This file is indexed.

/usr/share/psi/python/qcdb/mpl.py is in psi4-data 1:0.3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
"""Module with matplotlib plotting routines. These are not hooked up to
any particular qcdb data structures but can be called with basic
arguments.

"""
import os
#import matplotlib
#matplotlib.use('Agg')


def expand_saveas(saveas, def_filename, def_path=os.path.abspath(os.curdir), def_prefix='', relpath=False):
    """Analyzes string *saveas* to see if it contains information on
    path to save file, name to save file, both or neither (*saveas*
    ends in '/' to indicate directory only) (able to expand '.'). A full
    absolute filename is returned, lacking only file extension. Based on
    analysis of missing parts of *saveas*, path information from *def_path*
    and/or filename information from *def_prefix* + *def_filename* is
    inserted. *def_prefix* is intended to be something like 'mplthread_'
    to identify the type of figure.

    """
    defname = def_prefix + def_filename.replace(' ', '_')
    if saveas is None:
        pth = def_path
        fil = defname
    else:
        pth, fil = os.path.split(saveas)
        pth = pth if pth != '' else def_path
        fil = fil if fil != '' else defname

    abspathfile = os.path.join(os.path.abspath(pth), fil)
    if relpath:
        return abspathfile.split(os.path.commonprefix([abspathfile, os.getcwd()]) + os.sep)[1]
    else:
        return abspathfile


def segment_color(argcolor, saptcolor):
    """Find appropriate color expression between overall color directive
    *argcolor* and particular color availibility *rxncolor*.

    """
    import matplotlib

    # validate any sapt color
    if saptcolor is not None:
        if saptcolor < 0.0 or saptcolor > 1.0:
            saptcolor = None

    if argcolor is None:
        # no color argument, so take from rxn
        if rxncolor is None:
            clr = 'grey'
        elif saptcolor is not None:
            clr = matplotlib.cm.jet(saptcolor)
        else:
            clr = rxncolor
    elif argcolor == 'sapt':
        # sapt color from rxn if available
        if saptcolor is not None:
            clr = matplotlib.cm.jet(saptcolor)
        else:
            clr = 'grey'
    elif argcolor == 'rgb':
        # HB/MX/DD sapt color from rxn if available
        if saptcolor is not None:
            if saptcolor < 0.333:
                clr = 'blue'
            elif saptcolor < 0.667:
                clr = 'green'
            else:
                clr = 'red'
        else:
            clr = 'grey'
    else:
        # color argument is name of mpl color
        clr = argcolor

    return clr


def bars(data, title='', saveas=None, relpath=False, graphicsformat=['pdf']):
    """Generates a 'gray-bars' diagram between model chemistries with error
    statistics in list *data*, which is supplied as part of the dictionary
    for each participating bar/modelchem, along with *mc* keys in argument
    *data*. The plot is labeled with *title* and each bar with *mc* key and
    plotted at a fixed scale to facilitate comparison across projects.

    """
    import hashlib
    import matplotlib.pyplot as plt

    # initialize plot, fix dimensions for consistent Illustrator import
    fig, ax = plt.subplots(figsize=(12, 7))
    plt.ylim([0, 4.86])
    plt.xlim([0, 6])
    plt.xticks([])

    # label plot and tiers
    ax.text(0.4, 4.6, title,
        verticalalignment='bottom', horizontalalignment='left',
        family='Times New Roman', weight='bold', fontsize=12)

    widths = [0.15, 0.02, 0.02, 0.02]  # TT, HB, MX, DD
    xval = 0.1  # starting posn along x-axis

    # plot bar sets
    for bar in data:
        if bar is not None:
            lefts = [xval, xval + 0.025, xval + 0.065, xval + 0.105]

            rect = ax.bar(lefts, bar['data'], widths, linewidth=0)
            rect[0].set_color('grey')
            rect[1].set_color('red')
            rect[2].set_color('green')
            rect[3].set_color('blue')

            ax.text(xval + .08, 4.3, bar['mc'],
                verticalalignment='center', horizontalalignment='right', rotation='vertical',
                family='Times New Roman', fontsize=8)
        xval += 0.20

    # save and show
    pltuid = title + '_' + hashlib.sha1(title + repr([bar['mc'] for bar in data if bar is not None])).hexdigest()
    pltfile = expand_saveas(saveas, pltuid, def_prefix='bar_', relpath=relpath)
    files_saved = {}
    for ext in graphicsformat:
        savefile = pltfile + '.' + ext.lower()
        plt.savefig(savefile, transparent=True, format=ext, bbox_inches='tight')
        files_saved[ext.lower()] = savefile
    plt.show()
    return files_saved


def flat(data, color=None, title='', xlimit=4.0, mae=None, mape=None, view=True,
    saveas=None, relpath=False, graphicsformat=['pdf']):
    """Generates a slat diagram between model chemistries with errors in
    single-item list *data*, which is supplied as part of the dictionary
    for each participating reaction, along with *dbse* and *rxn* keys in
    argument *data*. Limits of plot are *xlimit* from the zero-line. If
    *color* is None, slats are black, if 'sapt', colors are taken from
    sapt_colors module. Summary statistic *mae* is plotted on the
    overbound side and relative statistic *mape* on the underbound side.
    Saves a file with name *title* and plots to screen if *view*.

