, and use explicit separators to denote the
// end/beginning of different values.
//
// During encode, we use a high-level condition to determine how to iterate through
// the container. That decision is based on whether the container is text-based (with
// separators) or binary (without separators). If binary, we do not even call the
// encoding of separators.
//
// During decode, we use a different high-level condition to determine how to iterate
// through the containers. That decision is based on whether the stream contained
// a length prefix, or if it used explicit breaks. If length-prefixed, we assume that
// it has to be binary, and we do not even try to read separators.
//
// The only codec that may suffer (slightly) is cbor, and only when decoding indefinite-length.
// It may suffer because we treat it like a text-based codec, and read separators.
// However, this read is a no-op and the cost is insignificant.
//
// Philosophy
// ------------
// On decode, this codec will update containers appropriately:
//    - If struct, update fields from stream into fields of struct.
//      If field in stream not found in struct, handle appropriately (based on option).
//      If a struct field has no corresponding value in the stream, leave it AS IS.
//      If nil in stream, set value to nil/zero value.
//    - If map, update map from stream.
//      If the stream value is NIL, set the map to nil.
//    - if slice, try to update up to length of array in stream.
//      if container len is less than stream array length,
//      and container cannot be expanded, handled (based on option).
//      This means you can decode 4-element stream array into 1-element array.
//
// ------------------------------------
// On encode, user can specify omitEmpty. This means that the value will be omitted
// if the zero value. The problem may occur during decode, where omitted values do not affect
// the value being decoded into. This means that if decoding into a struct with an
// int field with current value=5, and the field is omitted in the stream, then after
// decoding, the value will still be 5 (not 0).
// omitEmpty only works if you guarantee that you always decode into zero-values.
//
// ------------------------------------
// We could have truncated a map to remove keys not available in the stream,
// or set values in the struct which are not in the stream to their zero values.
// We decided against it because there is no efficient way to do it.
// We may introduce it as an option later.
// However, that will require enabling it for both runtime and code generation modes.
//
// To support truncate, we need to do 2 passes over the container:
//   map
//   - first collect all keys (e.g. in k1)
//   - for each key in stream, mark k1 that the key should not be removed
//   - after updating map, do second pass and call delete for all keys in k1 which are not marked
//   struct:
//   - for each field, track the *typeInfo s1
//   - iterate through all s1, and for each one not marked, set value to zero
//   - this involves checking the possible anonymous fields which are nil ptrs.
//     too much work.
//
// ------------------------------------------
// Error Handling is done within the library using panic.
//
// This way, the code doesn't have to keep checking if an error has happened,
// and we don't have to keep sending the error value along with each call
// or storing it in the En|Decoder and checking it constantly along the way.
//
// The disadvantage is that small functions which use panics cannot be inlined.
// The code accounts for that by only using panics behind an interface;
// since interface calls cannot be inlined, this is irrelevant.
//
// We considered storing the error is En|Decoder.
//   - once it has its err field set, it cannot be used again.
//   - panicing will be optional, controlled by const flag.
//   - code should always check error first and return early.
// We eventually decided against it as it makes the code clumsier to always
// check for these error conditions.

import (
	"bytes"
	"encoding"
	"encoding/binary"
	"errors"
	"fmt"
	"math"
	"reflect"
	"sort"
	"strings"
	"sync"
	"time"
)

const (
	scratchByteArrayLen = 32
	initCollectionCap   = 32 // 32 is defensive. 16 is preferred.

	// Support encoding.(Binary|Text)(Unm|M)arshaler.
	// This constant flag will enable or disable it.
	supportMarshalInterfaces = true

	// Each Encoder or Decoder uses a cache of functions based on conditionals,
	// so that the conditionals are not run every time.
	//
	// Either a map or a slice is used to keep track of the functions.
	// The map is more natural, but has a higher cost than a slice/array.
	// This flag (useMapForCodecCache) controls which is used.
	//
	// From benchmarks, slices with linear search perform better with < 32 entries.
	// We have typically seen a high threshold of about 24 entries.
	useMapForCodecCache = false

	// for debugging, set this to false, to catch panic traces.
	// Note that this will always cause rpc tests to fail, since they need io.EOF sent via panic.
	recoverPanicToErr = true

	// Fast path functions try to create a fast path encode or decode implementation
	// for common maps and slices, by by-passing reflection altogether.
	fastpathEnabled = true

	// if checkStructForEmptyValue, check structs fields to see if an empty value.
	// This could be an expensive call, so possibly disable it.
	checkStructForEmptyValue = false

	// if derefForIsEmptyValue, deref pointers and interfaces when checking isEmptyValue
	derefForIsEmptyValue = false

