/usr/share/psi/python/qcdb/mpl.py is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 | """Module with matplotlib plotting routines. These are not hooked up to
any particular qcdb data structures but can be called with basic
arguments.
"""
import os
#import matplotlib
#matplotlib.use('Agg')
def expand_saveas(saveas, def_filename, def_path=os.path.abspath(os.curdir), def_prefix='', relpath=False):
"""Analyzes string *saveas* to see if it contains information on
path to save file, name to save file, both or neither (*saveas*
ends in '/' to indicate directory only) (able to expand '.'). A full
absolute filename is returned, lacking only file extension. Based on
analysis of missing parts of *saveas*, path information from *def_path*
and/or filename information from *def_prefix* + *def_filename* is
inserted. *def_prefix* is intended to be something like 'mplthread_'
to identify the type of figure.
"""
defname = def_prefix + def_filename.replace(' ', '_')
if saveas is None:
pth = def_path
fil = defname
else:
pth, fil = os.path.split(saveas)
pth = pth if pth != '' else def_path
fil = fil if fil != '' else defname
abspathfile = os.path.join(os.path.abspath(pth), fil)
if relpath:
return abspathfile.split(os.path.commonprefix([abspathfile, os.getcwd()]) + os.sep)[1]
else:
return abspathfile
def segment_color(argcolor, saptcolor):
"""Find appropriate color expression between overall color directive
*argcolor* and particular color availibility *rxncolor*.
"""
import matplotlib
# validate any sapt color
if saptcolor is not None:
if saptcolor < 0.0 or saptcolor > 1.0:
saptcolor = None
if argcolor is None:
# no color argument, so take from rxn
if rxncolor is None:
clr = 'grey'
elif saptcolor is not None:
clr = matplotlib.cm.jet(saptcolor)
else:
clr = rxncolor
elif argcolor == 'sapt':
# sapt color from rxn if available
if saptcolor is not None:
clr = matplotlib.cm.jet(saptcolor)
else:
clr = 'grey'
elif argcolor == 'rgb':
# HB/MX/DD sapt color from rxn if available
if saptcolor is not None:
if saptcolor < 0.333:
clr = 'blue'
elif saptcolor < 0.667:
clr = 'green'
else:
clr = 'red'
else:
clr = 'grey'
else:
# color argument is name of mpl color
clr = argcolor
return clr
def bars(data, title='', saveas=None, relpath=False, graphicsformat=['pdf']):
"""Generates a 'gray-bars' diagram between model chemistries with error
statistics in list *data*, which is supplied as part of the dictionary
for each participating bar/modelchem, along with *mc* keys in argument
*data*. The plot is labeled with *title* and each bar with *mc* key and
plotted at a fixed scale to facilitate comparison across projects.
"""
import hashlib
import matplotlib.pyplot as plt
# initialize plot, fix dimensions for consistent Illustrator import
fig, ax = plt.subplots(figsize=(12, 7))
plt.ylim([0, 4.86])
plt.xlim([0, 6])
plt.xticks([])
# label plot and tiers
ax.text(0.4, 4.6, title,
verticalalignment='bottom', horizontalalignment='left',
family='Times New Roman', weight='bold', fontsize=12)
widths = [0.15, 0.02, 0.02, 0.02] # TT, HB, MX, DD
xval = 0.1 # starting posn along x-axis
# plot bar sets
for bar in data:
if bar is not None:
lefts = [xval, xval + 0.025, xval + 0.065, xval + 0.105]
rect = ax.bar(lefts, bar['data'], widths, linewidth=0)
rect[0].set_color('grey')
rect[1].set_color('red')
rect[2].set_color('green')
rect[3].set_color('blue')
ax.text(xval + .08, 4.3, bar['mc'],
verticalalignment='center', horizontalalignment='right', rotation='vertical',
family='Times New Roman', fontsize=8)
xval += 0.20
# save and show
pltuid = title + '_' + hashlib.sha1(title + repr([bar['mc'] for bar in data if bar is not None])).hexdigest()
pltfile = expand_saveas(saveas, pltuid, def_prefix='bar_', relpath=relpath)
files_saved = {}
for ext in graphicsformat:
savefile = pltfile + '.' + ext.lower()
plt.savefig(savefile, transparent=True, format=ext, bbox_inches='tight')
files_saved[ext.lower()] = savefile
plt.show()
return files_saved
def flat(data, color=None, title='', xlimit=4.0, mae=None, mape=None, view=True,
saveas=None, relpath=False, graphicsformat=['pdf']):
"""Generates a slat diagram between model chemistries with errors in
single-item list *data*, which is supplied as part of the dictionary
for each participating reaction, along with *dbse* and *rxn* keys in
argument *data*. Limits of plot are *xlimit* from the zero-line. If
*color* is None, slats are black, if 'sapt', colors are taken from
sapt_colors module. Summary statistic *mae* is plotted on the
overbound side and relative statistic *mape* on the underbound side.
Saves a file with name *title* and plots to screen if *view*.
