This file is indexed.

/usr/share/doc/libghc-contravariant-doc/html/contravariant.txt is in libghc-contravariant-doc 1.3.3-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/


-- | Contravariant functors
--   
--   Contravariant functors
@package contravariant
@version 1.3.3


-- | <a>Contravariant</a> functors, sometimes referred to colloquially as
--   <tt>Cofunctor</tt>, even though the dual of a <a>Functor</a> is just a
--   <a>Functor</a>. As with <a>Functor</a> the definition of
--   <a>Contravariant</a> for a given ADT is unambiguous.
module Data.Functor.Contravariant

-- | Any instance should be subject to the following laws:
--   
--   <pre>
--   contramap id = id
--   contramap f . contramap g = contramap (g . f)
--   </pre>
--   
--   Note, that the second law follows from the free theorem of the type of
--   <a>contramap</a> and the first law, so you need only check that the
--   former condition holds.
class Contravariant f where (>$) = contramap . const
contramap :: Contravariant f => (a -> b) -> f b -> f a

-- | Replace all locations in the output with the same value. The default
--   definition is <tt><a>contramap</a> . <a>const</a></tt>, but this may
--   be overridden with a more efficient version.
(>$) :: Contravariant f => b -> f b -> f a

-- | If <tt>f</tt> is both <a>Functor</a> and <a>Contravariant</a> then by
--   the time you factor in the laws of each of those classes, it can't
--   actually use it's argument in any meaningful capacity.
--   
--   This method is surprisingly useful. Where both instances exist and are
--   lawful we have the following laws:
--   
--   <pre>
--   <a>fmap</a> f ≡ <a>phantom</a>
--   <a>contramap</a> f ≡ <a>phantom</a>
--   </pre>
phantom :: (Functor f, Contravariant f) => f a -> f b

-- | This is an infix alias for <a>contramap</a>
(>$<) :: Contravariant f => (a -> b) -> f b -> f a

-- | This is an infix version of <a>contramap</a> with the arguments
--   flipped.
(>$$<) :: Contravariant f => f b -> (a -> b) -> f a

-- | This is <a>&gt;$</a> with its arguments flipped.
($<) :: Contravariant f => f b -> b -> f a
newtype Predicate a
Predicate :: (a -> Bool) -> Predicate a
[getPredicate] :: Predicate a -> a -> Bool

-- | Defines a total ordering on a type as per <a>compare</a>
--   
--   This condition is not checked by the types. You must ensure that the
--   supplied values are valid total orderings yourself.
newtype Comparison a
Comparison :: (a -> a -> Ordering) -> Comparison a
[getComparison] :: Comparison a -> a -> a -> Ordering

-- | Compare using <a>compare</a>
defaultComparison :: Ord a => Comparison a

-- | This data type represents an equivalence relation.
--   
--   Equivalence relations are expected to satisfy three laws:
--   
--   <b>Reflexivity</b>:
--   
--   <pre>
--   <a>getEquivalence</a> f a a = True
--   </pre>
--   
--   <b>Symmetry</b>:
--   
--   <pre>
--   <a>getEquivalence</a> f a b = <a>getEquivalence</a> f b a
--   </pre>
--   
--   <b>Transitivity</b>:
--   
--   If <tt><a>getEquivalence</a> f a b</tt> and <tt><a>getEquivalence</a>
--   f b c</tt> are both <a>True</a> then so is <tt><a>getEquivalence</a> f
--   a c</tt>
--   
--   The types alone do not enforce these laws, so you'll have to check
--   them yourself.
newtype Equivalence a
Equivalence :: (a -> a -> Bool) -> Equivalence a
[getEquivalence] :: Equivalence a -> a -> a -> Bool

-- | Check for equivalence with <a>==</a>
--   
--   Note: The instances for <a>Double</a> and <a>Float</a> violate
--   reflexivity for <tt>NaN</tt>.
defaultEquivalence :: Eq a => Equivalence a
comparisonEquivalence :: Comparison a -> Equivalence a