	// if resetSliceElemToZeroValue, then on decoding a slice, reset the element to a zero value first.
	// Only concern is that, if the slice already contained some garbage, we will decode into that garbage.
	// The chances of this are slim, so leave this "optimization".
	// TODO: should this be true, to ensure that we always decode into a "zero" "empty" value?
	resetSliceElemToZeroValue bool = false
)

var (
	oneByteArr    = [1]byte{0}
	zeroByteSlice = oneByteArr[:0:0]
)

type charEncoding uint8

const (
	c_RAW charEncoding = iota
	c_UTF8
	c_UTF16LE
	c_UTF16BE
	c_UTF32LE
	c_UTF32BE
)

// valueType is the stream type
type valueType uint8

const (
	valueTypeUnset valueType = iota
	valueTypeNil
	valueTypeInt
	valueTypeUint
	valueTypeFloat
	valueTypeBool
	valueTypeString
	valueTypeSymbol
	valueTypeBytes
	valueTypeMap
	valueTypeArray
	valueTypeTimestamp
	valueTypeExt

	// valueTypeInvalid = 0xff
)

type seqType uint8

const (
	_ seqType = iota
	seqTypeArray
	seqTypeSlice
	seqTypeChan
)

// note that containerMapStart and containerArraySend are not sent.
// This is because the ReadXXXStart and EncodeXXXStart already does these.
type containerState uint8

const (
	_ containerState = iota

	containerMapStart // slot left open, since Driver method already covers it
	containerMapKey
	containerMapValue
	containerMapEnd
	containerArrayStart // slot left open, since Driver methods already cover it
	containerArrayElem
	containerArrayEnd
)

type rgetPoolT struct {
	encNames [8]string
	fNames   [8]string
	etypes   [8]uintptr
	sfis     [8]*structFieldInfo
}

var rgetPool = sync.Pool{
	New: func() interface{} { return new(rgetPoolT) },
}

type rgetT struct {
	fNames   []string
	encNames []string
	etypes   []uintptr
	sfis     []*structFieldInfo
}

type containerStateRecv interface {
	sendContainerState(containerState)
}

// mirror json.Marshaler and json.Unmarshaler here,
// so we don't import the encoding/json package
type jsonMarshaler interface {
	MarshalJSON() ([]byte, error)
}
type jsonUnmarshaler interface {
	UnmarshalJSON([]byte) error
}

var (
	bigen               = binary.BigEndian
	structInfoFieldName = "_struct"

	mapStrIntfTyp  = reflect.TypeOf(map[string]interface{}(nil))
	mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil))
	intfSliceTyp   = reflect.TypeOf([]interface{}(nil))
	intfTyp        = intfSliceTyp.Elem()

	stringTyp     = reflect.TypeOf("")
	timeTyp       = reflect.TypeOf(time.Time{})
	rawExtTyp     = reflect.TypeOf(RawExt{})
	uint8SliceTyp = reflect.TypeOf([]uint8(nil))

	mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem()

	binaryMarshalerTyp   = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
	binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem()

	textMarshalerTyp   = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
	textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()

	jsonMarshalerTyp   = reflect.TypeOf((*jsonMarshaler)(nil)).Elem()
	jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem()

	selferTyp = reflect.TypeOf((*Selfer)(nil)).Elem()

	uint8SliceTypId = reflect.ValueOf(uint8SliceTyp).Pointer()
	rawExtTypId     = reflect.ValueOf(rawExtTyp).Pointer()
	intfTypId       = reflect.ValueOf(intfTyp).Pointer()
	timeTypId       = reflect.ValueOf(timeTyp).Pointer()
	stringTypId     = reflect.ValueOf(stringTyp).Pointer()

	mapStrIntfTypId  = reflect.ValueOf(mapStrIntfTyp).Pointer()
	mapIntfIntfTypId = reflect.ValueOf(mapIntfIntfTyp).Pointer()
	intfSliceTypId   = reflect.ValueOf(intfSliceTyp).Pointer()
	// mapBySliceTypId  = reflect.ValueOf(mapBySliceTyp).Pointer()

	intBitsize  uint8 = uint8(reflect.TypeOf(int(0)).Bits())
	uintBitsize uint8 = uint8(reflect.TypeOf(uint(0)).Bits())

	bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0}
	bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}

	chkOvf checkOverflow

	noFieldNameToStructFieldInfoErr = errors.New("no field name passed to parseStructFieldInfo")
)

var defTypeInfos = NewTypeInfos([]string{"codec", "json"})

// Selfer defines methods by which a value can encode or decode itself.
//
// Any type which implements Selfer will be able to encode or decode itself.
// Consequently, during (en|de)code, this takes precedence over
// (text|binary)(M|Unm)arshal or extension support.
type Selfer interface {
	CodecEncodeSelf(*Encoder)
	CodecDecodeSelf(*Decoder)
}