"""
import matplotlib.pyplot as plt
Nweft = 1
positions = range(-1, -1 * Nweft - 1, -1)
# initialize plot
fig, ax = plt.subplots(figsize=(12, 0.33))
plt.xlim([-xlimit, xlimit])
plt.ylim([-1 * Nweft - 1, 0])
plt.yticks([])
plt.xticks([])
fig.patch.set_visible(False)
ax.patch.set_visible(False)
ax.axis('off')
plt.axvline(-1.0, color='grey', linewidth=4)
plt.axvline(-0.3, color='grey', linewidth=4)
plt.axvline(0.0, color='grey', linewidth=4)
plt.axvline(0.3, color='grey', linewidth=4)
plt.axvline(1.0, color='grey', linewidth=4)
# plot reaction errors and threads
for rxn in data:
xvals = rxn['data']
clr = segment_color(color, rxn['color'] if 'color' in rxn else None)
ax.plot(xvals, positions, '|', color=clr, markersize=13.0)
# plot trimmings
if mae is not None:
plt.axvline(-1 * mae, color='black', linewidth=12)
if mape is not None: # equivalent to MAE for a 10 kcal/mol interaction energy
ax.plot(0.025 * mape, positions, 'o', color='black', markersize=15.0)
# save and show
pltuid = title # simple (not really unique) filename for LaTeX integration
pltfile = expand_saveas(saveas, pltuid, def_prefix='flat_', relpath=relpath)
files_saved = {}
for ext in graphicsformat:
savefile = pltfile + '.' + ext.lower()
plt.savefig(savefile, transparent=True, format=ext) # , bbox_inches='tight')
files_saved[ext.lower()] = savefile
plt.show()
if not view:
plt.close()
return files_saved
#def mpl_distslat_multiplot_files(pltfile, dbid, dbname, xmin, xmax, mcdats, labels, titles):
# """Saves a plot with basename *pltfile* with a slat representation
# of the modelchems errors in *mcdat*. Plot is in PNG, PDF, & EPS
# and suitable for download, no mouseover properties. Both labeled
# and labelless (for pub) figures are constructed.
#
# """
# import matplotlib as mpl
# from matplotlib.axes import Subplot
# import sapt_colors
# from matplotlib.figure import Figure
#
# nplots = len(mcdats)
# fht = nplots * 0.8
# fig, axt = plt.subplots(figsize=(12.0, fht))
# plt.subplots_adjust(left=0.01, right=0.99, hspace=0.3)
#
# axt.set_xticks([])
# axt.set_yticks([])
# plt.axis('off')
#
# for item in range(nplots):
# mcdat = mcdats[item]
# label = labels[item]
# title = titles[item]
#
# erdat = np.array(mcdat)
# yvals = np.ones(len(mcdat))
# y = np.array([sapt_colors.sapt_colors[dbname][i] for i in label])
#
# ax = Subplot(fig, nplots, 1, item + 1)
# fig.add_subplot(ax)
# sc = ax.scatter(erdat, yvals, c=y, s=3000, marker="|", cmap=mpl.cm.jet, vmin=0, vmax=1)
#
# ax.set_yticks([])
# ax.set_xticks([])
# ax.set_frame_on(False)
# ax.set_xlim([xmin, xmax])
#
# # Write files with only slats
# plt.savefig('scratch/' + pltfile + '_plain' + '.png', transparent=True, format='PNG')
# plt.savefig('scratch/' + pltfile + '_plain' + '.pdf', transparent=True, format='PDF')
# plt.savefig('scratch/' + pltfile + '_plain' + '.eps', transparent=True, format='EPS')
#
# # Rewrite files with guides and labels
# for item in range(nplots):
# ax_again = fig.add_subplot(nplots, 1, item + 1)
# ax_again.set_title(titles[item], fontsize=8)
# ax_again.text(xmin + 0.3, 1.0, stats(np.array(mcdats[item])), fontsize=7, family='monospace', verticalalignment='center')
# ax_again.plot([0, 0], [0.9, 1.1], color='#cccc00', lw=2)
# ax_again.set_frame_on(False)
# ax_again.set_yticks([])
# ax_again.set_xticks([-12.0, -8.0, -4.0, -2.0, -1.0, 0.0, 1.0, 2.0, 4.0, 8.0, 12.0])
# ax_again.tick_params(axis='both', which='major', labelbottom='off', bottom='off')
# ax_again.set_xticks([-12.0, -8.0, -4.0, -2.0, -1.0, 0.0, 1.0, 2.0, 4.0, 8.0, 12.0])
# ax_again.tick_params(axis='both', which='major', labelbottom='on', bottom='off')
#
# plt.savefig('scratch/' + pltfile + '_trimd' + '.png', transparent=True, format='PNG')
# plt.savefig('scratch/' + pltfile + '_trimd' + '.pdf', transparent=True, format='PDF')
# plt.savefig('scratch/' + pltfile + '_trimd' + '.eps', transparent=True, format='EPS')
def disthist(data, title='', xtitle='', xmin=None, xmax=None,
me=None, stde=None, saveas=None, relpath=False, graphicsformat=['pdf']):
"""Saves a plot with name *saveas* with a histogram representation
of the reaction errors in *data*. Also plots a gaussian distribution
with mean *me* and standard deviation *stde*. Plot has x-range
*xmin* to *xmax*, x-axis label *xtitle* and overall title *title*.
"""
import hashlib
import numpy as np
import matplotlib.pyplot as plt
def gaussianpdf(u, v, x):
"""*u* is mean, *v* is variance, *x* is value, returns probability"""
return 1.0 / np.sqrt(2.0 * np.pi * v) * np.exp(-pow(x - u, 2) / 2.0 / v)
me = me if me is not None else np.mean(data)
stde = stde if stde is not None else np.std(data, ddof=1)
xmin = xmin if xmin is not None else me - 4.0 * stde
xmax = xmax if xmax is not None else me + 4.0 * stde
dx = (xmax - xmin) / 40.