    """
    import matplotlib.pyplot as plt

    Nweft = 1
    positions = range(-1, -1 * Nweft - 1, -1)

    # initialize plot
    fig, ax = plt.subplots(figsize=(12, 0.33))
    plt.xlim([-xlimit, xlimit])
    plt.ylim([-1 * Nweft - 1, 0])
    plt.yticks([])
    plt.xticks([])
    fig.patch.set_visible(False)
    ax.patch.set_visible(False)
    ax.axis('off')

    plt.axvline(-1.0, color='grey', linewidth=4)
    plt.axvline(-0.3, color='grey', linewidth=4)
    plt.axvline(0.0, color='grey', linewidth=4)
    plt.axvline(0.3, color='grey', linewidth=4)
    plt.axvline(1.0, color='grey', linewidth=4)

    # plot reaction errors and threads
    for rxn in data:
        xvals = rxn['data']
        clr = segment_color(color, rxn['color'] if 'color' in rxn else None)

        ax.plot(xvals, positions, '|', color=clr, markersize=13.0)

    # plot trimmings
    if mae is not None:
        plt.axvline(-1 * mae, color='black', linewidth=12)
    if mape is not None:  # equivalent to MAE for a 10 kcal/mol interaction energy
        ax.plot(0.025 * mape, positions, 'o', color='black', markersize=15.0)

    # save and show
    pltuid = title  # simple (not really unique) filename for LaTeX integration
    pltfile = expand_saveas(saveas, pltuid, def_prefix='flat_', relpath=relpath)
    files_saved = {}
    for ext in graphicsformat:
        savefile = pltfile + '.' + ext.lower()
        plt.savefig(savefile, transparent=True, format=ext)  # , bbox_inches='tight')
        files_saved[ext.lower()] = savefile
    plt.show()
    if not view:
        plt.close()
    return files_saved


#def mpl_distslat_multiplot_files(pltfile, dbid, dbname, xmin, xmax, mcdats, labels, titles):
#    """Saves a plot with basename *pltfile* with a slat representation
#    of the modelchems errors in *mcdat*. Plot is in PNG, PDF, & EPS
#    and suitable for download, no mouseover properties. Both labeled
#    and labelless (for pub) figures are constructed.
#
#    """
#    import matplotlib as mpl
#    from matplotlib.axes import Subplot
#    import sapt_colors
#    from matplotlib.figure import Figure
#
#    nplots = len(mcdats)
#    fht = nplots * 0.8
#    fig, axt = plt.subplots(figsize=(12.0, fht))
#    plt.subplots_adjust(left=0.01, right=0.99, hspace=0.3)
#
#    axt.set_xticks([])
#    axt.set_yticks([])
#    plt.axis('off')
#
#    for item in range(nplots):
#        mcdat = mcdats[item]
#        label = labels[item]
#        title = titles[item]
#
#        erdat = np.array(mcdat)
#        yvals = np.ones(len(mcdat))
#        y = np.array([sapt_colors.sapt_colors[dbname][i] for i in label])
#
#        ax = Subplot(fig, nplots, 1, item + 1)
#        fig.add_subplot(ax)
#        sc = ax.scatter(erdat, yvals, c=y, s=3000, marker="|", cmap=mpl.cm.jet, vmin=0, vmax=1)
#
#        ax.set_yticks([])
#        ax.set_xticks([])
#        ax.set_frame_on(False)
#        ax.set_xlim([xmin, xmax])
#
#    # Write files with only slats
#    plt.savefig('scratch/' + pltfile + '_plain' + '.png', transparent=True, format='PNG')
#    plt.savefig('scratch/' + pltfile + '_plain' + '.pdf', transparent=True, format='PDF')
#    plt.savefig('scratch/' + pltfile + '_plain' + '.eps', transparent=True, format='EPS')
#
#    # Rewrite files with guides and labels
#    for item in range(nplots):
#        ax_again = fig.add_subplot(nplots, 1, item + 1)
#        ax_again.set_title(titles[item], fontsize=8)
#        ax_again.text(xmin + 0.3, 1.0, stats(np.array(mcdats[item])), fontsize=7, family='monospace', verticalalignment='center')
#        ax_again.plot([0, 0], [0.9, 1.1], color='#cccc00', lw=2)
#        ax_again.set_frame_on(False)
#        ax_again.set_yticks([])
#        ax_again.set_xticks([-12.0, -8.0, -4.0, -2.0, -1.0, 0.0, 1.0, 2.0, 4.0, 8.0, 12.0])
#        ax_again.tick_params(axis='both', which='major', labelbottom='off', bottom='off')
#    ax_again.set_xticks([-12.0, -8.0, -4.0, -2.0, -1.0, 0.0, 1.0, 2.0, 4.0, 8.0, 12.0])
#    ax_again.tick_params(axis='both', which='major', labelbottom='on', bottom='off')
#
#    plt.savefig('scratch/' + pltfile + '_trimd' + '.png', transparent=True, format='PNG')
#    plt.savefig('scratch/' + pltfile + '_trimd' + '.pdf', transparent=True, format='PDF')
#    plt.savefig('scratch/' + pltfile + '_trimd' + '.eps', transparent=True, format='EPS')


def disthist(data, title='', xtitle='', xmin=None, xmax=None,
    me=None, stde=None, saveas=None, relpath=False, graphicsformat=['pdf']):
    """Saves a plot with name *saveas* with a histogram representation
    of the reaction errors in *data*. Also plots a gaussian distribution
    with mean *me* and standard deviation *stde*. Plot has x-range
    *xmin* to *xmax*, x-axis label *xtitle* and overall title *title*.

    """
    import hashlib
    import numpy as np
    import matplotlib.pyplot as plt

    def gaussianpdf(u, v, x):
        """*u* is mean, *v* is variance, *x* is value, returns probability"""
        return 1.0 / np.sqrt(2.0 * np.pi * v) * np.exp(-pow(x - u, 2) / 2.0 / v)

    me = me if me is not None else np.mean(data)
    stde = stde if stde is not None else np.std(data, ddof=1)
    xmin = xmin if xmin is not None else me - 4.0 * stde
    xmax = xmax if xmax is not None else me + 4.0 * stde

    dx = (xmax - xmin) / 40.
    nx = int(round((xmax - xmin) / dx)) + 1
    pdfx = []
    pdfy = []
    for i in xrange(nx):
        ix = xmin + i * dx
        pdfx.append(ix)
        pdfy.append(gaussianpdf(me, pow(stde, 2), ix))

    fig, ax = plt.subplots(figsize=(8, 6))
    plt.axvline(0.0, color='#cccc00')
    ax1 = fig.add_subplot(111)
    ax1.set_xlim(xmin, xmax)
    ax1.hist(data, bins=30, range=(xmin, xmax), color='#224477', alpha=0.7)
    ax1.set_xlabel(xtitle)
    ax1.set_ylabel('Count')

    ax2 = ax1.twinx()
    ax2.set_xlim(xmin, xmax)
    ax2.fill(pdfx, pdfy, color='k', alpha=0.2)
    ax2.set_ylabel('Probability Density')

    plt.title(title)