// MapBySlice represents a slice which should be encoded as a map in the stream.
// The slice contains a sequence of key-value pairs.
// This affords storing a map in a specific sequence in the stream.
//
// The support of MapBySlice affords the following:
//   - A slice type which implements MapBySlice will be encoded as a map
//   - A slice can be decoded from a map in the stream
type MapBySlice interface {
	MapBySlice()
}

// WARNING: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED.
//
// BasicHandle encapsulates the common options and extension functions.
type BasicHandle struct {
	// TypeInfos is used to get the type info for any type.
	//
	// If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json
	TypeInfos *TypeInfos

	extHandle
	EncodeOptions
	DecodeOptions
}

func (x *BasicHandle) getBasicHandle() *BasicHandle {
	return x
}

func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
	if x.TypeInfos != nil {
		return x.TypeInfos.get(rtid, rt)
	}
	return defTypeInfos.get(rtid, rt)
}

// Handle is the interface for a specific encoding format.
//
// Typically, a Handle is pre-configured before first time use,
// and not modified while in use. Such a pre-configured Handle
// is safe for concurrent access.
type Handle interface {
	getBasicHandle() *BasicHandle
	newEncDriver(w *Encoder) encDriver
	newDecDriver(r *Decoder) decDriver
	isBinary() bool
}

// RawExt represents raw unprocessed extension data.
// Some codecs will decode extension data as a *RawExt if there is no registered extension for the tag.
//
// Only one of Data or Value is nil. If Data is nil, then the content of the RawExt is in the Value.
type RawExt struct {
	Tag uint64
	// Data is the []byte which represents the raw ext. If Data is nil, ext is exposed in Value.
	// Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types
	Data []byte
	// Value represents the extension, if Data is nil.
	// Value is used by codecs (e.g. cbor) which use the format to do custom serialization of the types.
	Value interface{}
}

// BytesExt handles custom (de)serialization of types to/from []byte.
// It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types.
type BytesExt interface {
	// WriteExt converts a value to a []byte.
	//
	// Note: v *may* be a pointer to the extension type, if the extension type was a struct or array.
	WriteExt(v interface{}) []byte

	// ReadExt updates a value from a []byte.
	ReadExt(dst interface{}, src []byte)
}

// InterfaceExt handles custom (de)serialization of types to/from another interface{} value.
// The Encoder or Decoder will then handle the further (de)serialization of that known type.
//
// It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of the types.
type InterfaceExt interface {
	// ConvertExt converts a value into a simpler interface for easy encoding e.g. convert time.Time to int64.
	//
	// Note: v *may* be a pointer to the extension type, if the extension type was a struct or array.
	ConvertExt(v interface{}) interface{}

	// UpdateExt updates a value from a simpler interface for easy decoding e.g. convert int64 to time.Time.
	UpdateExt(dst interface{}, src interface{})
}

// Ext handles custom (de)serialization of custom types / extensions.
type Ext interface {
	BytesExt
	InterfaceExt
}

// addExtWrapper is a wrapper implementation to support former AddExt exported method.
type addExtWrapper struct {
	encFn func(reflect.Value) ([]byte, error)
	decFn func(reflect.Value, []byte) error
}

func (x addExtWrapper) WriteExt(v interface{}) []byte {
	bs, err := x.encFn(reflect.ValueOf(v))
	if err != nil {
		panic(err)
	}
	return bs
}

func (x addExtWrapper) ReadExt(v interface{}, bs []byte) {
	if err := x.decFn(reflect.ValueOf(v), bs); err != nil {
		panic(err)
	}
}

func (x addExtWrapper) ConvertExt(v interface{}) interface{} {
	return x.WriteExt(v)
}

func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) {
	x.ReadExt(dest, v.([]byte))
}

type setExtWrapper struct {
	b BytesExt
	i InterfaceExt
}

func (x *setExtWrapper) WriteExt(v interface{}) []byte {
	if x.b == nil {
		panic("BytesExt.WriteExt is not supported")
	}
	return x.b.WriteExt(v)
}

func (x *setExtWrapper) ReadExt(v interface{}, bs []byte) {
	if x.b == nil {
		panic("BytesExt.WriteExt is not supported")

	}
	x.b.ReadExt(v, bs)
}

func (x *setExtWrapper) ConvertExt(v interface{}) interface{} {
	if x.i == nil {
		panic("InterfaceExt.ConvertExt is not supported")

	}
	return x.i.ConvertExt(v)
}

func (x *setExtWrapper) UpdateExt(dest interface{}, v interface{}) {
	if x.i == nil {
		panic("InterfaceExxt.UpdateExt is not supported")