nx = int(round((xmax - xmin) / dx)) + 1
pdfx = []
pdfy = []
for i in xrange(nx):
ix = xmin + i * dx
pdfx.append(ix)
pdfy.append(gaussianpdf(me, pow(stde, 2), ix))
fig, ax = plt.subplots(figsize=(8, 6))
plt.axvline(0.0, color='#cccc00')
ax1 = fig.add_subplot(111)
ax1.set_xlim(xmin, xmax)
ax1.hist(data, bins=30, range=(xmin, xmax), color='#224477', alpha=0.7)
ax1.set_xlabel(xtitle)
ax1.set_ylabel('Count')
ax2 = ax1.twinx()
ax2.set_xlim(xmin, xmax)
ax2.fill(pdfx, pdfy, color='k', alpha=0.2)
ax2.set_ylabel('Probability Density')
plt.title(title)
# save and show
pltuid = title + '_' + hashlib.sha1(title + str(me) + str(stde) + str(xmin) + str(xmax)).hexdigest()
pltfile = expand_saveas(saveas, pltuid, def_prefix='disthist_', relpath=relpath)
files_saved = {}
for ext in graphicsformat:
savefile = pltfile + '.' + ext.lower()
plt.savefig(savefile, transparent=True, format=ext, bbox_inches='tight')
files_saved[ext.lower()] = savefile
plt.show()
return files_saved
#def thread(data, labels, color=None, title='', xlimit=4.0, mae=None, mape=None):
# """Generates a tiered slat diagram between model chemistries with
# errors (or simply values) in list *data*, which is supplied as part of the
# dictionary for each participating reaction, along with *dbse* and *rxn* keys
# in argument *data*. The plot is labeled with *title* and each tier with
# an element of *labels* and plotted at *xlimit* from the zero-line. If
# *color* is None, slats are black, if 'sapt', colors are taken from *color*
# key in *data* [0, 1]. Summary statistics *mae* are plotted on the
# overbound side and relative statistics *mape* on the underbound side.
#
# """
# from random import random
# import matplotlib.pyplot as plt
#
# # initialize tiers/wefts
# Nweft = len(labels)
# lenS = 0.2
# gapT = 0.04
# positions = range(-1, -1 * Nweft - 1, -1)
# posnS = []
# for weft in range(Nweft):
# posnS.extend([positions[weft] + lenS, positions[weft] - lenS, None])
# posnT = []
# for weft in range(Nweft - 1):
# posnT.extend([positions[weft] - lenS - gapT, positions[weft + 1] + lenS + gapT, None])
#
# # initialize plot
# fht = Nweft * 0.8
# fig, ax = plt.subplots(figsize=(12, fht))
# plt.subplots_adjust(left=0.01, right=0.99, hspace=0.3)
# plt.xlim([-xlimit, xlimit])
# plt.ylim([-1 * Nweft - 1, 0])
# plt.yticks([])
#
# # label plot and tiers
# ax.text(-0.9 * xlimit, -0.25, title,
# verticalalignment='bottom', horizontalalignment='left',
# family='Times New Roman', weight='bold', fontsize=12)
# for weft in labels:
# ax.text(-0.9 * xlimit, -(1.2 + labels.index(weft)), weft,
# verticalalignment='bottom', horizontalalignment='left',
# family='Times New Roman', weight='bold', fontsize=18)
#
# # plot reaction errors and threads
# for rxn in data:
#
# # preparation
# xvals = rxn['data']
# clr = segment_color(color, rxn['color'] if 'color' in rxn else None)
# slat = []
# for weft in range(Nweft):
# slat.extend([xvals[weft], xvals[weft], None])
# thread = []
# for weft in range(Nweft - 1):
# thread.extend([xvals[weft], xvals[weft + 1], None])
#
# # plotting
# ax.plot(slat, posnS, color=clr, linewidth=1.0, solid_capstyle='round')
# ax.plot(thread, posnT, color=clr, linewidth=0.5, solid_capstyle='round',
# alpha=0.3)
#
# # labeling
# try:
# toplblposn = next(item for item in xvals if item is not None)
# botlblposn = next(item for item in reversed(xvals) if item is not None)
# except StopIteration:
# pass
# else:
# ax.text(toplblposn, -0.75 + 0.6 * random(), rxn['sys'],
# verticalalignment='bottom', horizontalalignment='center',
# family='Times New Roman', fontsize=8)
# ax.text(botlblposn, -1 * Nweft - 0.75 + 0.6 * random(), rxn['sys'],
# verticalalignment='bottom', horizontalalignment='center',
# family='Times New Roman', fontsize=8)
#
# # plot trimmings
# if mae is not None:
# ax.plot([-x for x in mae], positions, 's', color='black')
# if mape is not None: # equivalent to MAE for a 10 kcal/mol IE
# ax.plot([0.025 * x for x in mape], positions, 'o', color='black')
#
# plt.axvline(0, color='black')
# plt.show()
def threads(data, labels, color=None, title='', xlimit=4.0, mae=None, mape=None,
mousetext=None, mouselink=None, mouseimag=None, mousetitle=None,
saveas=None, relpath=False, graphicsformat=['pdf']):
"""Generates a tiered slat diagram between model chemistries with
errors (or simply values) in list *data*, which is supplied as part of the
dictionary for each participating reaction, along with *dbse* and *rxn* keys
in argument *data*. The plot is labeled with *title* and each tier with
an element of *labels* and plotted at *xlimit* from the zero-line. If
*color* is None, slats are black, if 'sapt', colors are taken from *color*
key in *data* [0, 1]. Summary statistics *mae* are plotted on the
overbound side and relative statistics *mape* on the underbound side.
