/usr/share/psi/python/qcdb/libmintsgshell.py is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 | """Class to
"""
import math
#MAX_IOFF = 30000
#extern size_t ioff[MAX_IOFF];
#
#MAX_DF = 500
#extern double df[MAX_DF];
#
#MAX_BC = 20
#extern double bc[MAX_BC][MAX_BC];
#
#MAX_FAC = 100
#extern double fac[MAX_FAC];
#
#
#MAX_DF = 500
#extern double df[MAX_DF];
#
## Globals
#size_t ioff[MAX_IOFF];
#double df[MAX_DF];
#double bc[MAX_BC][MAX_BC];
#double fac[MAX_FAC];
#
#def Wavefunction_initialize_singletons():
# done = False
#
# if done:
# return
#
# ioff[0] = 0;
# for (size_t i=1; i<MAX_IOFF; ++i)
# ioff[i] = ioff[i-1] + i;
#
# df[0] = 1.0;
# df[1] = 1.0;
# df[2] = 1.0;
# for (int i=3; i<MAX_DF; ++i)
# df[i] = (i-1)*df[i-2];
#
# for (int i=0; i<MAX_BC; ++i)
# for (int j=0; j<=i; ++j)
# bc[i][j] = combinations(i, j);
#
# fac[0] = 1.0;
# for (int i=1; i<MAX_FAC; ++i)
# fac[i] = i*fac[i-1];
#
# done = True
def df(n):
"""Gives the double factorial of *i*"""
return 1.0 if n <= 0 else 1.0 * n * df(n - 2)
def INT_NCART(am):
"""Gives the number of cartesian functions for an angular momentum.
define INT_NCART(am) ((am>=0) ? ((((am)+2)*((am)+1))>>1) : 0)
"""
return (((am + 2) * (am + 1)) >> 1) if (am >= 0) else 0
def INT_NPURE(am):
"""Gives the number of spherical functions for an angular momentum.
#define INT_NPURE(am) (2*(am)+1)
"""
return 2 * am + 1
def INT_NFUNC(pu, am):
"""Gives the number of functions for an angular momentum based on pu.
#define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am))
"""
if pu == 'Cartesian' or pu == False:
return INT_NCART(am)
else:
return INT_NPURE(am)
def INT_CARTINDEX(am, i, j):
"""Computes offset index for cartesian function.
#define INT_CARTINDEX(am,i,j) (((i) == (am))? 0 : (((((am) - (i) + 1)*((am) - (i)))>>1) + (am) - (i) - (j)))
"""
return 0 if (i == am) else ((((am - i + 1) * (am - i)) >> 1) + am - i - j)
def INT_ICART(a, b, c):
"""Given a, b, and c compute a cartesian offset.
#define INT_ICART(a, b, c) (((((((a)+(b)+(c)+1)<<1)-(a))*((a)+1))>>1)-(b)-1)
"""
return ((((((a + b + c + 1) << 1) - a) * (a + 1)) >> 1) - b - 1)
def INT_IPURE(l, m):
"""Given l and m compute a pure function offset.
#define INT_IPURE(l, m) ((l)+(m))
"""
return l + m
# Lookup array that when you index the angular momentum it returns the corresponding letter
PrimitiveType = ['Normalized', 'Unnormalized']
GaussianType = ['Cartesian', 'Pure'] # Cartesian = 0, Pure = 1
class ShellInfo(object):
"""This class has the same behavior as GaussianShell, but implements everything using
slower data structures, which are easier to construct. These are used to build the
basis set, which builds more efficient pointer-based GaussianShell objects.
* @param e An array of exponent values.
* @param am Angular momentum.
* @param pure Pure spherical harmonics, or Cartesian.
* @param c An array of contraction coefficients.
* @param nc The atomic center that this shell is located on. Must map
back to the correct atom in the owning BasisSet molecule_. Used
in integral derivatives for indexing.
* @param center The x, y, z position of the shell. This is passed to
reduce the number of calls to the molecule.
* @param start The starting index of the first function this shell
provides. Used to provide starting positions in matrices.
* @param pt Is the shell already normalized?