	}
	x.i.UpdateExt(dest, v)
}

// type errorString string
// func (x errorString) Error() string { return string(x) }

type binaryEncodingType struct{}

func (_ binaryEncodingType) isBinary() bool { return true }

type textEncodingType struct{}

func (_ textEncodingType) isBinary() bool { return false }

// noBuiltInTypes is embedded into many types which do not support builtins
// e.g. msgpack, simple, cbor.
type noBuiltInTypes struct{}

func (_ noBuiltInTypes) IsBuiltinType(rt uintptr) bool           { return false }
func (_ noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {}
func (_ noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {}

type noStreamingCodec struct{}

func (_ noStreamingCodec) CheckBreak() bool { return false }

// bigenHelper.
// Users must already slice the x completely, because we will not reslice.
type bigenHelper struct {
	x []byte // must be correctly sliced to appropriate len. slicing is a cost.
	w encWriter
}

func (z bigenHelper) writeUint16(v uint16) {
	bigen.PutUint16(z.x, v)
	z.w.writeb(z.x)
}

func (z bigenHelper) writeUint32(v uint32) {
	bigen.PutUint32(z.x, v)
	z.w.writeb(z.x)
}

func (z bigenHelper) writeUint64(v uint64) {
	bigen.PutUint64(z.x, v)
	z.w.writeb(z.x)
}

type extTypeTagFn struct {
	rtid uintptr
	rt   reflect.Type
	tag  uint64
	ext  Ext
}

type extHandle []extTypeTagFn

// DEPRECATED: Use SetBytesExt or SetInterfaceExt on the Handle instead.
//
// AddExt registes an encode and decode function for a reflect.Type.
// AddExt internally calls SetExt.
// To deregister an Ext, call AddExt with nil encfn and/or nil decfn.
func (o *extHandle) AddExt(
	rt reflect.Type, tag byte,
	encfn func(reflect.Value) ([]byte, error), decfn func(reflect.Value, []byte) error,
) (err error) {
	if encfn == nil || decfn == nil {
		return o.SetExt(rt, uint64(tag), nil)
	}
	return o.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn})
}

// DEPRECATED: Use SetBytesExt or SetInterfaceExt on the Handle instead.
//
// Note that the type must be a named type, and specifically not
// a pointer or Interface. An error is returned if that is not honored.
//
// To Deregister an ext, call SetExt with nil Ext
func (o *extHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
	// o is a pointer, because we may need to initialize it
	if rt.PkgPath() == "" || rt.Kind() == reflect.Interface {
		err = fmt.Errorf("codec.Handle.AddExt: Takes named type, especially not a pointer or interface: %T",
			reflect.Zero(rt).Interface())
		return
	}

	rtid := reflect.ValueOf(rt).Pointer()
	for _, v := range *o {
		if v.rtid == rtid {
			v.tag, v.ext = tag, ext
			return
		}
	}

	if *o == nil {
		*o = make([]extTypeTagFn, 0, 4)
	}
	*o = append(*o, extTypeTagFn{rtid, rt, tag, ext})
	return
}

func (o extHandle) getExt(rtid uintptr) *extTypeTagFn {
	var v *extTypeTagFn
	for i := range o {
		v = &o[i]
		if v.rtid == rtid {
			return v
		}
	}
	return nil
}

func (o extHandle) getExtForTag(tag uint64) *extTypeTagFn {
	var v *extTypeTagFn
	for i := range o {
		v = &o[i]
		if v.tag == tag {
			return v
		}
	}
	return nil
}

type structFieldInfo struct {
	encName string // encode name

	// only one of 'i' or 'is' can be set. If 'i' is -1, then 'is' has been set.

	is        []int // (recursive/embedded) field index in struct
	i         int16 // field index in struct
	omitEmpty bool
	toArray   bool // if field is _struct, is the toArray set?
}

// func (si *structFieldInfo) isZero() bool {
// 	return si.encName == "" && len(si.is) == 0 && si.i == 0 && !si.omitEmpty && !si.toArray
// }