-- | Dual function arrows.
newtype Op a b
Op :: (b -> a) -> Op a b
[getOp] :: Op a b -> b -> a
instance Data.Functor.Contravariant.Contravariant f => Data.Functor.Contravariant.Contravariant (Data.Monoid.Alt f)
instance Data.Functor.Contravariant.Contravariant GHC.Generics.V1
instance Data.Functor.Contravariant.Contravariant GHC.Generics.U1
instance Data.Functor.Contravariant.Contravariant f => Data.Functor.Contravariant.Contravariant (GHC.Generics.Rec1 f)
instance Data.Functor.Contravariant.Contravariant f => Data.Functor.Contravariant.Contravariant (GHC.Generics.M1 i c f)
instance Data.Functor.Contravariant.Contravariant (GHC.Generics.K1 i c)
instance (Data.Functor.Contravariant.Contravariant f, Data.Functor.Contravariant.Contravariant g) => Data.Functor.Contravariant.Contravariant (f GHC.Generics.:*: g)
instance (GHC.Base.Functor f, Data.Functor.Contravariant.Contravariant g) => Data.Functor.Contravariant.Contravariant (f GHC.Generics.:.: g)
instance (Data.Functor.Contravariant.Contravariant f, Data.Functor.Contravariant.Contravariant g) => Data.Functor.Contravariant.Contravariant (f GHC.Generics.:+: g)
instance Data.Functor.Contravariant.Contravariant m => Data.Functor.Contravariant.Contravariant (Control.Monad.Trans.Error.ErrorT e m)
instance Data.Functor.Contravariant.Contravariant m => Data.Functor.Contravariant.Contravariant (Control.Monad.Trans.Except.ExceptT e m)
instance Data.Functor.Contravariant.Contravariant f => Data.Functor.Contravariant.Contravariant (Control.Monad.Trans.Identity.IdentityT f)
instance Data.Functor.Contravariant.Contravariant m => Data.Functor.Contravariant.Contravariant (Control.Monad.Trans.List.ListT m)
instance Data.Functor.Contravariant.Contravariant m => Data.Functor.Contravariant.Contravariant (Control.Monad.Trans.Maybe.MaybeT m)
instance Data.Functor.Contravariant.Contravariant m => Data.Functor.Contravariant.Contravariant (Control.Monad.Trans.RWS.Lazy.RWST r w s m)
instance Data.Functor.Contravariant.Contravariant m => Data.Functor.Contravariant.Contravariant (Control.Monad.Trans.RWS.Strict.RWST r w s m)
instance Data.Functor.Contravariant.Contravariant m => Data.Functor.Contravariant.Contravariant (Control.Monad.Trans.Reader.ReaderT r m)
instance Data.Functor.Contravariant.Contravariant m => Data.Functor.Contravariant.Contravariant (Control.Monad.Trans.State.Lazy.StateT s m)
instance Data.Functor.Contravariant.Contravariant m => Data.Functor.Contravariant.Contravariant (Control.Monad.Trans.State.Strict.StateT s m)
instance Data.Functor.Contravariant.Contravariant m => Data.Functor.Contravariant.Contravariant (Control.Monad.Trans.Writer.Lazy.WriterT w m)
instance Data.Functor.Contravariant.Contravariant m => Data.Functor.Contravariant.Contravariant (Control.Monad.Trans.Writer.Strict.WriterT w m)
instance (Data.Functor.Contravariant.Contravariant f, Data.Functor.Contravariant.Contravariant g) => Data.Functor.Contravariant.Contravariant (Data.Functor.Sum.Sum f g)
instance (Data.Functor.Contravariant.Contravariant f, Data.Functor.Contravariant.Contravariant g) => Data.Functor.Contravariant.Contravariant (Data.Functor.Product.Product f g)
instance Data.Functor.Contravariant.Contravariant (Data.Functor.Constant.Constant a)
instance Data.Functor.Contravariant.Contravariant (Control.Applicative.Const a)
instance (GHC.Base.Functor f, Data.Functor.Contravariant.Contravariant g) => Data.Functor.Contravariant.Contravariant (Data.Functor.Compose.Compose f g)
instance Data.Functor.Contravariant.Contravariant f => Data.Functor.Contravariant.Contravariant (Control.Applicative.Backwards.Backwards f)
instance Data.Functor.Contravariant.Contravariant f => Data.Functor.Contravariant.Contravariant (Data.Functor.Reverse.Reverse f)
instance Data.Functor.Contravariant.Contravariant Data.StateVar.SettableStateVar
instance Data.Functor.Contravariant.Contravariant Data.Proxy.Proxy
instance Data.Functor.Contravariant.Contravariant Data.Functor.Contravariant.Predicate
instance Data.Functor.Contravariant.Contravariant Data.Functor.Contravariant.Comparison
instance Data.Semigroup.Semigroup (Data.Functor.Contravariant.Comparison a)
instance GHC.Base.Monoid (Data.Functor.Contravariant.Comparison a)
instance Data.Functor.Contravariant.Contravariant Data.Functor.Contravariant.Equivalence
instance Data.Semigroup.Semigroup (Data.Functor.Contravariant.Equivalence a)
instance GHC.Base.Monoid (Data.Functor.Contravariant.Equivalence a)
instance Control.Category.Category Data.Functor.Contravariant.Op
instance Data.Functor.Contravariant.Contravariant (Data.Functor.Contravariant.Op a)
instance Data.Semigroup.Semigroup a => Data.Semigroup.Semigroup (Data.Functor.Contravariant.Op a b)
instance GHC.Base.Monoid a => GHC.Base.Monoid (Data.Functor.Contravariant.Op a b)
instance GHC.Num.Num a => GHC.Num.Num (Data.Functor.Contravariant.Op a b)
instance GHC.Real.Fractional a => GHC.Real.Fractional (Data.Functor.Contravariant.Op a b)
instance GHC.Float.Floating a => GHC.Float.Floating (Data.Functor.Contravariant.Op a b)