HTML code for mouseover if mousetext or mouselink or mouseimag specified
based on recipe of Andrew Dalke from
http://www.dalkescientific.com/writings/diary/archive/2005/04/24/interactive_html.html
"""
import random
import hashlib
import matplotlib.pyplot as plt
# initialize tiers/wefts
Nweft = len(labels)
lenS = 0.2
gapT = 0.04
positions = range(-1, -1 * Nweft - 1, -1)
posnS = []
for weft in range(Nweft):
posnS.extend([positions[weft] + lenS, positions[weft] - lenS, None])
posnT = []
for weft in range(Nweft - 1):
posnT.extend([positions[weft] - lenS - gapT, positions[weft + 1] + lenS + gapT, None])
posnM = []
# initialize plot
fht = Nweft * 0.8
fig, ax = plt.subplots(figsize=(12, fht))
plt.subplots_adjust(left=0.01, right=0.99, hspace=0.3)
plt.xlim([-xlimit, xlimit])
plt.ylim([-1 * Nweft - 1, 0])
plt.yticks([])
# label plot and tiers
ax.text(-0.9 * xlimit, -0.25, title,
verticalalignment='bottom', horizontalalignment='left',
family='Times New Roman', weight='bold', fontsize=12)
for weft in labels:
ax.text(-0.9 * xlimit, -(1.2 + labels.index(weft)), weft,
verticalalignment='bottom', horizontalalignment='left',
family='Times New Roman', weight='bold', fontsize=18)
# plot reaction errors and threads
for rxn in data:
# preparation
xvals = rxn['data']
clr = segment_color(color, rxn['color'] if 'color' in rxn else None)
slat = []
for weft in range(Nweft):
slat.extend([xvals[weft], xvals[weft], None])
thread = []
for weft in range(Nweft - 1):
thread.extend([xvals[weft], xvals[weft + 1], None])
# plotting
ax.plot(slat, posnS, color=clr, linewidth=1.0, solid_capstyle='round')
ax.plot(thread, posnT, color=clr, linewidth=0.5, solid_capstyle='round', alpha=0.3)
# converting into screen coordinates for image map
xyscreen = ax.transData.transform(zip(xvals, positions))
xscreen, yscreen = zip(*xyscreen)
posnM.extend(zip([rxn['db']] * Nweft, [rxn['sys']] * Nweft,
xvals, xscreen, yscreen))
# labeling
if not(mousetext or mouselink or mouseimag):
try:
toplblposn = next(item for item in xvals if item is not None)
botlblposn = next(item for item in reversed(xvals) if item is not None)
except StopIteration:
pass
else:
ax.text(toplblposn, -0.75 + 0.6 * random.random(), rxn['sys'],
verticalalignment='bottom', horizontalalignment='center',
family='Times New Roman', fontsize=8)
ax.text(botlblposn, -1 * Nweft - 0.75 + 0.6 * random.random(), rxn['sys'],
verticalalignment='bottom', horizontalalignment='center',
family='Times New Roman', fontsize=8)
# plot trimmings
if mae is not None:
ax.plot([-x for x in mae], positions, 's', color='black')
if mape is not None: # equivalent to MAE for a 10 kcal/mol IE
ax.plot([0.025 * x for x in mape], positions, 'o', color='black')
plt.axvline(0, color='black')
# save and show
pltuid = title + '_' + hashlib.sha1(title + repr(labels) + repr(xlimit)).hexdigest()
pltfile = expand_saveas(saveas, pltuid, def_prefix='thread_', relpath=relpath)
files_saved = {}
for ext in graphicsformat:
savefile = pltfile + '.' + ext.lower()
plt.savefig(savefile, transparent=True, format=ext, bbox_inches='tight')
files_saved[ext.lower()] = savefile
plt.show()
if not (mousetext or mouselink or mouseimag):
return files_saved, None
else:
dpi = 80
img_width = fig.get_figwidth() * dpi
img_height = fig.get_figheight() * dpi
htmlcode = """<SCRIPT>\n"""
htmlcode += """function mouseshow(db, rxn, val) {\n"""
if mousetext or mouselink:
htmlcode += """ var cid = document.getElementById("cid");\n"""
if mousetext:
htmlcode += """ cid.innerHTML = %s;\n""" % (mousetext)
if mouselink:
htmlcode += """ cid.href = %s;\n""" % (mouselink)
if mouseimag:
htmlcode += """ var cmpd_img = document.getElementById("cmpd_img");\n"""
htmlcode += """ cmpd_img.src = %s;\n""" % (mouseimag)
htmlcode += """}\n"""
htmlcode += """</SCRIPT>\n"""
htmlcode += """%s <BR>""" % (mousetitle)
htmlcode += """Mouseover:<BR><a id="cid"></a><br>\n"""
htmlcode += """<IMG SRC="%s" ismap usemap="#points" WIDTH="%d" HEIGHT="%d">\n""" % \
(pltfile + '.png', img_width, img_height)
htmlcode += """<IMG ID="cmpd_img" WIDTH="%d" HEIGHT="%d">\n""" % (200, 160)
htmlcode += """<MAP name="points">\n"""
# generating html image map code
# points sorted to avoid overlapping map areas that can overwhelm html for SSI
# y=0 on top for html and on bottom for mpl, so flip the numbers
posnM.sort(key=lambda tup: tup[2])
posnM.sort(key=lambda tup: tup[3])
last = (0, 0)
for dbse, rxn, val, x, y in posnM:
if val is None:
continue
now = (int(x), int(y))
if now == last:
htmlcode += """<!-- map overlap! %s-%s %+.2f skipped -->\n""" % (dbse, rxn, val)
else:
htmlcode += """<AREA shape="rect" coords="%d,%d,%d,%d" onmouseover="javascript:mouseshow('%s', '%s', '%+.2f');">\n""" % \
(x - 2, img_height - y - 20,
x + 2, img_height - y + 20,
dbse, rxn, val)
last = now
htmlcode += """</MAP>\n"""
return files_saved, htmlcode
#def thread_mouseover_web(pltfile, dbid, dbname, xmin, xmax, mcdats, labels, titles):
# """Saves a plot with name *pltfile* with a slat representation of
# the modelchems errors in *mcdat*. Mouseover shows geometry and error
# from *labels* based on recipe of Andrew Dalke from
# http://www.dalkescientific.com/writings/diary/archive/2005/04/24/interactive_html.html
#
# """
# from matplotlib.backends.backend_agg import FigureCanvasAgg
# import matplotlib
# import sapt_colors
#
# cmpd_width = 200
# cmpd_height = 160
#
# nplots = len(mcdats)
# fht = nplots * 0.8
# fht = nplots * 0.8 * 1.4
# fig = matplotlib.figure.Figure(figsize=(12.0, fht))
# fig.subplots_adjust(left=0.01, right=0.99, hspace=0.3, top=0.8, bottom=0.2)
# img_width = fig.get_figwidth() * 80
# img_height = fig.get_figheight() * 80
#
# htmlcode = """
#<SCRIPT>
#function mouseandshow(name, id, db, dbname) {
# var cid = document.getElementById("cid");
# cid.innerHTML = name;
# cid.href = "fragmentviewer.py?name=" + id + "&dataset=" + db;
# var cmpd_img = document.getElementById("cmpd_img");
# cmpd_img.src = dbname + "/dimers/" + id + ".png";
#}
#</SCRIPT>
#
#Distribution of Fragment Errors in Interaction Energy (kcal/mol)<BR>
#Mouseover:<BR><a id="cid"></a><br>
#<IMG SRC="scratch/%s" ismap usemap="#points" WIDTH="%d" HEIGHT="%d">
#<IMG ID="cmpd_img" WIDTH="%d" HEIGHT="%d">
#<MAP name="points">
#""" % (pltfile, img_width, img_height, cmpd_width, cmpd_height)
#
# for item in range(nplots):
# print '<br><br><br><br><br><br>'
# mcdat = mcdats[item]
# label = labels[item]
# tttle = titles[item]
#
# erdat = np.array(mcdat)
# # No masked_array because interferes with html map
# #erdat = np.ma.masked_array(mcdat, mask=mask)
# yvals = np.ones(len(mcdat))
# y = np.array([sapt_colors.sapt_colors[dbname][i] for i in label])
#
# ax = fig.add_subplot(nplots, 1, item + 1)
# sc = ax.scatter(erdat, yvals, c=y, s=3000, marker="|", cmap=matplotlib.cm.jet, vmin=0, vmax=1)
# ax.set_title(tttle, fontsize=8)
# ax.set_yticks([])
# lp = ax.plot([0, 0], [0.9, 1.1], color='#cccc00', lw=2)
# ax.set_ylim([0.95, 1.05])
# ax.text(xmin + 0.3, 1.0, stats(erdat), fontsize=7, family='monospace', verticalalignment='center')
# if item + 1 == nplots:
# ax.set_xticks([-12.0, -8.0, -4.0, -2.0, -1.0, 0.0, 1.0, 2.0, 4.0, 8.0, 12.0])
# for tick in ax.xaxis.get_major_ticks():
# tick.tick1line.set_markersize(0)
# tick.tick2line.set_markersize(0)
# else:
# ax.set_xticks([])
# ax.set_frame_on(False)
# ax.set_xlim([xmin, xmax])
#
# # Convert the data set points into screen space coordinates
# #xyscreencoords = ax.transData.transform(zip(erdat, yvals))
# xyscreencoords = ax.transData.transform(zip(erdat, yvals))
# xcoords, ycoords = zip(*xyscreencoords)
#
# # HTML image coordinates have y=0 on the top. Matplotlib
# # has y=0 on the bottom. We'll need to flip the numbers
# for cid, x, y, er in zip(label, xcoords, ycoords, erdat):
# htmlcode += """<AREA shape="rect" coords="%d,%d,%d,%d" onmouseover="javascript:mouseandshow('%s %+.2f', '%s', %s, '%s');">\n""" % \
# (x - 2, img_height - y - 20, x + 2, img_height - y + 20, cid, er, cid, dbid, dbname)
#
# htmlcode += "</MAP>\n"
# canvas = FigureCanvasAgg(fig)
# canvas.print_figure('scratch/' + title, dpi=80, transparent=True)
#
# #plt.savefig('mplflat_' + title + '.pdf', bbox_inches='tight', transparent=True, format='PDF')
# #plt.savefig(os.environ['HOME'] + os.sep + 'mplflat_' + title + '.pdf', bbox_inches='tight', transparent=T rue, format='PDF')
#
# return htmlcode
def composition_tile(db, aa1, aa2):
"""Takes dictionary *db* of label, error pairs and amino acids *aa1*
and *aa2* and returns a square array of all errors for that amino
acid pair, buffered by zeros.
"""
import re
import numpy as np
bfdbpattern = re.compile("\d\d\d([A-Z][A-Z][A-Z])-\d\d\d([A-Z][A-Z][A-Z])-\d")
tiles = []
for key, val in db.items():
bfdbname = bfdbpattern.match(key)
if (bfdbname.group(1) == aa1 and bfdbname.group(2) == aa2) or \
(bfdbname.group(2) == aa1 and bfdbname.group(1) == aa2):
tiles.append(val)
dim = int(np.ceil(np.sqrt(len(tiles))))
pad = dim * dim - len(tiles)
tiles += [0] * pad
return np.reshape(np.array(tiles), (dim, dim))
def iowa(mcdat, mclbl, title='', xlimit=2.0):
"""Saves a plot with (extensionless) name *pltfile* with an Iowa
representation of the modelchems errors in *mcdat* for BBI/SSI-style
*labels*.