"""
def __init__(self, am, c, e, pure, nc, center, start, pt='Normalized'):
# Angular momentum
self.l = am
# Flag for pure angular momentum (Cartesian = 0, Pure = 1)
self.puream = pure
# Exponents (of length nprimitives_)
self.PYexp = e
# Contraction coefficients (of length nprimitives_)
self.PYcoef = c
# ERD normalized contraction coefficients (of length nprimitives_)
self.PYerd_coef = []
# Original (un-normalized) contraction coefficients (of length nprimitives)
self.PYoriginal_coef = [c[n] for n in range(len(c))]
# Atom number this shell goes to. Needed when indexing integral derivatives.
self.nc = nc
# Atomic center number in the Molecule
self.center = center
#
self.start = start
# How many cartesian functions? (1=s, 3=p, 6=d, ...)
self.PYncartesian = INT_NCART(self.l)
# How many functions? (1=s, 3=p, 5/6=d, ...) * Dependent on the value of puream_
self.PYnfunction = INT_NFUNC(self.puream, self.l)
# Compute the normalization constants
if pt == 'Unnormalized':
self.normalize_shell()
self.erd_normalize_shell()
def primitive_normalization(self, p):
"""Normalizes a single primitive.
@param p The primitive index to normalize.
@return Normalization constant to be applied to the primitive.
"""
tmp1 = self.l + 1.5
g = 2.0 * self.PYexp[p]
z = pow(g, tmp1)
return math.sqrt((pow(2.0, self.l) * z) / (math.pi * math.sqrt(math.pi) * df(2 * self.l)))
def contraction_normalization(self):
"""Normalizes an entire contraction set. Applies the normalization to the coefficients
* @param gs The contraction set to normalize.
"""
e_sum = 0.0
for i in range(self.nprimitive()):
for j in range(self.nprimitive()):
g = self.PYexp[i] + self.PYexp[j]
z = pow(g, self.l + 1.5)
e_sum += self.PYcoef[i] * self.PYcoef[j] / z
tmp = ((2.0 * math.pi / (2.0 / math.sqrt(math.pi))) * df(2 * self.l)) / pow(2.0, self.l)
try:
norm = math.sqrt(1.0 / (tmp * e_sum))
except ZeroDivisionError:
self.PYcoef[i] = [1.0 for i in range(self.nprimitive())]
# Set the normalization
for i in range(self.nprimitive()):
self.PYcoef[i] *= norm
def normalize_shell(self):
"""Handles calling primitive_normalization and
contraction_normalization for you.
"""
for i in range(self.nprimitive()):
normalization = self.primitive_normalization(i)
self.PYcoef[i] *= normalization
self.contraction_normalization()
def erd_normalize_shell(self):
"""
"""
self.PYerd_coef = []
tsum = 0.0
for j in range(self.nprimitive()):
for k in range(j + 1):
a1 = self.PYexp[j]
a2 = self.PYexp[k]
temp = self.PYoriginal_coef[j] * self.PYoriginal_coef[k]
temp2 = self.l + 1.5
temp3 = 2.0 * math.sqrt(a1 * a2) / (a1 + a2)
temp3 = pow(temp3, temp2)
temp *= temp3
tsum += temp
if j != k:
tsum += temp
prefac = 1.0
if self.l > 1:
prefac = pow(2.0, 2 * self.l) / df(2 * self.l)
norm = math.sqrt(prefac / tsum)
for j in range(self.nprimitive()):
self.PYerd_coef.append(self.PYoriginal_coef[j] * norm)
def copy(self, nc=None, c=None):
"""Make a copy of the ShellInfo"""
if nc is not None and c is not None:
return ShellInfo(self.l, self.PYoriginal_coef, self.PYexp,
self.puream, nc, c,
self.start, 'Unnormalized')
else:
return ShellInfo(self.l, self.PYoriginal_coef, self.PYexp,
self.puream, self.nc, self.center,
self.start, 'Unnormalized')
# better to just deepcopy?
def nprimitive(self):
"""The number of primitive Gaussians"""
return len(self.PYexp)
def nfunction(self):
"""Total number of basis functions"""
return INT_NFUNC(self.puream, self.l)
def ncartesian(self):
"""Total number of functions if this shell was Cartesian"""
return self.PYncartesian
def am(self):
"""The angular momentum of the given contraction"""
return self.l
def amchar(self):
"""The character symbol for the angular momentum of the given contraction"""
return 'spdfghiklmnopqrtuvwxyz'[self.l]
def AMCHAR(self):
"""The character symbol for the angular momentum of the given contraction (upper case)"""
return 'SPDFGHIKLMNOPQRTUVWXYZ'[self.l]
def is_cartesian(self):
"""Returns true if contraction is Cartesian"""
return True if self.puream == 'Cartesian' else False
def is_pure(self):
"""Returns true if contraction is pure"""
return True if self.puream == 'Pure' else False
def center(self):
"""Returns the center of the Molecule this shell is on"""
return self.center
def ncenter(self):
"""Returns the atom number this shell is on. Used by integral derivatives for indexing."""