// rv returns the field of the struct.
// If anonymous, it returns an Invalid
func (si *structFieldInfo) field(v reflect.Value, update bool) (rv2 reflect.Value) {
	if si.i != -1 {
		v = v.Field(int(si.i))
		return v
	}
	// replicate FieldByIndex
	for _, x := range si.is {
		for v.Kind() == reflect.Ptr {
			if v.IsNil() {
				if !update {
					return
				}
				v.Set(reflect.New(v.Type().Elem()))
			}
			v = v.Elem()
		}
		v = v.Field(x)
	}
	return v
}

func (si *structFieldInfo) setToZeroValue(v reflect.Value) {
	if si.i != -1 {
		v = v.Field(int(si.i))
		v.Set(reflect.Zero(v.Type()))
		// v.Set(reflect.New(v.Type()).Elem())
		// v.Set(reflect.New(v.Type()))
	} else {
		// replicate FieldByIndex
		for _, x := range si.is {
			for v.Kind() == reflect.Ptr {
				if v.IsNil() {
					return
				}
				v = v.Elem()
			}
			v = v.Field(x)
		}
		v.Set(reflect.Zero(v.Type()))
	}
}

func parseStructFieldInfo(fname string, stag string) *structFieldInfo {
	// if fname == "" {
	// 	panic(noFieldNameToStructFieldInfoErr)
	// }
	si := structFieldInfo{
		encName: fname,
	}

	if stag != "" {
		for i, s := range strings.Split(stag, ",") {
			if i == 0 {
				if s != "" {
					si.encName = s
				}
			} else {
				if s == "omitempty" {
					si.omitEmpty = true
				} else if s == "toarray" {
					si.toArray = true
				}
			}
		}
	}
	// si.encNameBs = []byte(si.encName)
	return &si
}

type sfiSortedByEncName []*structFieldInfo

func (p sfiSortedByEncName) Len() int {
	return len(p)
}

func (p sfiSortedByEncName) Less(i, j int) bool {
	return p[i].encName < p[j].encName
}

func (p sfiSortedByEncName) Swap(i, j int) {
	p[i], p[j] = p[j], p[i]
}

// typeInfo keeps information about each type referenced in the encode/decode sequence.
//
// During an encode/decode sequence, we work as below:
//   - If base is a built in type, en/decode base value
//   - If base is registered as an extension, en/decode base value
//   - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method
//   - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method
//   - Else decode appropriately based on the reflect.Kind
type typeInfo struct {
	sfi  []*structFieldInfo // sorted. Used when enc/dec struct to map.
	sfip []*structFieldInfo // unsorted. Used when enc/dec struct to array.

	rt   reflect.Type
	rtid uintptr

	numMeth uint16 // number of methods

	// baseId gives pointer to the base reflect.Type, after deferencing
	// the pointers. E.g. base type of ***time.Time is time.Time.
	base      reflect.Type
	baseId    uintptr
	baseIndir int8 // number of indirections to get to base

	mbs bool // base type (T or *T) is a MapBySlice

	bm        bool // base type (T or *T) is a binaryMarshaler
	bunm      bool // base type (T or *T) is a binaryUnmarshaler
	bmIndir   int8 // number of indirections to get to binaryMarshaler type
	bunmIndir int8 // number of indirections to get to binaryUnmarshaler type

	tm        bool // base type (T or *T) is a textMarshaler
	tunm      bool // base type (T or *T) is a textUnmarshaler
	tmIndir   int8 // number of indirections to get to textMarshaler type
	tunmIndir int8 // number of indirections to get to textUnmarshaler type

	jm        bool // base type (T or *T) is a jsonMarshaler
	junm      bool // base type (T or *T) is a jsonUnmarshaler
	jmIndir   int8 // number of indirections to get to jsonMarshaler type
	junmIndir int8 // number of indirections to get to jsonUnmarshaler type

	cs      bool // base type (T or *T) is a Selfer
	csIndir int8 // number of indirections to get to Selfer type

	toArray bool // whether this (struct) type should be encoded as an array
}

func (ti *typeInfo) indexForEncName(name string) int {
	//tisfi := ti.sfi
	const binarySearchThreshold = 16
	if sfilen := len(ti.sfi); sfilen < binarySearchThreshold {
		// linear search. faster than binary search in my testing up to 16-field structs.
		for i, si := range ti.sfi {
			if si.encName == name {
				return i
			}
		}
	} else {
		// binary search. adapted from sort/search.go.
		h, i, j := 0, 0, sfilen
		for i < j {
			h = i + (j-i)/2
			if ti.sfi[h].encName < name {
				i = h + 1
			} else {
				j = h
			}
		}
		if i < sfilen && ti.sfi[i].encName == name {
			return i
		}
	}
	return -1
}

// TypeInfos caches typeInfo for each type on first inspection.
//
// It is configured with a set of tag keys, which are used to get
// configuration for the type.
type TypeInfos struct {
	infos map[uintptr]*typeInfo
	mu    sync.RWMutex
	tags  []string
}