-- | This module supplies contravariant analogues to the <a>Applicative</a>
--   and <a>Alternative</a> classes.
module Data.Functor.Contravariant.Divisible

-- | A <a>Divisible</a> contravariant functor is the contravariant analogue
--   of <a>Applicative</a>.
--   
--   In denser jargon, a <a>Divisible</a> contravariant functor is a monoid
--   object in the category of presheaves from Hask to Hask, equipped with
--   Day convolution mapping the Cartesian product of the source to the
--   Cartesian product of the target.
--   
--   By way of contrast, an <a>Applicative</a> functor can be viewed as a
--   monoid object in the category of copresheaves from Hask to Hask,
--   equipped with Day convolution mapping the Cartesian product of the
--   source to the Cartesian product of the target.
--   
--   Given the canonical diagonal morphism:
--   
--   <pre>
--   delta a = (a,a)
--   </pre>
--   
--   <tt><a>divide</a> <tt>delta</tt></tt> should be associative with
--   <a>conquer</a> as a unit
--   
--   <pre>
--   <a>divide</a> <tt>delta</tt> m <a>conquer</a> = m
--   <a>divide</a> <tt>delta</tt> <a>conquer</a> m = m
--   <a>divide</a> <tt>delta</tt> (<a>divide</a> <tt>delta</tt> m n) o = <a>divide</a> <tt>delta</tt> m (<a>divide</a> <tt>delta</tt> n o)
--   </pre>
--   
--   With more general arguments you'll need to reassociate and project
--   using the monoidal structure of the source category. (Here fst and snd
--   are used in lieu of the more restricted lambda and rho, but this
--   construction works with just a monoidal category.)
--   
--   <pre>
--   <a>divide</a> f m <a>conquer</a> = <a>contramap</a> (<a>fst</a> . f) m
--   <a>divide</a> f <a>conquer</a> m = <a>contramap</a> (<a>snd</a> . f) m
--   <a>divide</a> f (<a>divide</a> g m n) o = <a>divide</a> f' m (<a>divide</a> <a>id</a> n o) where
--     f' a = case f a of (bc,d) -&gt; case g bc of (b,c) -&gt; (a,(b,c))
--   </pre>
class Contravariant f => Divisible f
divide :: Divisible f => (a -> (b, c)) -> f b -> f c -> f a