    # save and show
    pltuid = title + '_' + hashlib.sha1(title + str(me) + str(stde) + str(xmin) + str(xmax)).hexdigest()
    pltfile = expand_saveas(saveas, pltuid, def_prefix='disthist_', relpath=relpath)
    files_saved = {}
    for ext in graphicsformat:
        savefile = pltfile + '.' + ext.lower()
        plt.savefig(savefile, transparent=True, format=ext, bbox_inches='tight')
        files_saved[ext.lower()] = savefile
    plt.show()
    return files_saved


#def thread(data, labels, color=None, title='', xlimit=4.0, mae=None, mape=None):
#    """Generates a tiered slat diagram between model chemistries with
#    errors (or simply values) in list *data*, which is supplied as part of the
#    dictionary for each participating reaction, along with *dbse* and *rxn* keys
#    in argument *data*. The plot is labeled with *title* and each tier with
#    an element of *labels* and plotted at *xlimit* from the zero-line. If
#    *color* is None, slats are black, if 'sapt', colors are taken from *color*
#    key in *data* [0, 1]. Summary statistics *mae* are plotted on the
#    overbound side and relative statistics *mape* on the underbound side.
#
#    """
#    from random import random
#    import matplotlib.pyplot as plt
#
#    # initialize tiers/wefts
#    Nweft = len(labels)
#    lenS = 0.2
#    gapT = 0.04
#    positions = range(-1, -1 * Nweft - 1, -1)
#    posnS = []
#    for weft in range(Nweft):
#        posnS.extend([positions[weft] + lenS, positions[weft] - lenS, None])
#    posnT = []
#    for weft in range(Nweft - 1):
#        posnT.extend([positions[weft] - lenS - gapT, positions[weft + 1] + lenS + gapT, None])
#
#    # initialize plot
#    fht = Nweft * 0.8
#    fig, ax = plt.subplots(figsize=(12, fht))
#    plt.subplots_adjust(left=0.01, right=0.99, hspace=0.3)
#    plt.xlim([-xlimit, xlimit])
#    plt.ylim([-1 * Nweft - 1, 0])
#    plt.yticks([])
#
#    # label plot and tiers
#    ax.text(-0.9 * xlimit, -0.25, title,
#        verticalalignment='bottom', horizontalalignment='left',
#        family='Times New Roman', weight='bold', fontsize=12)
#    for weft in labels:
#        ax.text(-0.9 * xlimit, -(1.2 + labels.index(weft)), weft,
#            verticalalignment='bottom', horizontalalignment='left',
#            family='Times New Roman', weight='bold', fontsize=18)
#
#    # plot reaction errors and threads
#    for rxn in data:
#
#        # preparation
#        xvals = rxn['data']
#        clr = segment_color(color, rxn['color'] if 'color' in rxn else None)
#        slat = []
#        for weft in range(Nweft):
#            slat.extend([xvals[weft], xvals[weft], None])
#        thread = []
#        for weft in range(Nweft - 1):
#            thread.extend([xvals[weft], xvals[weft + 1], None])
#
#        # plotting
#        ax.plot(slat, posnS, color=clr, linewidth=1.0, solid_capstyle='round')
#        ax.plot(thread, posnT, color=clr, linewidth=0.5, solid_capstyle='round',
#            alpha=0.3)
#
#        # labeling
#        try:
#            toplblposn = next(item for item in xvals if item is not None)
#            botlblposn = next(item for item in reversed(xvals) if item is not None)
#        except StopIteration:
#            pass
#        else:
#            ax.text(toplblposn, -0.75 + 0.6 * random(), rxn['sys'],
#                verticalalignment='bottom', horizontalalignment='center',
#                family='Times New Roman', fontsize=8)
#            ax.text(botlblposn, -1 * Nweft - 0.75 + 0.6 * random(), rxn['sys'],
#                verticalalignment='bottom', horizontalalignment='center',
#                family='Times New Roman', fontsize=8)
#
#    # plot trimmings
#    if mae is not None:
#        ax.plot([-x for x in mae], positions, 's', color='black')
#    if mape is not None:  # equivalent to MAE for a 10 kcal/mol IE
#        ax.plot([0.025 * x for x in mape], positions, 'o', color='black')
#
#    plt.axvline(0, color='black')
#    plt.show()


def threads(data, labels, color=None, title='', xlimit=4.0, mae=None, mape=None,
    mousetext=None, mouselink=None, mouseimag=None, mousetitle=None,
    saveas=None, relpath=False, graphicsformat=['pdf']):
    """Generates a tiered slat diagram between model chemistries with
    errors (or simply values) in list *data*, which is supplied as part of the
    dictionary for each participating reaction, along with *dbse* and *rxn* keys
    in argument *data*. The plot is labeled with *title* and each tier with
    an element of *labels* and plotted at *xlimit* from the zero-line. If
    *color* is None, slats are black, if 'sapt', colors are taken from *color*
    key in *data* [0, 1]. Summary statistics *mae* are plotted on the
    overbound side and relative statistics *mape* on the underbound side.
    HTML code for mouseover if mousetext or mouselink or mouseimag specified
    based on recipe of Andrew Dalke from
    http://www.dalkescientific.com/writings/diary/archive/2005/04/24/interactive_html.html

    """
    import random
    import hashlib
    import matplotlib.pyplot as plt

    # initialize tiers/wefts
    Nweft = len(labels)
    lenS = 0.2
    gapT = 0.04
    positions = range(-1, -1 * Nweft - 1, -1)
    posnS = []
    for weft in range(Nweft):
        posnS.extend([positions[weft] + lenS, positions[weft] - lenS, None])
    posnT = []
    for weft in range(Nweft - 1):
        posnT.extend([positions[weft] - lenS - gapT, positions[weft + 1] + lenS + gapT, None])
    posnM = []