"""
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
aa = ['ARG', 'HIE', 'LYS', 'ASP', 'GLU', 'SER', 'THR', 'ASN', 'GLN', 'CYS', 'MET', 'GLY', 'ALA', 'VAL', 'ILE', 'LEU', 'PRO', 'PHE', 'TYR', 'TRP']
#aa = ['ILE', 'LEU', 'ASP', 'GLU', 'PHE']
err = dict(zip(mclbl, mcdat))
# handle for frame, overall axis
fig, axt = plt.subplots(figsize=(6, 6))
axt.set_xticks(np.arange(len(aa)) + 0.3, minor=False)
axt.set_yticks(np.arange(len(aa)) + 0.3, minor=False)
axt.invert_yaxis()
axt.xaxis.tick_top()
axt.set_xticklabels(aa, minor=False, rotation=60, size='small')
axt.set_yticklabels(aa, minor=False, size='small')
axt.xaxis.set_tick_params(width=0, length=0)
axt.yaxis.set_tick_params(width=0, length=0)
#axt.set_title('%s' % (title), fontsize=16, verticalalignment='bottom')
axt.text(10.0, -1.5, title, horizontalalignment='center', fontsize=16)
# nill spacing between 20x20 heatmaps
plt.subplots_adjust(hspace=0.001, wspace=0.001)
index = 1
for aa1 in aa:
for aa2 in aa:
cb = composition_tile(err, aa1, aa2)
ax = matplotlib.axes.Subplot(fig, len(aa), len(aa), index)
fig.add_subplot(ax)
heatmap = ax.pcolor(cb, vmin=-xlimit, vmax=xlimit, cmap=plt.cm.PRGn)
ax.set_xticks([])
ax.set_yticks([])
index += 1
title = '_'.join(title.split())
plt.savefig('iowa_' + title + '.pdf', bbox_inches='tight', transparent=True, format='PDF')
plt.show()
#plt.savefig(os.environ['HOME'] + os.sep + 'iowa_' + title + '.pdf', bbox_inches='tight', transparent=True, format='PDF')
if __name__ == "__main__":
merge_dats = [
{'db':'HSG', 'sys':'1', 'data':[0.3508, 0.1234, 0.0364, 0.0731, 0.0388]},
{'db':'HSG', 'sys':'3', 'data':[0.2036, -0.0736, -0.1650, -0.1380, -0.1806]},
{'db':'S22', 'sys':'14', 'data':[None, -3.2144, None, None, None]},
{'db':'S22', 'sys':'15', 'data':[-1.5090, -2.5263, -2.9452, -2.8633, -3.1059]},
{'db':'S22', 'sys':'22', 'data':[0.3046, -0.2632, -0.5070, -0.4925, -0.6359]}]
threads(merge_dats, labels=['d', 't', 'dt', 'q', 'tq'], color='sapt',
title='MP2-CPa[]z', mae=[0.25, 0.5, 0.5, 0.3, 1.0], mape=[20.1, 25, 15, 5.5, 3.6])
more_dats = [
{'mc':'MP2-CP-adz', 'data':[1.0, 0.8, 1.4, 1.6]},
{'mc':'MP2-CP-adtz', 'data':[0.6, 0.2, 0.4, 0.6]},
None,
{'mc':'MP2-CP-adzagain', 'data':[1.0, 0.8, 1.4, 1.6]}]
bars(more_dats, title='asdf')
single_dats = [
{'dbse':'HSG', 'sys':'1', 'data':[0.3508]},
{'dbse':'HSG', 'sys':'3', 'data':[0.2036]},
{'dbse':'S22', 'sys':'14', 'data':[None]},
{'dbse':'S22', 'sys':'15', 'data':[-1.5090]},
{'dbse':'S22', 'sys':'22', 'data':[0.3046]}]
#flat(single_dats, color='sapt', title='fg_MP2_adz', mae=0.25, mape=20.1)
flat([{'sys': '1', 'color': 0.6933450559423702, 'data': [0.45730000000000004]}, {'sys': '2', 'color': 0.7627027688599753, 'data': [0.6231999999999998]}, {'sys': '3', 'color': 0.7579958735528617, 'data': [2.7624999999999993]}, {'sys': '4', 'color': 0.7560883254421639, 'data': [2.108600000000001]}, {'sys': '5', 'color': 0.7515161912065955, 'data': [2.2304999999999993]}, {'sys': '6', 'color': 0.7235223893438876, 'data': [1.3782000000000014]}, {'sys': '7', 'color': 0.7120099024225569, 'data': [1.9519000000000002]}, {'sys': '8', 'color': 0.13721565059144678, 'data': [0.13670000000000004]}, {'sys': '9', 'color': 0.3087395095814767, 'data': [0.2966]}, {'sys': '10', 'color': 0.25493207637105103, 'data': [-0.020199999999999996]}, {'sys': '11', 'color': 0.24093814608979347, 'data': [-1.5949999999999998]}, {'sys': '12', 'color': 0.3304746631959777, 'data': [-1.7422000000000004]}, {'sys': '13', 'color': 0.4156050644764822, 'data': [0.0011999999999989797]}, {'sys': '14', 'color': 0.2667207259626991, 'data': [-2.6083999999999996]}, {'sys': '15', 'color': 0.3767053567641695, 'data': [-1.5090000000000003]}, {'sys': '16', 'color': 0.5572641509433963, 'data': [0.10749999999999993]}, {'sys': '17', 'color': 0.4788598239641578, 'data': [0.29669999999999996]}, {'sys': '18', 'color': 0.3799031371351281, 'data': [0.10209999999999964]}, {'sys': '19', 'color': 0.5053227185999078, 'data': [0.16610000000000014]}, {'sys': '20', 'color': 0.2967660584483015, 'data': [-0.37739999999999974]}, {'sys': '21', 'color': 0.38836460733750316, 'data': [-0.4712000000000005]}, {'sys': '22', 'color': 