// NewTypeInfos creates a TypeInfos given a set of struct tags keys.
//
// This allows users customize the struct tag keys which contain configuration
// of their types.
func NewTypeInfos(tags []string) *TypeInfos {
	return &TypeInfos{tags: tags, infos: make(map[uintptr]*typeInfo, 64)}
}

func (x *TypeInfos) structTag(t reflect.StructTag) (s string) {
	// check for tags: codec, json, in that order.
	// this allows seamless support for many configured structs.
	for _, x := range x.tags {
		s = t.Get(x)
		if s != "" {
			return s
		}
	}
	return
}

func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
	var ok bool
	x.mu.RLock()
	pti, ok = x.infos[rtid]
	x.mu.RUnlock()
	if ok {
		return
	}

	// do not hold lock while computing this.
	// it may lead to duplication, but that's ok.
	ti := typeInfo{rt: rt, rtid: rtid}
	ti.numMeth = uint16(rt.NumMethod())

	var indir int8
	if ok, indir = implementsIntf(rt, binaryMarshalerTyp); ok {
		ti.bm, ti.bmIndir = true, indir
	}
	if ok, indir = implementsIntf(rt, binaryUnmarshalerTyp); ok {
		ti.bunm, ti.bunmIndir = true, indir
	}
	if ok, indir = implementsIntf(rt, textMarshalerTyp); ok {
		ti.tm, ti.tmIndir = true, indir
	}
	if ok, indir = implementsIntf(rt, textUnmarshalerTyp); ok {
		ti.tunm, ti.tunmIndir = true, indir
	}
	if ok, indir = implementsIntf(rt, jsonMarshalerTyp); ok {
		ti.jm, ti.jmIndir = true, indir
	}
	if ok, indir = implementsIntf(rt, jsonUnmarshalerTyp); ok {
		ti.junm, ti.junmIndir = true, indir
	}
	if ok, indir = implementsIntf(rt, selferTyp); ok {
		ti.cs, ti.csIndir = true, indir
	}
	if ok, _ = implementsIntf(rt, mapBySliceTyp); ok {
		ti.mbs = true
	}

	pt := rt
	var ptIndir int8
	// for ; pt.Kind() == reflect.Ptr; pt, ptIndir = pt.Elem(), ptIndir+1 { }
	for pt.Kind() == reflect.Ptr {
		pt = pt.Elem()
		ptIndir++
	}
	if ptIndir == 0 {
		ti.base = rt
		ti.baseId = rtid
	} else {
		ti.base = pt
		ti.baseId = reflect.ValueOf(pt).Pointer()
		ti.baseIndir = ptIndir
	}

	if rt.Kind() == reflect.Struct {
		var siInfo *structFieldInfo
		if f, ok := rt.FieldByName(structInfoFieldName); ok {
			siInfo = parseStructFieldInfo(structInfoFieldName, x.structTag(f.Tag))
			ti.toArray = siInfo.toArray
		}
		pi := rgetPool.Get()
		pv := pi.(*rgetPoolT)
		pv.etypes[0] = ti.baseId
		vv := rgetT{pv.fNames[:0], pv.encNames[:0], pv.etypes[:1], pv.sfis[:0]}
		x.rget(rt, rtid, nil, &vv, siInfo)
		ti.sfip = make([]*structFieldInfo, len(vv.sfis))
		ti.sfi = make([]*structFieldInfo, len(vv.sfis))
		copy(ti.sfip, vv.sfis)
		sort.Sort(sfiSortedByEncName(vv.sfis))
		copy(ti.sfi, vv.sfis)
		rgetPool.Put(pi)
	}
	// sfi = sfip

	x.mu.Lock()
	if pti, ok = x.infos[rtid]; !ok {
		pti = &ti
		x.infos[rtid] = pti
	}
	x.mu.Unlock()
	return
}

func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr,
	indexstack []int, pv *rgetT, siInfo *structFieldInfo,
) {
	// This will read up the fields and store how to access the value.
	// It uses the go language's rules for embedding, as below:
	//   - if a field has been seen while traversing, skip it
	//   - if an encName has been seen while traversing, skip it
	//   - if an embedded type has been seen, skip it
	//
	// Also, per Go's rules, embedded fields must be analyzed AFTER all top-level fields.
	//
	// Note: we consciously use slices, not a map, to simulate a set.
	//       Typically, types have < 16 fields, and iteration using equals is faster than maps there

	type anonField struct {
		ft  reflect.Type
		idx int
	}

	var anonFields []anonField

LOOP:
	for j, jlen := 0, rt.NumField(); j < jlen; j++ {
		f := rt.Field(j)
		fkind := f.Type.Kind()
		// skip if a func type, or is unexported, or structTag value == "-"
		switch fkind {
		case reflect.Func, reflect.Complex64, reflect.Complex128, reflect.UnsafePointer:
			continue LOOP
		}