    # initialize plot
    fht = Nweft * 0.8
    fig, ax = plt.subplots(figsize=(12, fht))
    plt.subplots_adjust(left=0.01, right=0.99, hspace=0.3)
    plt.xlim([-xlimit, xlimit])
    plt.ylim([-1 * Nweft - 1, 0])
    plt.yticks([])

    # label plot and tiers
    ax.text(-0.9 * xlimit, -0.25, title,
        verticalalignment='bottom', horizontalalignment='left',
        family='Times New Roman', weight='bold', fontsize=12)
    for weft in labels:
        ax.text(-0.9 * xlimit, -(1.2 + labels.index(weft)), weft,
            verticalalignment='bottom', horizontalalignment='left',
            family='Times New Roman', weight='bold', fontsize=18)

    # plot reaction errors and threads
    for rxn in data:

        # preparation
        xvals = rxn['data']
        clr = segment_color(color, rxn['color'] if 'color' in rxn else None)
        slat = []
        for weft in range(Nweft):
            slat.extend([xvals[weft], xvals[weft], None])
        thread = []
        for weft in range(Nweft - 1):
            thread.extend([xvals[weft], xvals[weft + 1], None])

        # plotting
        ax.plot(slat, posnS, color=clr, linewidth=1.0, solid_capstyle='round')
        ax.plot(thread, posnT, color=clr, linewidth=0.5, solid_capstyle='round', alpha=0.3)

        # converting into screen coordinates for image map
        xyscreen = ax.transData.transform(zip(xvals, positions))
        xscreen, yscreen = zip(*xyscreen)
        posnM.extend(zip([rxn['db']] * Nweft, [rxn['sys']] * Nweft,
            xvals, xscreen, yscreen))

        # labeling
        if not(mousetext or mouselink or mouseimag):
            try:
                toplblposn = next(item for item in xvals if item is not None)
                botlblposn = next(item for item in reversed(xvals) if item is not None)
            except StopIteration:
                pass
            else:
                ax.text(toplblposn, -0.75 + 0.6 * random.random(), rxn['sys'],
                    verticalalignment='bottom', horizontalalignment='center',
                    family='Times New Roman', fontsize=8)
                ax.text(botlblposn, -1 * Nweft - 0.75 + 0.6 * random.random(), rxn['sys'],
                    verticalalignment='bottom', horizontalalignment='center',
                    family='Times New Roman', fontsize=8)

    # plot trimmings
    if mae is not None:
        ax.plot([-x for x in mae], positions, 's', color='black')
    if mape is not None:  # equivalent to MAE for a 10 kcal/mol IE
        ax.plot([0.025 * x for x in mape], positions, 'o', color='black')
    plt.axvline(0, color='black')

    # save and show
    pltuid = title + '_' + hashlib.sha1(title + repr(labels) + repr(xlimit)).hexdigest()
    pltfile = expand_saveas(saveas, pltuid, def_prefix='thread_', relpath=relpath)
    files_saved = {}
    for ext in graphicsformat:
        savefile = pltfile + '.' + ext.lower()
        plt.savefig(savefile, transparent=True, format=ext, bbox_inches='tight')
        files_saved[ext.lower()] = savefile
    plt.show()

    if not (mousetext or mouselink or mouseimag):
        return files_saved, None
    else:
        dpi = 80
        img_width = fig.get_figwidth() * dpi
        img_height = fig.get_figheight() * dpi

        htmlcode = """<SCRIPT>\n"""
        htmlcode += """function mouseshow(db, rxn, val) {\n"""
        if mousetext or mouselink:
            htmlcode += """   var cid = document.getElementById("cid");\n"""
            if mousetext:
                htmlcode += """   cid.innerHTML = %s;\n""" % (mousetext)
            if mouselink:
                htmlcode += """   cid.href = %s;\n""" % (mouselink)
        if mouseimag:
            htmlcode += """   var cmpd_img = document.getElementById("cmpd_img");\n"""
            htmlcode += """   cmpd_img.src = %s;\n""" % (mouseimag)
        htmlcode += """}\n"""
        htmlcode += """</SCRIPT>\n"""

        htmlcode += """%s <BR>""" % (mousetitle)
        htmlcode += """Mouseover:<BR><a id="cid"></a><br>\n"""
        htmlcode += """<IMG SRC="%s" ismap usemap="#points" WIDTH="%d" HEIGHT="%d">\n""" % \
            (pltfile + '.png', img_width, img_height)
        htmlcode += """<IMG ID="cmpd_img" WIDTH="%d" HEIGHT="%d">\n""" % (200, 160)
        htmlcode += """<MAP name="points">\n"""

        # generating html image map code
        #   points sorted to avoid overlapping map areas that can overwhelm html for SSI
        #   y=0 on top for html and on bottom for mpl, so flip the numbers
        posnM.sort(key=lambda tup: tup[2])
        posnM.sort(key=lambda tup: tup[3])
        last = (0, 0)
        for dbse, rxn, val, x, y in posnM:
            if val is None:
                continue

            now = (int(x), int(y))
            if now == last:
                htmlcode += """<!-- map overlap! %s-%s %+.2f skipped -->\n""" % (dbse, rxn, val)
            else:
                htmlcode += """<AREA shape="rect" coords="%d,%d,%d,%d" onmouseover="javascript:mouseshow('%s', '%s', '%+.2f');">\n""" % \
                    (x - 2, img_height - y - 20,
                    x + 2, img_height - y + 20,
                    dbse, rxn, val)
                last = now

        htmlcode += """</MAP>\n"""