return self.nc
def exp(self, prim):
"""Returns the exponent of the given primitive"""
return self.PYexp[prim]
def coef(self, pi):
"""Return coefficient of pi'th primitive"""
return self.PYcoef[pi]
def erd_coef(self, pi):
"""Return ERD normalized coefficient of pi'th primitive"""
return self.PYerd_coef[pi]
def original_coef(self, pi):
"""Return unnormalized coefficient of pi'th primitive"""
return self.PYoriginal_coef[pi]
def exps(self):
"""Returns the exponent of the given primitive"""
return self.PYexp
def coefs(self):
"""Return coefficient of pi'th primitive and ci'th contraction"""
return self.PYcoef
def original_coefs(self):
"""Return unnormalized coefficient of pi'th primitive and ci'th contraction"""
return self.PYoriginal_coef
def pyprint(self, outfile=None):
"""Print out the shell"""
text = """ %c %3d 1.00\n""" % (self.AMCHAR(), self.nprimitive())
for K in range(self.nprimitive()):
text += """ %20.8f %20.8f\n""" % (self.PYexp[K], self.PYoriginal_coef[K])
if outfile is None:
return text
else:
with open(outfile, mode='w') as handle:
handle.write(text)
def __str__(self):
"""String representation of shell"""
return self.pyprint(outfile=None)
def normalize(self, l, m, n):
"""Normalize the angular momentum component"""
return 1.0
def function_index(self):
"""Basis function index where this shell starts."""
return self.start
def set_function_index(self, i):
"""Set basis function index where this shell starts."""
self.start = i
class GaussianShell(ShellInfo):
"""Class with same information as :py:class:`ShellInfo`. In C++,
class uses more efficient data structures, but in Python differences
minimal.
"""
def __init__(self, am, nprimitive, oc, c, ec, e, pure, nc, center, start):
"""
* @param am Angular momentum.
* @param pure Pure spherical harmonics, or Cartesian.
* @param oc An array of contraction coefficients.
* @param c An array of normalized contraction coefficients.
* @param ec An array of ERD normalized contraction coefficients.
* @param e An array of exponent values.
* @param pure an enum describing whether this shell uses pure or Cartesian functions.
* @param nc The atomic center that this shell is located on. Must map back to the correct atom in the owning BasisSet molecule_. Used in integral derivatives for indexing.
* @param center The x, y, z position of the shell. This is passed to reduce the number of calls to the molecule.
* @param start The starting index of the first function this shell provides. Used to provide starting positions in matrices.
* @param pt Is the shell already normalized?
"""
self.l = am
self.PYnprimitive = nprimitive
self.puream = pure
self.PYexp = e
self.PYoriginal_coef = oc
self.PYcoef = c
self.PYerd_coef = ec
self.nc = nc
self.center = center
self.start = start
self.PYncartesian = INT_NCART(self.l)
self.PYnfunction = INT_NFUNC(self.puream, self.l)
def nprimitive(self):
"""The number of primitive Gaussians"""
return self.PYnprimitive
#GaussianShell(0, nprimitive_,
# uoriginal_coefficients_, ucoefficients_, uerd_coefficients_,
# uexponents_, GaussianType(0), 0, xyz_, 0)
#
#GaussianShell(am, shell_nprim,
# &uoriginal_coefficients_[ustart+atom_nprim], &ucoefficients_[ustart+atom_nprim], &uerd_coefficients_[ustart+atom_nprim],
# &uexponents_[ustart+atom_nprim], puream, n, xyz_ptr, bf_count)
#
#GaussianShell(am, shell_nprim,
# &uoriginal_coefficients_[prim_count], &ucoefficients_[prim_count], &uerd_coefficients_[prim_count],
# &uexponents_[prim_count], puream, center, xyz_, bf_count)
#
#ShellInfo(am, contractions, exponents, gaussian_type, 0, center, 0, Unnormalized)
|