-- | The underlying theory would suggest that this should be:
--   
--   <pre>
--   conquer :: (a -&gt; ()) -&gt; f a
--   </pre>
--   
--   However, as we are working over a Cartesian category (Hask) and the
--   Cartesian product, such an input morphism is uniquely determined to be
--   <tt><a>const</a> <a>mempty</a></tt>, so we elide it.
conquer :: Divisible f => f a

-- | <pre>
--   <a>divided</a> = <a>divide</a> <a>id</a>
--   </pre>
divided :: Divisible f => f a -> f b -> f (a, b)

-- | Redundant, but provided for symmetry.
--   
--   <pre>
--   <a>conquered</a> = 'conquer
--   </pre>
conquered :: Divisible f => f ()

-- | This is the divisible analogue of <a>liftA</a>. It gives a viable
--   default definition for <a>contramap</a> in terms of the members of
--   <a>Divisible</a>.
--   
--   <pre>
--   <a>liftD</a> f = <a>divide</a> ((,) () . f) <a>conquer</a>
--   </pre>
liftD :: Divisible f => (a -> b) -> f b -> f a

-- | A <a>Divisible</a> contravariant functor is a monoid object in the
--   category of presheaves from Hask to Hask, equipped with Day
--   convolution mapping the cartesian product of the source to the
--   Cartesian product of the target.
--   
--   <pre>
--   <a>choose</a> <a>Left</a> m (<a>lose</a> f)  = m
--   <a>choose</a> <a>Right</a> (<a>lose</a> f) m = m
--   <a>choose</a> f (<a>choose</a> g m n) o = <a>divide</a> f' m (<a>divide</a> <a>id</a> n o) where
--     f' bcd = <a>either</a> (<a>either</a> <a>id</a> (<a>Right</a> . <a>Left</a>) . g) (<a>Right</a> . <a>Right</a>) . f
--   </pre>
--   
--   In addition, we expect the same kind of distributive law as is
--   satisfied by the usual covariant <a>Alternative</a>, w.r.t
--   <a>Applicative</a>, which should be fully formulated and added here at
--   some point!
class Divisible f => Decidable f

-- | The only way to win is not to play.
lose :: Decidable f => (a -> Void) -> f a
choose :: Decidable f => (a -> Either b c) -> f b -> f c -> f a

-- | <pre>
--   <a>chosen</a> = <a>choose</a> <a>id</a>
--   </pre>
chosen :: Decidable f => f b -> f c -> f (Either b c)

-- | <pre>
--   <a>lost</a> = <a>lose</a> <a>id</a>
--   </pre>
lost :: Decidable f => f Void
instance GHC.Base.Monoid r => Data.Functor.Contravariant.Divisible.Divisible (Data.Functor.Contravariant.Op r)
instance Data.Functor.Contravariant.Divisible.Divisible Data.Functor.Contravariant.Comparison
instance Data.Functor.Contravariant.Divisible.Divisible Data.Functor.Contravariant.Equivalence
instance Data.Functor.Contravariant.Divisible.Divisible Data.Functor.Contravariant.Predicate
instance GHC.Base.Monoid m => Data.Functor.Contravariant.Divisible.Divisible (Control.Applicative.Const m)
instance Data.Functor.Contravariant.Divisible.Decidable Data.Functor.Contravariant.Comparison
instance Data.Functor.Contravariant.Divisible.Decidable Data.Functor.Contravariant.Equivalence
instance Data.Functor.Contravariant.Divisible.Decidable Data.Functor.Contravariant.Predicate
instance GHC.Base.Monoid r => Data.Functor.Contravariant.Divisible.Decidable (Data.Functor.Contravariant.Op r)