        return files_saved, htmlcode


#def thread_mouseover_web(pltfile, dbid, dbname, xmin, xmax, mcdats, labels, titles):
#    """Saves a plot with name *pltfile* with a slat representation of
#    the modelchems errors in *mcdat*. Mouseover shows geometry and error
#    from *labels* based on recipe of Andrew Dalke from
#    http://www.dalkescientific.com/writings/diary/archive/2005/04/24/interactive_html.html
#
#    """
#    from matplotlib.backends.backend_agg import FigureCanvasAgg
#    import matplotlib
#    import sapt_colors
#
#    cmpd_width = 200
#    cmpd_height = 160
#
#    nplots = len(mcdats)
#    fht = nplots * 0.8
#    fht = nplots * 0.8 * 1.4
#    fig = matplotlib.figure.Figure(figsize=(12.0, fht))
#    fig.subplots_adjust(left=0.01, right=0.99, hspace=0.3, top=0.8, bottom=0.2)
#    img_width = fig.get_figwidth() * 80
#    img_height = fig.get_figheight() * 80
#
#    htmlcode = """
#<SCRIPT>
#function mouseandshow(name, id, db, dbname) {
#  var cid = document.getElementById("cid");
#  cid.innerHTML = name;
#  cid.href = "fragmentviewer.py?name=" + id + "&dataset=" + db;
#  var cmpd_img = document.getElementById("cmpd_img");
#  cmpd_img.src = dbname + "/dimers/" + id + ".png";
#}
#</SCRIPT>
#
#Distribution of Fragment Errors in Interaction Energy (kcal/mol)<BR>
#Mouseover:<BR><a id="cid"></a><br>
#<IMG SRC="scratch/%s" ismap usemap="#points" WIDTH="%d" HEIGHT="%d">
#<IMG ID="cmpd_img" WIDTH="%d" HEIGHT="%d">
#<MAP name="points">
#""" % (pltfile, img_width, img_height, cmpd_width, cmpd_height)
#
#    for item in range(nplots):
#        print '<br><br><br><br><br><br>'
#        mcdat = mcdats[item]
#        label = labels[item]
#        tttle = titles[item]
#
#        erdat = np.array(mcdat)
#        # No masked_array because interferes with html map
#        #erdat = np.ma.masked_array(mcdat, mask=mask)
#        yvals = np.ones(len(mcdat))
#        y = np.array([sapt_colors.sapt_colors[dbname][i] for i in label])
#
#        ax = fig.add_subplot(nplots, 1, item + 1)
#        sc = ax.scatter(erdat, yvals, c=y, s=3000, marker="|", cmap=matplotlib.cm.jet, vmin=0, vmax=1)
#        ax.set_title(tttle, fontsize=8)
#        ax.set_yticks([])
#        lp = ax.plot([0, 0], [0.9, 1.1], color='#cccc00', lw=2)
#        ax.set_ylim([0.95, 1.05])
#        ax.text(xmin + 0.3, 1.0, stats(erdat), fontsize=7, family='monospace', verticalalignment='center')
#        if item + 1 == nplots:
#            ax.set_xticks([-12.0, -8.0, -4.0, -2.0, -1.0, 0.0, 1.0, 2.0, 4.0, 8.0, 12.0])
#            for tick in ax.xaxis.get_major_ticks():
#                tick.tick1line.set_markersize(0)
#                tick.tick2line.set_markersize(0)
#        else:
#            ax.set_xticks([])
#        ax.set_frame_on(False)
#        ax.set_xlim([xmin, xmax])
#
#        # Convert the data set points into screen space coordinates
#        #xyscreencoords = ax.transData.transform(zip(erdat, yvals))
#        xyscreencoords = ax.transData.transform(zip(erdat, yvals))
#        xcoords, ycoords = zip(*xyscreencoords)
#
#        # HTML image coordinates have y=0 on the top.  Matplotlib
#        # has y=0 on the bottom.  We'll need to flip the numbers
#        for cid, x, y, er in zip(label, xcoords, ycoords, erdat):
#            htmlcode += """<AREA shape="rect" coords="%d,%d,%d,%d" onmouseover="javascript:mouseandshow('%s %+.2f', '%s', %s, '%s');">\n""" % \
#                (x - 2, img_height - y - 20, x + 2, img_height - y + 20, cid, er, cid, dbid, dbname)
#
#    htmlcode += "</MAP>\n"
#    canvas = FigureCanvasAgg(fig)
#    canvas.print_figure('scratch/' + title, dpi=80, transparent=True)
#
#    #plt.savefig('mplflat_' + title + '.pdf', bbox_inches='tight', transparent=True, format='PDF')
#    #plt.savefig(os.environ['HOME'] + os.sep + 'mplflat_' + title + '.pdf', bbox_inches='tight', transparent=T    rue, format='PDF')
#
#    return htmlcode


def composition_tile(db, aa1, aa2):
    """Takes dictionary *db* of label, error pairs and amino acids *aa1*
    and *aa2* and returns a square array of all errors for that amino
    acid pair, buffered by zeros.

    """
    import re
    import numpy as np
    bfdbpattern = re.compile("\d\d\d([A-Z][A-Z][A-Z])-\d\d\d([A-Z][A-Z][A-Z])-\d")

    tiles = []
    for key, val in db.items():
        bfdbname = bfdbpattern.match(key)
        if (bfdbname.group(1) == aa1 and bfdbname.group(2) == aa2) or \
           (bfdbname.group(2) == aa1 and bfdbname.group(1) == aa2):
            tiles.append(val)

    dim = int(np.ceil(np.sqrt(len(tiles))))
    pad = dim * dim - len(tiles)
    tiles += [0] * pad

    return np.reshape(np.array(tiles), (dim, dim))


def iowa(mcdat, mclbl, title='', xlimit=2.0):
    """Saves a plot with (extensionless) name *pltfile* with an Iowa
    representation of the modelchems errors in *mcdat* for BBI/SSI-style
    *labels*.