0.5585849893078809, 'data': [0.30460000000000065]}, {'sys': 'BzBz_PD36-1.8', 'color': 0.1383351040559965, 'data': [-1.1921]}, {'sys': 'BzBz_PD34-2.0', 'color': 0.23086034843049832, 'data': [-1.367]}, {'sys': 'BzBz_T-5.2', 'color': 0.254318060864096, 'data': [-0.32230000000000025]}, {'sys': 'BzBz_T-5.1', 'color': 0.26598486566733337, 'data': [-0.3428]}, {'sys': 'BzBz_T-5.0', 'color': 0.28011258347610224, 'data': [-0.36060000000000025]}, {'sys': 'PyPy_S2-3.9', 'color': 0.14520332101084785, 'data': [-0.9853000000000001]}, {'sys': 'PyPy_S2-3.8', 'color': 0.1690757103699542, 'data': [-1.0932]}, {'sys': 'PyPy_S2-3.5', 'color': 0.25615734567417053, 'data': [-1.4617]}, {'sys': 'PyPy_S2-3.7', 'color': 0.19566550224566906, 'data': [-1.2103999999999995]}, {'sys': 'PyPy_S2-3.6', 'color': 0.22476748600170826, 'data': [-1.3333]}, {'sys': 'BzBz_PD32-2.0', 'color': 0.31605681987208084, 'data': [-1.6637]}, {'sys': 'BzBz_T-4.8', 'color': 0.31533827331543723, 'data': [-0.38759999999999994]}, {'sys': 'BzBz_T-4.9', 'color': 0.2966146678069063, 'data': [-0.3759999999999999]}, {'sys': 'BzH2S-3.6', 'color': 0.38284814928043304, 'data': [-0.1886000000000001]}, {'sys': 'BzBz_PD32-1.7', 'color': 0.3128835191478639, 'data': [-1.8703999999999998]}, {'sys': 'BzMe-3.8', 'color': 0.24117892478245323, 'data': [-0.034399999999999986]}, {'sys': 'BzMe-3.9', 'color': 0.22230903086047088, 'data': [-0.046499999999999986]}, {'sys': 'BzH2S-3.7', 'color': 0.36724255203373696, 'data': [-0.21039999999999992]}, {'sys': 'BzMe-3.6', 'color': 0.284901522674611, 'data': [0.007099999999999884]}, {'sys': 'BzMe-3.7', 'color': 0.2621086166558813, 'data': [-0.01770000000000005]}, {'sys': 'BzBz_PD32-1.9', 'color': 0.314711251903219, 'data': [-1.7353999999999998]}, {'sys': 'BzBz_PD32-1.8', 'color': 0.3136181753200793, 'data': [-1.8039999999999998]}, {'sys': 'BzH2S-3.8', 'color': 0.3542001591399945, 'data': [-0.22230000000000016]}, {'sys': 'BzBz_PD36-1.9', 'color': 0.14128552184232473, 'data': [-1.1517]}, {'sys': 'BzBz_S-3.7', 'color': 0.08862098445220466, 'data': [-1.3414]}, {'sys': 'BzH2S-4.0', 'color': 0.33637540012259076, 'data': [-0.2265999999999999]}, {'sys': 'BzBz_PD36-1.5', 'color': 0.13203548045236127, 'data': [-1.3035]}, {'sys': 'BzBz_S-3.8', 'color': 0.0335358832178858, 'data': [-1.2022]}, {'sys': 'BzBz_S-3.9', 'color': 0.021704594689389095, 'data': [-1.0747]}, {'sys': 'PyPy_T3-5.1', 'color': 0.3207725129126432, 'data': [-0.2958000000000003]}, {'sys': 'PyPy_T3-5.0', 'color': 0.3254925304351165, 'data': [-0.30710000000000015]}, {'sys': 'BzBz_PD36-1.7', 'color': 0.13577087141986593, 'data': [-1.2333000000000003]}, {'sys': 'PyPy_T3-4.8', 'color': 0.3443704059902452, 'data': [-0.32010000000000005]}, {'sys': 'PyPy_T3-4.9', 'color': 0.3333442013628509, 'data': [-0.3158999999999996]}, {'sys': 'PyPy_T3-4.7', 'color': 0.35854000505665756, 'data': [-0.31530000000000014]}, {'sys': 'BzBz_PD36-1.6', 'color': 0.13364651314909243, 'data': [-1.2705000000000002]}, {'sys': 'BzMe-4.0', 'color': 0.20560117919562013, 'data': [-0.05389999999999984]}, {'sys': 'MeMe-3.6', 'color': 0.16934865900383142, 'data': [0.18420000000000003]}, {'sys': 'MeMe-3.7', 'color': 0.1422332591197123, 'data': [0.14680000000000004]}, {'sys': 'MeMe-3.4', 'color': 0.23032794290360467, 'data': [0.29279999999999995]}, {'sys': 'MeMe-3.5', 'color': 0.19879551978386897, 'data': [0.23260000000000003]}, {'sys': 'MeMe-3.8', 'color': 0.11744404936205816, 'data': [0.11680000000000001]}, {'sys': 'BzBz_PD34-1.7', 'color': 0.22537382457222138, 'data': [-1.5286999999999997]}, {'sys': 'BzBz_PD34-1.6', 'color': 0.22434088042760192, 'data': [-1.5754000000000001]}, {'sys': 'BzBz_PD32-2.2', 'color': 0.3189891685300601, 'data': [-1.5093999999999999]}, {'sys': 'BzBz_S-4.1', 'color': 0.10884135031532088, 'data': [-0.8547000000000002]}, {'sys': 'BzBz_S-4.0', 'color': 0.06911476296747143, 'data': [-0.9590000000000001]}, {'sys': 'BzBz_PD34-1.8', 'color': 0.22685419834431494, 'data': [-1.476]}, {'sys': 'BzBz_PD34-1.9', 'color': 0.2287079261672095, 'data': [-1.4223999999999997]}, {'sys': 'BzH2S-3.9', 'color': 0.3439077006047999, 'data': [-0.22739999999999982]}, {'sys': 'FaNNFaNN-4.1', 