-- | Composition of contravariant functors.
module Data.Functor.Contravariant.Compose

-- | Composition of two contravariant functors
newtype Compose f g a
Compose :: f (g a) -> Compose f g a
[getCompose] :: Compose f g a -> f (g a)

-- | Composition of covariant and contravariant functors
newtype ComposeFC f g a
ComposeFC :: f (g a) -> ComposeFC f g a
[getComposeFC] :: ComposeFC f g a -> f (g a)

-- | Composition of contravariant and covariant functors
newtype ComposeCF f g a
ComposeCF :: f (g a) -> ComposeCF f g a
[getComposeCF] :: ComposeCF f g a -> f (g a)
instance (Data.Functor.Contravariant.Contravariant f, Data.Functor.Contravariant.Contravariant g) => GHC.Base.Functor (Data.Functor.Contravariant.Compose.Compose f g)
instance (GHC.Base.Functor f, Data.Functor.Contravariant.Contravariant g) => Data.Functor.Contravariant.Contravariant (Data.Functor.Contravariant.Compose.ComposeFC f g)
instance (GHC.Base.Functor f, GHC.Base.Functor g) => GHC.Base.Functor (Data.Functor.Contravariant.Compose.ComposeFC f g)
instance (GHC.Base.Applicative f, Data.Functor.Contravariant.Divisible.Divisible g) => Data.Functor.Contravariant.Divisible.Divisible (Data.Functor.Contravariant.Compose.ComposeFC f g)
instance (GHC.Base.Applicative f, Data.Functor.Contravariant.Divisible.Decidable g) => Data.Functor.Contravariant.Divisible.Decidable (Data.Functor.Contravariant.Compose.ComposeFC f g)
instance (Data.Functor.Contravariant.Contravariant f, GHC.Base.Functor g) => Data.Functor.Contravariant.Contravariant (Data.Functor.Contravariant.Compose.ComposeCF f g)
instance (GHC.Base.Functor f, GHC.Base.Functor g) => GHC.Base.Functor (Data.Functor.Contravariant.Compose.ComposeCF f g)
instance (Data.Functor.Contravariant.Divisible.Divisible f, GHC.Base.Applicative g) => Data.Functor.Contravariant.Divisible.Divisible (Data.Functor.Contravariant.Compose.ComposeCF f g)


module Data.Functor.Contravariant.Generic

-- | This provides machinery for deconstructing an arbitrary <a>Generic</a>
--   instance using a <a>Decidable</a> <a>Contravariant</a> functor.
--   
--   <i>Examples:</i>
--   
--   <pre>
--   gcompare :: <a>Deciding</a> <a>Ord</a> a =&gt; a -&gt; a -&gt; <a>Ordering</a>
--   gcompare = <a>getComparison</a> $ <a>deciding</a> (Proxy :: Proxy <a>Ord</a>) (<a>Comparison</a> <a>compare</a>)
--   </pre>
--   
--   <pre>
--   geq :: <a>Deciding</a> <a>Eq</a> a =&gt; a -&gt; a -&gt; <a>Bool</a>
--   geq = <a>getEquivalence</a> $ <a>deciding</a> (Proxy :: Proxy <a>Eq</a>) (<a>Equivalence</a> (<a>==</a>))
--   </pre>
class (Generic a, GDeciding q (Rep a)) => Deciding q a
deciding :: (Deciding q a, Decidable f) => p q -> (forall b. q b => f b) -> f a