    """
    import numpy as np
    import matplotlib
    import matplotlib.pyplot as plt

    aa = ['ARG', 'HIE', 'LYS', 'ASP', 'GLU', 'SER', 'THR', 'ASN', 'GLN', 'CYS', 'MET', 'GLY', 'ALA', 'VAL', 'ILE', 'LEU', 'PRO', 'PHE', 'TYR', 'TRP']
    #aa = ['ILE', 'LEU', 'ASP', 'GLU', 'PHE']
    err = dict(zip(mclbl, mcdat))

    # handle for frame, overall axis
    fig, axt = plt.subplots(figsize=(6, 6))

    axt.set_xticks(np.arange(len(aa)) + 0.3, minor=False)
    axt.set_yticks(np.arange(len(aa)) + 0.3, minor=False)
    axt.invert_yaxis()
    axt.xaxis.tick_top()
    axt.set_xticklabels(aa, minor=False, rotation=60, size='small')
    axt.set_yticklabels(aa, minor=False, size='small')
    axt.xaxis.set_tick_params(width=0, length=0)
    axt.yaxis.set_tick_params(width=0, length=0)
    #axt.set_title('%s' % (title), fontsize=16, verticalalignment='bottom')
    axt.text(10.0, -1.5, title, horizontalalignment='center', fontsize=16)

    # nill spacing between 20x20 heatmaps
    plt.subplots_adjust(hspace=0.001, wspace=0.001)

    index = 1
    for aa1 in aa:
        for aa2 in aa:
            cb = composition_tile(err, aa1, aa2)

            ax = matplotlib.axes.Subplot(fig, len(aa), len(aa), index)
            fig.add_subplot(ax)
            heatmap = ax.pcolor(cb, vmin=-xlimit, vmax=xlimit, cmap=plt.cm.PRGn)
            ax.set_xticks([])
            ax.set_yticks([])
            index += 1

    title = '_'.join(title.split())
    plt.savefig('iowa_' + title + '.pdf', bbox_inches='tight', transparent=True, format='PDF')
    plt.show()
    #plt.savefig(os.environ['HOME'] + os.sep + 'iowa_' + title + '.pdf', bbox_inches='tight', transparent=True, format='PDF')


if __name__ == "__main__":

    merge_dats = [
    {'db':'HSG', 'sys':'1', 'data':[0.3508, 0.1234, 0.0364, 0.0731, 0.0388]},
    {'db':'HSG', 'sys':'3', 'data':[0.2036, -0.0736, -0.1650, -0.1380, -0.1806]},
    {'db':'S22', 'sys':'14', 'data':[None, -3.2144, None, None, None]},
    {'db':'S22', 'sys':'15', 'data':[-1.5090, -2.5263, -2.9452, -2.8633, -3.1059]},
    {'db':'S22', 'sys':'22', 'data':[0.3046, -0.2632, -0.5070, -0.4925, -0.6359]}]

    threads(merge_dats, labels=['d', 't', 'dt', 'q', 'tq'], color='sapt',
        title='MP2-CPa[]z', mae=[0.25, 0.5, 0.5, 0.3, 1.0], mape=[20.1, 25, 15, 5.5, 3.6])

    more_dats = [
    {'mc':'MP2-CP-adz', 'data':[1.0, 0.8, 1.4, 1.6]},
    {'mc':'MP2-CP-adtz', 'data':[0.6, 0.2, 0.4, 0.6]},
    None,
    {'mc':'MP2-CP-adzagain', 'data':[1.0, 0.8, 1.4, 1.6]}]

    bars(more_dats, title='asdf')

    single_dats = [
    {'dbse':'HSG', 'sys':'1', 'data':[0.3508]},
    {'dbse':'HSG', 'sys':'3', 'data':[0.2036]},
    {'dbse':'S22', 'sys':'14', 'data':[None]},
    {'dbse':'S22', 'sys':'15', 'data':[-1.5090]},
    {'dbse':'S22', 'sys':'22', 'data':[0.3046]}]

    #flat(single_dats, color='sapt', title='fg_MP2_adz', mae=0.25, mape=20.1)