'color': 0.7512716174974567, 'data': [1.7188999999999997]}, {'sys': 'FaNNFaNN-4.0', 'color': 0.7531388297328865, 'data': [1.9555000000000007]}, {'sys': 'FaNNFaNN-4.3', 'color': 0.7478064149182957, 'data': [1.2514000000000003]}, {'sys': 'FaNNFaNN-4.2', 'color': 0.7493794908838113, 'data': [1.4758000000000013]}, {'sys': 'FaOOFaON-4.0', 'color': 0.7589275618320565, 'data': [2.0586]}, {'sys': 'FaOOFaON-3.7', 'color': 0.7619465815742713, 'data': [3.3492999999999995]}, {'sys': 'FaOOFaON-3.9', 'color': 0.7593958895631474, 'data': [2.4471000000000007]}, {'sys': 'FaOOFaON-3.8', 'color': 0.7605108059280967, 'data': [2.8793999999999986]}, {'sys': 'FaONFaON-4.1', 'color': 0.7577459277014137, 'data': [1.8697999999999997]}, {'sys': 'FaOOFaON-3.6', 'color': 0.7633298028299997, 'data': [3.847599999999998]}, {'sys': 'FaNNFaNN-3.9', 'color': 0.7548200901251662, 'data': [2.2089]}, {'sys': 'FaONFaON-3.8', 'color': 0.7582294603551467, 'data': [2.967699999999999]}, {'sys': 'FaONFaON-3.9', 'color': 0.7575285282217349, 'data': [2.578900000000001]}, {'sys': 'FaONFaON-4.2', 'color': 0.7594549221042256, 'data': [1.5579999999999998]}, {'sys': 'FaOOFaNN-3.6', 'color': 0.7661655616885379, 'data': [3.701599999999999]}, {'sys': 'FaOOFaNN-3.7', 'color': 0.7671068376007428, 'data': [3.156500000000001]}, {'sys': 'FaOOFaNN-3.8', 'color': 0.766947626251711, 'data': [2.720700000000001]}, {'sys': 'FaONFaNN-3.9', 'color': 0.7569836601896789, 'data': [2.4281000000000006]}, {'sys': 'FaONFaNN-3.8', 'color': 0.758024548462959, 'data': [2.7561999999999998]}, {'sys': 'FaOOFaOO-3.6', 'color': 0.7623422640217077, 'data': [3.851800000000001]}, {'sys': 'FaOOFaOO-3.7', 'color': 0.7597430792159379, 'data': [3.2754999999999974]}, {'sys': 'FaOOFaOO-3.4', 'color': 0.7672554950739594, 'data': [5.193299999999999]}, {'sys': 'FaOOFaOO-3.5', 'color': 0.764908813123865, 'data': [4.491900000000001]}, {'sys': 'FaONFaNN-4.2', 'color': 0.7549212942233738, 'data': [1.534699999999999]}, {'sys': 'FaONFaNN-4.0', 'color': 0.7559404310956357, 'data': [2.1133000000000024]}, {'sys': 'FaONFaNN-4.1', 'color': 0.7551574698775625, 'data': [1.813900000000002]}, {'sys': 'FaONFaON-4.0', 'color': 0.7572064604483282, 'data': [2.2113999999999994]}, {'sys': 'FaOOFaOO-3.8', 'color': 0.7573810956831686, 'data': [2.7634000000000007]}, {'sys': '1', 'color': 0.2784121805328983, 'data': [0.3508]}, {'sys': '2', 'color': 0.22013842798900166, 'data': [-0.034600000000000186]}, {'sys': '3', 'color': 0.12832496088281312, 'data': [0.20360000000000023]}, {'sys': '4', 'color': 0.6993695033529733, 'data': [1.9092000000000002]}, {'sys': '5', 'color': 0.7371192790053749, 'data': [1.656600000000001]}, {'sys': '6', 'color': 0.5367033190796172, 'data': [0.27970000000000006]}, {'sys': '7', 'color': 0.3014220615964802, 'data': [0.32289999999999974]}, {'sys': '8', 'color': 0.01605867807629261, 'data': [0.12199999999999994]}, {'sys': '9', 'color': 0.6106300539083558, 'data': [0.3075999999999999]}, {'sys': '10', 'color': 0.6146680031333968, 'data': [0.6436000000000002]}, {'sys': '11', 'color': 0.6139747851721759, 'data': [0.4551999999999996]}, {'sys': '12', 'color': 0.32122739401126593, 'data': [0.44260000000000005]}, {'sys': '13', 'color': 0.24678148099136055, 'data': [-0.11789999999999967]}, {'sys': '14', 'color': 0.23700950710597016, 'data': [0.42689999999999995]}, {'sys': '15', 'color': 0.23103396678138563, 'data': [0.3266]}, {'sys': '16', 'color': 0.1922070769654413, 'data': [0.0696000000000001]}, {'sys': '17', 'color': 0.19082151944747366, 'data': [0.11159999999999992]}, {'sys': '18', 'color': 0.2886200282444196, 'data': [0.4114]}, {'sys': '19', 'color': 0.23560171133945224, 'data': [-0.1392]}, {'sys': '20', 'color': 0.3268270751294533, 'data': [0.5593]}, {'sys': '21', 'color': 0.7324460869158442, 'data': [0.6806000000000001]}],
color='sapt', title='MP2-CP-adz', mae=1.21356003247, mape=24.6665886087, xlimit=4.0)
lin_dats = [-0.5, -0.4, -0.3, 0, .5, .8, 5]
lin_labs = ['008ILE-012LEU-1', '012LEU-085ASP-1', '004GLU-063LEU-2',
'011ILE-014PHE-1', '027GLU-031LEU-1', '038PHE-041ILE-1', '199LEU-202GLU-1']
iowa(lin_dats, lin_labs, title='ttl', xlimit=0.5)
disthist(lin_dats)
|