		// if r1, _ := utf8.DecodeRuneInString(f.Name); r1 == utf8.RuneError || !unicode.IsUpper(r1) {
		if f.PkgPath != "" && !f.Anonymous { // unexported, not embedded
			continue
		}
		stag := x.structTag(f.Tag)
		if stag == "-" {
			continue
		}
		var si *structFieldInfo
		// if anonymous and no struct tag (or it's blank), and a struct (or pointer to struct), inline it.
		if f.Anonymous && fkind != reflect.Interface {
			doInline := stag == ""
			if !doInline {
				si = parseStructFieldInfo("", stag)
				doInline = si.encName == ""
				// doInline = si.isZero()
			}
			if doInline {
				ft := f.Type
				for ft.Kind() == reflect.Ptr {
					ft = ft.Elem()
				}
				if ft.Kind() == reflect.Struct {
					// handle anonymous fields after handling all the non-anon fields
					anonFields = append(anonFields, anonField{ft, j})
					continue
				}
			}
		}

		// after the anonymous dance: if an unexported field, skip
		if f.PkgPath != "" { // unexported
			continue
		}

		if f.Name == "" {
			panic(noFieldNameToStructFieldInfoErr)
		}

		for _, k := range pv.fNames {
			if k == f.Name {
				continue LOOP
			}
		}
		pv.fNames = append(pv.fNames, f.Name)

		if si == nil {
			si = parseStructFieldInfo(f.Name, stag)
		} else if si.encName == "" {
			si.encName = f.Name
		}

		for _, k := range pv.encNames {
			if k == si.encName {
				continue LOOP
			}
		}
		pv.encNames = append(pv.encNames, si.encName)

		// si.ikind = int(f.Type.Kind())
		if len(indexstack) == 0 {
			si.i = int16(j)
		} else {
			si.i = -1
			si.is = make([]int, len(indexstack)+1)
			copy(si.is, indexstack)
			si.is[len(indexstack)] = j
			// si.is = append(append(make([]int, 0, len(indexstack)+4), indexstack...), j)
		}

		if siInfo != nil {
			if siInfo.omitEmpty {
				si.omitEmpty = true
			}
		}
		pv.sfis = append(pv.sfis, si)
	}

	// now handle anonymous fields
LOOP2:
	for _, af := range anonFields {
		// if etypes contains this, then do not call rget again (as the fields are already seen here)
		ftid := reflect.ValueOf(af.ft).Pointer()
		for _, k := range pv.etypes {
			if k == ftid {
				continue LOOP2
			}
		}
		pv.etypes = append(pv.etypes, ftid)

		indexstack2 := make([]int, len(indexstack)+1)
		copy(indexstack2, indexstack)
		indexstack2[len(indexstack)] = af.idx
		// indexstack2 := append(append(make([]int, 0, len(indexstack)+4), indexstack...), j)
		x.rget(af.ft, ftid, indexstack2, pv, siInfo)
	}
}

func panicToErr(err *error) {
	if recoverPanicToErr {
		if x := recover(); x != nil {
			//debug.PrintStack()
			panicValToErr(x, err)
		}
	}
}

// func doPanic(tag string, format string, params ...interface{}) {
// 	params2 := make([]interface{}, len(params)+1)
// 	params2[0] = tag
// 	copy(params2[1:], params)
// 	panic(fmt.Errorf("%s: "+format, params2...))
// }

func isImmutableKind(k reflect.Kind) (v bool) {
	return false ||
		k == reflect.Int ||
		k == reflect.Int8 ||
		k == reflect.Int16 ||
		k == reflect.Int32 ||
		k == reflect.Int64 ||
		k == reflect.Uint ||
		k == reflect.Uint8 ||
		k == reflect.Uint16 ||
		k == reflect.Uint32 ||
		k == reflect.Uint64 ||
		k == reflect.Uintptr ||
		k == reflect.Float32 ||
		k == reflect.Float64 ||
		k == reflect.Bool ||
		k == reflect.String
}

// these functions must be inlinable, and not call anybody
type checkOverflow struct{}

func (_ checkOverflow) Float32(f float64) (overflow bool) {
	if f < 0 {
		f = -f
	}
	return math.MaxFloat32 < f && f <= math.MaxFloat64
}

func (_ checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) {
	if bitsize == 0 || bitsize >= 64 || v == 0 {
		return
	}
	if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
		overflow = true
	}
	return
}

func (_ checkOverflow) Int(v int64, bitsize uint8) (overflow bool) {
	if bitsize == 0 || bitsize >= 64 || v == 0 {
		return
	}
	if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
		overflow = true
	}
	return
}

func (_ checkOverflow) SignedInt(v uint64) (i int64, overflow bool) {
	//e.g. -127 to 128 for int8
	pos := (v >> 63) == 0
	ui2 := v & 0x7fffffffffffffff
	if pos {
		if ui2 > math.MaxInt64 {
			overflow = true
			return
		}
	} else {
		if ui2 > math.MaxInt64-1 {
			overflow = true
			return
		}
	}
	i = int64(v)
	return
}