    flat([{'sys': '1', 'color': 0.6933450559423702, 'data': [0.45730000000000004]}, {'sys': '2', 'color': 0.7627027688599753, 'data': [0.6231999999999998]}, {'sys': '3', 'color': 0.7579958735528617, 'data': [2.7624999999999993]}, {'sys': '4', 'color': 0.7560883254421639, 'data': [2.108600000000001]}, {'sys': '5', 'color': 0.7515161912065955, 'data': [2.2304999999999993]}, {'sys': '6', 'color': 0.7235223893438876, 'data': [1.3782000000000014]}, {'sys': '7', 'color': 0.7120099024225569, 'data': [1.9519000000000002]}, {'sys': '8', 'color': 0.13721565059144678, 'data': [0.13670000000000004]}, {'sys': '9', 'color': 0.3087395095814767, 'data': [0.2966]}, {'sys': '10', 'color': 0.25493207637105103, 'data': [-0.020199999999999996]}, {'sys': '11', 'color': 0.24093814608979347, 'data': [-1.5949999999999998]}, {'sys': '12', 'color': 0.3304746631959777, 'data': [-1.7422000000000004]}, {'sys': '13', 'color': 0.4156050644764822, 'data': [0.0011999999999989797]}, {'sys': '14', 'color': 0.2667207259626991, 'data': [-2.6083999999999996]}, {'sys': '15', 'color': 0.3767053567641695, 'data': [-1.5090000000000003]}, {'sys': '16', 'color': 0.5572641509433963, 'data': [0.10749999999999993]}, {'sys': '17', 'color': 0.4788598239641578, 'data': [0.29669999999999996]}, {'sys': '18', 'color': 0.3799031371351281, 'data': [0.10209999999999964]}, {'sys': '19', 'color': 0.5053227185999078, 'data': [0.16610000000000014]}, {'sys': '20', 'color': 0.2967660584483015, 'data': [-0.37739999999999974]}, {'sys': '21', 'color': 0.38836460733750316, 'data': [-0.4712000000000005]}, {'sys': '22', 'color': 0.5585849893078809, 'data': [0.30460000000000065]}, {'sys': 'BzBz_PD36-1.8', 'color': 0.1383351040559965, 'data': [-1.1921]}, {'sys': 'BzBz_PD34-2.0', 'color': 0.23086034843049832, 'data': [-1.367]}, {'sys': 'BzBz_T-5.2', 'color': 0.254318060864096, 'data': [-0.32230000000000025]}, {'sys': 'BzBz_T-5.1', 'color': 0.26598486566733337, 'data': [-0.3428]}, {'sys': 'BzBz_T-5.0', 'color': 0.28011258347610224, 'data': [-0.36060000000000025]}, {'sys': 'PyPy_S2-3.9', 'color': 0.14520332101084785, 'data': [-0.9853000000000001]}, {'sys': 'PyPy_S2-3.8', 'color': 0.1690757103699542, 'data': [-1.0932]}, {'sys': 'PyPy_S2-3.5', 'color': 0.25615734567417053, 'data': [-1.4617]}, {'sys': 'PyPy_S2-3.7', 'color': 0.19566550224566906, 'data': [-1.2103999999999995]}, {'sys': 'PyPy_S2-3.6', 'color': 0.22476748600170826, 'data': [-1.3333]}, {'sys': 'BzBz_PD32-2.0', 'color': 0.31605681987208084, 'data': [-1.6637]}, {'sys': 'BzBz_T-4.8', 'color': 0.31533827331543723, 'data': [-0.38759999999999994]}, {'sys': 'BzBz_T-4.9', 'color': 0.2966146678069063, 'data': [-0.3759999999999999]}, {'sys': 'BzH2S-3.6', 'color': 0.38284814928043304, 'data': [-0.1886000000000001]}, {'sys': 'BzBz_PD32-1.7', 'color': 0.3128835191478639, 'data': [-1.8703999999999998]}, {'sys': 'BzMe-3.8', 'color': 0.24117892478245323, 'data': [-0.034399999999999986]}, {'sys': 'BzMe-3.9', 'color': 0.22230903086047088, 'data': [-0.046499999999999986]}, {'sys': 'BzH2S-3.7', 'color': 0.36724255203373696, 'data': [-0.21039999999999992]}, {'sys': 'BzMe-3.6', 'color': 0.284901522674611, 'data': [0.007099999999999884]}, {'sys': 'BzMe-3.7', 'color': 0.2621086166558813, 'data': [-0.01770000000000005]}, {'sys': 'BzBz_PD32-1.9', 'color': 0.314711251903219, 'data': [-1.7353999999999998]}, {'sys': 'BzBz_PD32-1.8', 'color': 0.3136181753200793, 'data': [-1.8039999999999998]}, {'sys': 'BzH2S-3.8', 'color': 0.3542001591399945, 'data': [-0.22230000000000016]}, {'sys': 'BzBz_PD36-1.9', 'color': 0.14128552184232473, 'data': [-1.1517]}, {'sys': 'BzBz_S-3.7', 'color': 0.08862098445220466, 'data': [-1.3414]}, {'sys': 'BzH2S-4.0', 'color': 0.33637540012259076, 'data': [-0.2265999999999999]}, {'sys': 'BzBz_PD36-1.5', 'color': 0.13203548045236127, 'data': [-1.3035]}, {'sys': 'BzBz_S-3.8', 'color': 0.0335358832178858, 'data': [-1.2022]}, {'sys': 'BzBz_S-3.9', 'color': 0.021704594689389095, 'data': [-1.0747]}, {'sys': 'PyPy_T3-5.1', 'color': 0.3207725129126432, 'data': [-0.2958000000000003]}, {'sys': 'PyPy_T3-5.0', 'color': 0.3254925304351165, 'data': [-0.30710000000000015]}, {'sys': 'BzBz_PD36-1.7', 'color': 0.13577087141986593, 'data': [-1.2333000000000003]}, {'sys': 'PyPy_T3-4.8', 'color': 0.3443704059902452, 'data': [-0.32010000000000005]}, {'sys': 'PyPy_T3-4.9', 'color': 0.3333442013628509, 'data': [-0.3158999999999996]}, {'sys': 'PyPy_T3-4.7', 'color': 0.35854000505665756, 'data': [-0.31530000000000014]}, {'sys': 'BzBz_PD36-1.6', 'color': 0.13364651314909243, 'data': [-1.2705000000000002]}, {'sys': 'BzMe-4.0', 'color': 0.20560117919562013, 'data': [-0.05389999999999984]}, {'sys': 'MeMe-3.6', 'color': 0.16934865900383142, 'data': [0.18420000000000003]}, {'sys': 'MeMe-3.7', 'color': 0.1422332591197123, 'data': [0.14680000000000004]}, {'sys': 'MeMe-3.4', 'color': 0.23032794290360467, 'data': [0.29279999999999995]}, {'sys': 'MeMe-3.5', 'color': 0.19879551978386897, 'data': [0.23260000000000003]}, {'sys': 