-- | This provides machinery for deconstructing an arbitrary
--   <a>Generic1</a> instance using a <a>Decidable</a> <a>Contravariant</a>
--   functor.
--   
--   <i>Examples:</i>
--   
--   <pre>
--   gcompare1 :: <a>Deciding1</a> <a>Ord</a> f =&gt; (a -&gt; a -&gt; <a>Ordering</a>) -&gt; f a -&gt; f a -&gt; <a>Ordering</a>
--   gcompare1 f = <a>getComparison</a> $ <a>deciding1</a> (Proxy :: Proxy <a>Ord</a>) (<a>Comparison</a> compare) (<a>Comparison</a> f)
--   </pre>
--   
--   <pre>
--   geq1 :: <a>Deciding1</a> <a>Eq</a> f =&gt; (a -&gt; a -&gt; <a>Bool</a>) -&gt; f a -&gt; f a -&gt; <a>Bool</a>
--   geq1 f = <a>getEquivalence</a> $ <a>deciding1</a> (Proxy :: Proxy <a>Eq</a>) (<a>Equivalence</a> (<a>==</a>)) (<a>Equivalence</a> f)
--   </pre>
class (Generic1 t, GDeciding1 q (Rep1 t)) => Deciding1 q t
deciding1 :: (Deciding1 q t, Decidable f) => p q -> (forall b. q b => f b) -> f a -> f (t a)
instance (GHC.Generics.Generic a, Data.Functor.Contravariant.Generic.GDeciding q (GHC.Generics.Rep a)) => Data.Functor.Contravariant.Generic.Deciding q a
instance (GHC.Generics.Generic1 t, Data.Functor.Contravariant.Generic.GDeciding1 q (GHC.Generics.Rep1 t)) => Data.Functor.Contravariant.Generic.Deciding1 q t
instance Data.Functor.Contravariant.Generic.GDeciding q GHC.Generics.U1
instance Data.Functor.Contravariant.Generic.GDeciding q GHC.Generics.V1
instance (Data.Functor.Contravariant.Generic.GDeciding q f, Data.Functor.Contravariant.Generic.GDeciding q g) => Data.Functor.Contravariant.Generic.GDeciding q (f GHC.Generics.:*: g)
instance (Data.Functor.Contravariant.Generic.GDeciding q f, Data.Functor.Contravariant.Generic.GDeciding q g) => Data.Functor.Contravariant.Generic.GDeciding q (f GHC.Generics.:+: g)
instance q p => Data.Functor.Contravariant.Generic.GDeciding q (GHC.Generics.K1 i p)
instance Data.Functor.Contravariant.Generic.GDeciding q f => Data.Functor.Contravariant.Generic.GDeciding q (GHC.Generics.M1 i c f)
instance Data.Functor.Contravariant.Generic.GDeciding1 q GHC.Generics.U1
instance Data.Functor.Contravariant.Generic.GDeciding1 q GHC.Generics.V1
instance (Data.Functor.Contravariant.Generic.GDeciding1 q f, Data.Functor.Contravariant.Generic.GDeciding1 q g) => Data.Functor.Contravariant.Generic.GDeciding1 q (f GHC.Generics.:*: g)
instance (Data.Functor.Contravariant.Generic.GDeciding1 q f, Data.Functor.Contravariant.Generic.GDeciding1 q g) => Data.Functor.Contravariant.Generic.GDeciding1 q (f GHC.Generics.:+: g)
instance q p => Data.Functor.Contravariant.Generic.GDeciding1 q (GHC.Generics.K1 i p)
instance Data.Functor.Contravariant.Generic.GDeciding1 q f => Data.Functor.Contravariant.Generic.GDeciding1 q (GHC.Generics.M1 i c f)
instance Data.Functor.Contravariant.Generic.GDeciding1 q GHC.Generics.Par1
instance Data.Functor.Contravariant.Generic.Deciding1 q f => Data.Functor.Contravariant.Generic.GDeciding1 q (GHC.Generics.Rec1 f)