// ------------------ SORT -----------------

func isNaN(f float64) bool { return f != f }

// -----------------------

type intSlice []int64
type uintSlice []uint64
type floatSlice []float64
type boolSlice []bool
type stringSlice []string
type bytesSlice [][]byte

func (p intSlice) Len() int           { return len(p) }
func (p intSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p intSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p uintSlice) Len() int           { return len(p) }
func (p uintSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p uintSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p floatSlice) Len() int { return len(p) }
func (p floatSlice) Less(i, j int) bool {
	return p[i] < p[j] || isNaN(p[i]) && !isNaN(p[j])
}
func (p floatSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }

func (p stringSlice) Len() int           { return len(p) }
func (p stringSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p stringSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p bytesSlice) Len() int           { return len(p) }
func (p bytesSlice) Less(i, j int) bool { return bytes.Compare(p[i], p[j]) == -1 }
func (p bytesSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p boolSlice) Len() int           { return len(p) }
func (p boolSlice) Less(i, j int) bool { return !p[i] && p[j] }
func (p boolSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

// ---------------------

type intRv struct {
	v int64
	r reflect.Value
}
type intRvSlice []intRv
type uintRv struct {
	v uint64
	r reflect.Value
}
type uintRvSlice []uintRv
type floatRv struct {
	v float64
	r reflect.Value
}
type floatRvSlice []floatRv
type boolRv struct {
	v bool
	r reflect.Value
}
type boolRvSlice []boolRv
type stringRv struct {
	v string
	r reflect.Value
}
type stringRvSlice []stringRv
type bytesRv struct {
	v []byte
	r reflect.Value
}
type bytesRvSlice []bytesRv

func (p intRvSlice) Len() int           { return len(p) }
func (p intRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
func (p intRvSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p uintRvSlice) Len() int           { return len(p) }
func (p uintRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
func (p uintRvSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p floatRvSlice) Len() int { return len(p) }
func (p floatRvSlice) Less(i, j int) bool {
	return p[i].v < p[j].v || isNaN(p[i].v) && !isNaN(p[j].v)
}
func (p floatRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }

func (p stringRvSlice) Len() int           { return len(p) }
func (p stringRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
func (p stringRvSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p bytesRvSlice) Len() int           { return len(p) }
func (p bytesRvSlice) Less(i, j int) bool { return bytes.Compare(p[i].v, p[j].v) == -1 }
func (p bytesRvSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

func (p boolRvSlice) Len() int           { return len(p) }
func (p boolRvSlice) Less(i, j int) bool { return !p[i].v && p[j].v }
func (p boolRvSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

// -----------------

type bytesI struct {
	v []byte
	i interface{}
}

type bytesISlice []bytesI

func (p bytesISlice) Len() int           { return len(p) }
func (p bytesISlice) Less(i, j int) bool { return bytes.Compare(p[i].v, p[j].v) == -1 }
func (p bytesISlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

// -----------------

type set []uintptr

func (s *set) add(v uintptr) (exists bool) {
	// e.ci is always nil, or len >= 1
	// defer func() { fmt.Printf("$$$$$$$$$$$ cirRef Add: %v, exists: %v\n", v, exists) }()
	x := *s
	if x == nil {
		x = make([]uintptr, 1, 8)
		x[0] = v
		*s = x
		return
	}
	// typically, length will be 1. make this perform.
	if len(x) == 1 {
		if j := x[0]; j == 0 {
			x[0] = v
		} else if j == v {
			exists = true
		} else {
			x = append(x, v)
			*s = x
		}
		return
	}
	// check if it exists
	for _, j := range x {
		if j == v {
			exists = true
			return
		}
	}
	// try to replace a "deleted" slot
	for i, j := range x {
		if j == 0 {
			x[i] = v
			return
		}
	}
	// if unable to replace deleted slot, just append it.
	x = append(x, v)
	*s = x
	return
}

func (s *set) remove(v uintptr) (exists bool) {
	// defer func() { fmt.Printf("$$$$$$$$$$$ cirRef Rm: %v, exists: %v\n", v, exists) }()
	x := *s
	if len(x) == 0 {
		return
	}
	if len(x) == 1 {
		if x[0] == v {
			x[0] = 0
		}
		return
	}
	for i, j := range x {
		if j == v {
			exists = true
			x[i] = 0 // set it to 0, as way to delete it.
			// copy(x[i:], x[i+1:])
			// x = x[:len(x)-1]
			return
		}
	}
	return
}