'MeMe-3.8', 'color': 0.11744404936205816, 'data': [0.11680000000000001]}, {'sys': 'BzBz_PD34-1.7', 'color': 0.22537382457222138, 'data': [-1.5286999999999997]}, {'sys': 'BzBz_PD34-1.6', 'color': 0.22434088042760192, 'data': [-1.5754000000000001]}, {'sys': 'BzBz_PD32-2.2', 'color': 0.3189891685300601, 'data': [-1.5093999999999999]}, {'sys': 'BzBz_S-4.1', 'color': 0.10884135031532088, 'data': [-0.8547000000000002]}, {'sys': 'BzBz_S-4.0', 'color': 0.06911476296747143, 'data': [-0.9590000000000001]}, {'sys': 'BzBz_PD34-1.8', 'color': 0.22685419834431494, 'data': [-1.476]}, {'sys': 'BzBz_PD34-1.9', 'color': 0.2287079261672095, 'data': [-1.4223999999999997]}, {'sys': 'BzH2S-3.9', 'color': 0.3439077006047999, 'data': [-0.22739999999999982]}, {'sys': 'FaNNFaNN-4.1', 'color': 0.7512716174974567, 'data': [1.7188999999999997]}, {'sys': 'FaNNFaNN-4.0', 'color': 0.7531388297328865, 'data': [1.9555000000000007]}, {'sys': 'FaNNFaNN-4.3', 'color': 0.7478064149182957, 'data': [1.2514000000000003]}, {'sys': 'FaNNFaNN-4.2', 'color': 0.7493794908838113, 'data': [1.4758000000000013]}, {'sys': 'FaOOFaON-4.0', 'color': 0.7589275618320565, 'data': [2.0586]}, {'sys': 'FaOOFaON-3.7', 'color': 0.7619465815742713, 'data': [3.3492999999999995]}, {'sys': 'FaOOFaON-3.9', 'color': 0.7593958895631474, 'data': [2.4471000000000007]}, {'sys': 'FaOOFaON-3.8', 'color': 0.7605108059280967, 'data': [2.8793999999999986]}, {'sys': 'FaONFaON-4.1', 'color': 0.7577459277014137, 'data': [1.8697999999999997]}, {'sys': 'FaOOFaON-3.6', 'color': 0.7633298028299997, 'data': [3.847599999999998]}, {'sys': 'FaNNFaNN-3.9', 'color': 0.7548200901251662, 'data': [2.2089]}, {'sys': 'FaONFaON-3.8', 'color': 0.7582294603551467, 'data': [2.967699999999999]}, {'sys': 'FaONFaON-3.9', 'color': 0.7575285282217349, 'data': [2.578900000000001]}, {'sys': 'FaONFaON-4.2', 'color': 0.7594549221042256, 'data': [1.5579999999999998]}, {'sys': 'FaOOFaNN-3.6', 'color': 0.7661655616885379, 'data': [3.701599999999999]}, {'sys': 'FaOOFaNN-3.7', 'color': 0.7671068376007428, 'data': [3.156500000000001]}, {'sys': 'FaOOFaNN-3.8', 'color': 0.766947626251711, 'data': [2.720700000000001]}, {'sys': 'FaONFaNN-3.9', 'color': 0.7569836601896789, 'data': [2.4281000000000006]}, {'sys': 'FaONFaNN-3.8', 'color': 0.758024548462959, 'data': [2.7561999999999998]}, {'sys': 'FaOOFaOO-3.6', 'color': 0.7623422640217077, 'data': [3.851800000000001]}, {'sys': 'FaOOFaOO-3.7', 'color': 0.7597430792159379, 'data': [3.2754999999999974]}, {'sys': 'FaOOFaOO-3.4', 'color': 0.7672554950739594, 'data': [5.193299999999999]}, {'sys': 'FaOOFaOO-3.5', 'color': 0.764908813123865, 'data': [4.491900000000001]}, {'sys': 'FaONFaNN-4.2', 'color': 0.7549212942233738, 'data': [1.534699999999999]}, {'sys': 'FaONFaNN-4.0', 'color': 0.7559404310956357, 'data': [2.1133000000000024]}, {'sys': 'FaONFaNN-4.1', 'color': 0.7551574698775625, 'data': [1.813900000000002]}, {'sys': 'FaONFaON-4.0', 'color': 0.7572064604483282, 'data': [2.2113999999999994]}, {'sys': 'FaOOFaOO-3.8', 'color': 0.7573810956831686, 'data': [2.7634000000000007]}, {'sys': '1', 'color': 0.2784121805328983, 'data': [0.3508]}, {'sys': '2', 'color': 0.22013842798900166, 'data': [-0.034600000000000186]}, {'sys': '3', 'color': 0.12832496088281312, 'data': [0.20360000000000023]}, {'sys': '4', 'color': 0.6993695033529733, 'data': [1.9092000000000002]}, {'sys': '5', 'color': 0.7371192790053749, 'data': [1.656600000000001]}, {'sys': '6', 'color': 0.5367033190796172, 'data': [0.27970000000000006]}, {'sys': '7', 'color': 0.3014220615964802, 'data': [0.32289999999999974]}, {'sys': '8', 'color': 0.01605867807629261, 'data': [0.12199999999999994]}, {'sys': '9', 'color': 0.6106300539083558, 'data': [0.3075999999999999]}, {'sys': '10', 'color': 0.6146680031333968, 'data': [0.6436000000000002]}, {'sys': '11', 'color': 0.6139747851721759, 'data': [0.4551999999999996]}, {'sys': '12', 'color': 0.32122739401126593, 'data': [0.44260000000000005]}, {'sys': '13', 'color': 0.24678148099136055, 'data': [-0.11789999999999967]}, {'sys': '14', 'color': 0.23700950710597016, 'data': [0.42689999999999995]}, {'sys': '15', 'color': 0.23103396678138563, 'data': [0.3266]}, {'sys': '16', 'color': 0.1922070769654413, 'data': [0.0696000000000001]}, {'sys': '17', 'color': 0.19082151944747366, 'data': [0.11159999999999992]}, {'sys': '18', 'color': 0.2886200282444196, 'data': [0.4114]}, {'sys': '19', 'color': 0.23560171133945224, 'data': [-0.1392]}, {'sys': '20', 'color': 0.3268270751294533, 'data': [0.5593]}, {'sys': '21', 'color': 0.7324460869158442, 'data': [0.6806000000000001]}],
    color='sapt', title='MP2-CP-adz', mae=1.21356003247, mape=24.6665886087, xlimit=4.0)

    lin_dats = [-0.5, -0.4, -0.3, 0, .5, .8, 5]
    lin_labs = ['008ILE-012LEU-1', '012LEU-085ASP-1', '004GLU-063LEU-2',
        '011ILE-014PHE-1', '027GLU-031LEU-1', '038PHE-041ILE-1', '199LEU-202GLU-1']
    iowa(lin_dats, lin_labs, title='ttl', xlimit=0.5)

    disthist(lin_dats)